
3/29/02

1

Page 1March 29, 2002

hp e3000

strategy MPE CI Program ming

for 7.5

… and other tidbits

presented by
Jeff Vance, HP-CSY

jeff_vance@hp.com

3/29/02

2

March 29, 2002 Page 2

hp e3000

strategy

outline
(read the notes too!)

• “recent” CI enhancements

• script cleanup techniques

• error handling

• debugging and good practices

• string parsing

• I/O redirection techniques

• lots of examples

• appendix

•This sequence introduces CI programming building blocks (variables, functions, commands) and then shows how they
can be combined to make simple and powerful scripts and UDCs.
•The appendix contains many slides. Some slides provide background information and other slides offer greater detail
than covered in the main presentation. I strongly encourage you to at least skim through the appendix.
•The notes are an integral part of these slides. Please read the notes, as they contain many more details than are presented
in the slides alone.

3/29/02

3

March 29, 2002 Page 3

hp e3000

strategy

“recent” CI enhancements

• extended POSIX filename characters

• new CI functions: anyparm,basename, dirname,fqualify,
fsyntax, jobcnt, jinfo, pinfo,wordcnt, xword

• new CI variables: hpdatetime, hpdoy, hphhm mssm m m,
hpleapyear, hpmaxpin, hpyyyym mdd

• new CI commands: :abortproc, :newci, :newjobq, :purgejobq,
:shutdown

• enhanced commands: :INPUT from console, FOS store-to-disk,
:showvarto see another job/sessions’ variables, :copyto= a
directory, :altjob HIPRI and jobq=, :limit +-N

• :HELP shows all CI variables, functions, ONLINEINFO, NEW

•Above enhancements begin with MPE/iX release 6.0 and span up to release 7.5.
•Extended POSIX filename characters are: “~\$%^*+|{}:” in addition to “_-.” that were originally supported.
• Enter HELP on each of these commands to ensure you are current on their usage. For example, did you know the
system manager can display the user set variables from another job or session? Are you aware that you can wait until one
or more jobs terminate via the enhanced PAUSE command? Did you remember that the OPTION command is not just in
a UDC/script header, but can also be used as a CI command? Have you tried using the INPUT command to send a
prompt to the system console and wait for an operator reply? Did you know you can abort a single process without
killing an entire job or session? If you ever run low on processes, did you know the NEWCI command will save you one
process per logon? Do you know an easy way to determine the maximum number of processes supported on one of your
systems (answer: HPMAXPIN variable). In 7.0 Express 1, you can use the PINFO CI function to retrieve detailed
information on an individual process (PIN) or thread.
• HELP NEW - shows all features of the CI that are (relatively) new.
• HELP ONLINEINFO - shows current URLs where information on the e3000 is available online.
• Also, HELP VARIABLES, HELP EXPRESSIONS, HELP OPERATORS, and HELP FUNCTIONS all provide useful
information.

3/29/02

4

March 29, 2002 Page 4

hp e3000

strategy

• use HPAUTOCONT variable judiciously :

• better --
continue
command
if hpcierr <> 0 then ...

• if error-condition then

echo something…
return --or -- escape

endif …

• :RETURN vs. :ESCAPE
• :return goes back ONE level

• :escape goes back to the CI level in a session, to an active
CONTINUE, or can abort a job

• HPCIERRMSG - variable contains the error text for the value of

CIERROR JCW / variable

• :ERRCLEAR -sets HPCIERR, CIERROR, HPFSERR, HPCIERRCOL
variables to zero

error handling

•HPAUTOCONT = true is sometimes useful, but can be a dangerous practice. It allows every command to behave as if it is proceeded
by a :CONTINUE command. This may be desired for some of the commands in a job or script, but not necessarily all of the
commands. I find it safer and more reliable to leave HPAUTOCONT set to false (default) and to use an explicit :continue in front of
each command that I want to test for success or failure. This allows me to control the behavior of the script, e.g., I can do some cleanup
if an error occurs, and at the same time, it permits the script to abort if an unexpected failure arises.
•I think that scripts are more maintainable and easier to read if the error checking portion reports the trouble and then simply exits. This
is preferred to using constructs such as:

if <error> then
report problem… # Don’t handle errors this way if possible!

else
execute more code…

if <error> then
report error # Do handle errors this way if possible!
return

endif
•RETURN causes execution to resume in the calling environment. RETURN is useful as a method of exiting an alternate entry in a
script or UDC. RETURN does not set CI error related variables and cannot directly cause the calling environment to abort. Returning
from a script (command file) closes the file; however that is the only cleanup done automatically by the system. Scratch files, file
equations, variable, etc., in general, should be cleaned up prior to exiting a script or UDC.
•ESCAPE causes execution to resume at the main CI level for sessions, and at the calling environment if a :continue proceeded the
invoking command. If the calling environment is a job and the invoking command was not “protected” by a :continue then ESCAPE
will abort the job. Additionally, ESCAPE can set CIERROR and HPCIERR to an error number, but the default is to not alter these
variables. ESCAPE mimics to some degree the TRY/ RECOVER / ESCAPE construct provided by Pascal, which is used by a large
portion of the MPE operating system. ESCAPE is useful when a script or UDC needs to duplicate the CI’s error handling. This
duplication can be further improved by exploiting the HPFSERR and HPCIERRCOL predefined variables, which provide the
associated file system error (if any), and the column position of the offending command line parameter, where the CI would locate the
caret (‘^”) in an error message.
•The HPCIERRMSG string variable contains the error/warning message associated to the current value of the CIERROR variable. Note
that parameter substitution is not performed in the error message, and thus, some messages will contain “!” as parameter place holders.
•The ERRCLEAR command is useful in the initialization part of scripts to set all error related predefined CI variables to zero. It is
more than twice as fast compared to setting all four variables individually. It is more than 25% faster than setting only HPCIERR and
CIERROR to zero separately. It is slightly slower (7%) than setting only CIERROR to zero.
•HPCIERR is signed -- CI warnings are negative, CI errors are positive. CIERROR contains the absolute value of HPCIERR -- thus
there are no CI warnings with the same absolute value as a CI error. The CI keeps HPCIERR and CIERROR in sync, but users can
change their values independent of each other.

3/29/02

5

March 29, 2002 Page 5

hp e3000

strategy
• delete variables “local” to the UDC / script, :deletevar
”prefix”@

• purge scratch files

• reset “local” file equations

• don’t do the above if still debugging!

• better, build in a way to preserve files, variables, etc. on thefly

• use a central cleanup “entry” routine

• use a variable to control the cleanup related commands

cleanup

Some cleanup examples:
•Using a cleanup “entry” routine -

…
elseif “!entry” = “cleanup” then

do all script cleanup here
if finfo(_foo_file,”exists”) then

purge !_foo_file
endif
if _foo_used_feq then

reset !_foo_feq
endif
echo End of ![basename(hpfile)] ...
deletevar _foo_@
escape 0

endif

•Allowing variables and files to be saved or deleted on the fly -
…
elseif “!entry” = “cleanup” then

if bound(_foo_debug) then
escape

endif
do all script cleanup here
if finfo(_foo_file, “exists”) then …

or
…
!_foo_del reset !_foo_feq
!_foo_del purge !_foo_file
!_foo_del deletevar _foo_@

… somewhere _foo_del is set as:
setvar _foo_del “#” -- or -- setvar _foo_del “”

3/29/02

6

March 29, 2002 Page 6

hp e3000

strategy

• some common problems:

• syntax error (unmatched parenthesis), variable name typo,
reliance on a var that has not been initialized, hitting eof, using
an HFS file for IO redirection and then referencing
FINFO(hpstdin) -- CI bug!, entry name typo (case sensitive!), off-
by-one on loop counters, unexpected user input, re-using the
same var in two places that are executed together (2 eof
counters), reading from terminal but $stdin is already redirected to
a file

• trickier problems to find:

• echoing a literal “>” without escaping,word() by index but index
out of bounds, “array” index increment and reference in same
loop, unmatched endwhile or endif, a single var containing a
“record” of multiple types, creating files that couldcontain CI
metachars, date calculations that cross day, month, year
boundaries,

debugging

•insert echo/showvar statements, revealing a variable’s value and/or a location in the script.
•don’t delete variables and scratch files.
•turn on command tracing (hpcmdtrace) within suspect sections of the script -- implies omitting OPTION NOHELP too.
•check OPTION RECURSION setting in UDCs with entry points.
•force an unexpected condition by hard-coding the rare value.
•steel working fragments from other scripts.
•add your own tracing into complex scripts, via a “hidden” command line parm or a special variable.
•use HPLEAPYEAR, HPDATETIME for date calculations, e.g. :

setvar tmp hpdatetime # reference the predefined var only once
setvar tmpdate lft(tmp,8) # just the yyyymmdd part
setvar tmptime str(tmp,9,6) # just the hhmmss part

Don’t do below for three reasons:
setvar tmpdate “20!hpyear”+”!hpmonth”+”!hpdate”

1) may need leading zeros in the string date,
2) use HPYYYY (4 digit string) instead of HPYEAR (2 digit integer),

*3) what happens if the month changes after HPMONTH is referenced?

3/29/02

7

March 29, 2002 Page 7

hp e3000

strategy

1) parse out all tokens in a string var

2) extract the first N tokens from a string var

3) extract the last N tokens from a string var

4) test for “hi” somewhere in a string var (or “LOGON” vs.
“NOLOGON”)

5) count tokens in a string var

6) remove Nth token from a string var

7) remove N consecutive tokens from a string var

string manipulations

setvar x "ab c;de,,fg;hij=k lmn,op=qr”

1) setvar j 0 -or- setvar j 0
while j <= len(x) do while setvar(j,j+1) <= wordcnt(x) do

setvar tok word(x, , , j, j+1) setvar tok word(x, , j)
endwhile endwhile

2136 msec for 500 iterations 2298 msec

this fails on a null token, but otherwise is simple:
setvar j 0
while setvar(tok, word(x, ,setvar(j,j+1))) <> “” do
endwhile

1686 msec

2) setvar toks lft(x, delimpos(x, , N)-1) -or- setvar j 0 and setvar toks ‘’
note the var toks includes the delimiters while setvar(j,j+1) <= N do

between the individual tokens setvar toks toks + word(x,,j) + “ “
endwhile
note toks does not contain the original delimiters

3) setvar toks rht(x, -delimpos(x, , -N)-1) -or- setvar j 0 and setvar toks ‘’
same notes as for 2) while setvar(j,j+1) <= N do

setvar toks toks + word(x,,-j) + “ “
endwhile

4) pos(“hi”,x) is potentially wrong. What if you want only “hi” and not “hij”?
if word(x, , , ,pos(“hi”,x)) = “hi” then …

5) setvar cnt wordcnt(x)

6) setvar y lft(x,delimpos(x,,N-1) + rht(x,-delimpos(x,,N)-1) -or- setvar y xword(x, ,N)
removes the right hand delimiter from x after extraction # same result but easier (and faster)!

526 msecs for 1000 iterations 364 msecs

7) # assume we are removing tokens 5,6,7 so N=3 and START=5:
setvar y lft(x,delimpos(x,,START-1)) + rht(x,-delimpos(x,,START+N-1)-1)

3/29/02

8

March 29, 2002 Page 8

hp e3000

strategy

CI i/o redirection

• > name -redirect output from $STDLIST to “name”

• “name” will be overwritten if it already exists

• file will be saved as “name”;rec=-256,,v,ascii;disc=10000;TEMP

• file name can be MPE or POSIX syntax

• >> name -redirect, append output from $STDLIST to “name”

• same file attributes for “name” if it is created

• < name -redirect input from $STDIN to “name”

• “name” must exist (TEMP files looked for before PERM files)

• I/O redirection has no meaning if the command does not do I/O to $STDIN
or $STDLIST

• available on all commands, except:

• IF, ELSEIF, SETVAR, CALC, WHILE, COM MENT, SETJC W, TELL,
TELLOP, WARN, REMOTE.

•I/O redirection in the CI works similarly to the same feature in DOS and Unix systems. Of course, there are some exceptions: on
MPE the file created by output redirection is a TEMP, variable record width file. The motivation for these choices is that we didn’t
want to mistakenly overwrite a permanent file if the “>” or “>>” symbols on a command line were not really intended for
redirection. We decided to make the default record with be variable so that the file created and also be read more easily by the CI,
since trailing spaces (found in fixed ASCII files) would not need to be stripped. All of the I/O redirection defaults can be
overridden via a file equation.
•There are11 CI command that do not accept I/O redirection. Five of these are commands that introduce an expression as one of
their parameters. Since expressions can contain “<“, “>” it was decided to disable I/O redirection on these command. The
remaining commands are excluded because we were conservative and careful when I/O redirection was introduced in MPE XL
Release 2.1. We did not want to break existing scripts, UDCs, or JCL that might have “>” or “<“ in one of these commands,
causing the CI would to remove the symbol and following name, and write to a file.

3/29/02

9

March 29, 2002 Page 9

hp e3000

strategy

CI i/o redirection (cont)

• how it works:

• CI ensures the command is not one of the excluded commands

• CI scans the com mand line looking for <, >, >> followed by a possible
filename (after explicitvariable resolution has already occurred)

– text inside quotes is excluded from this scan

– text inside square brackets is excluded from the scan

• filename is opened and “exchanged” for the $STDIN or $STDLIST

• after the command completes the redirection is undone

• examples:

• INPUT varname <filename

• ECHO The next answer is: !result >>filename

• LISTFILE ./@,6 > filename

• PURGEACCT myacct <Yesfile

• PURGE foo@ ;temp ;noconfirm >$null

• ECHO You need to include !<THIS!> too!

•The CI first replaces all explicit variable referencing by the variable’s value. Next, all ![expression] references are evaluated
and replaced by the result. Then, the CI deals with processing any I/O redirection it encounters on the command line. This order
allows a target redirection filename to be contained in a variable or ![expression]. Also, by this time in the command processing,
the CI has determined the command name and thus can check the exclusion list to make sure I/O redirection is permitted for the
command being executed
•If an I/O redirection symbol is found but the token immediately right of it is not a legal filename, the CI assume I/O redirection
was not intended. E.g.:

:echo abc >123 does not create a file named “123” but instead echo's:
abc >123

•Also, if the I/O redirection symbol appear inside a quoted string or inside square brackets, it is not interpreted an I/O redirection.
E.g.:

:echo abc “>xyz” does not create a file named “XYZ” but instead echo's:
abc “>xyz”

And,
:echo abc [>def] does not create a file named “DEF” but instead echo's:
abc [>def]

The reason that square brackets are excluded is to support selection equations which are contained by square brackets and allow
relational operators, such as “<“ and “>”.
•To tell the CI to ignore I/O redirection in commands that it would otherwise accept I/O redirection you need to place a “!” in
front of the I/O redirection token. This “escapes” the special meaning of the I/O redirection symbol and is consistent with the use
of multiple exclamation marks in front or potential variable names.

3/29/02

10

March 29, 2002 Page 10

hp e3000

strategy

file i/o

• why not use INPUT in WHILE to read a flat file?, e.g.:

while not eof do
input varname < filename

endwhile

• three main alternatives:

• write to (create) and read from a MSG file via I/O redirection

• use :PRINT and I/O redirection to read file 1 record at a time

• use entry points and I/O redirection

• MSG file works because each read is destructive, so next INPUT
reads next record

• INPUT <flat_file in the WHILE loop fails because the CI opens the redirected file for each iteration in the loop. Thus, an
open is done for each record in the file. Not only is this expensive, it also means that the file’s record pointer (current record)
is reset to the beginning of the file each time INPUT is executed. Therefore, INPUT from a flat file in a WHILE loop always
reads (and re-reads!) the first record of the file.

3/29/02

11

March 29, 2002 Page 11

hp e3000

strategy

• PARM fileset=./@
This script reads LISTFILE,6 output and measures CPU millisecs
using a MSG file
setvar savecpu hpcpumsecs :readmsg

errclear 259 msecs to read 22 records

file msg=/tmp/LISTFILE.msg; MSG
continue :readmsg @.pub.sys

listfile !fileset,6 >*msg 15,845 msecs to read 1,515

if hpcierr = 0 then
read listfile names into a variable
setvar cntr setvar(eof, finfo('*msg', "eof"))
while setvar(cntr, cntr-1) >= 0 do
input rec <*msg

endwhile
endif
echo ![hpcpumsecs -savecpu]msecs to read !eof records.
deletevar cntr, eof, rec

file i/o - MSG file

•Each read of a MSG file is destructive so it works with INPUT in a while loop.
•Example shows using POSIX names to keep temporary files.
•Shows setting two variables in one CI command line.
•Shows how to measure the performance of a script or UDC.

3/29/02

12

March 29, 2002 Page 12

hp e3000

strategy
• PARM fileset=./@
This script reads a file produced by LISTFILE,6 and measures CPU msecs
using PRINT as an intermediate step
setvar savecpu hpcpumsecs
errclear :readprnt

continue 735 msecs to read 22 records

listfile !fileset,6 > lftemp 3 times slower than MSG files

if hpcierr = 0 then
read listfile names into a variable :readprnt @.pub.sys

setvar cntr 0 74,478 msecs to read 1515 recs

setvar eof finfo('lftemp',"eof") over 4 times slower than MSG files!

while setvar(cntr, cntr+1) <= eof do
print lftemp;start=!cntr;end=!cntr > lftemp1
input rec <lftemp1

endwhile
endif
echo ![hpcpumsecs -savecpu] msecs to read !eof records.
deletevar cntr,eof,rec

file i/o - :print

•The PRINT method is the least efficient of the three choices presented. This technique requires two opens and closes for
each record in the file: one open for PRINT, one open for the output redirection, one close for PRINT and another close to
redirect output back to $STDLIST.
•The PRINT technique is also not any easier to code than the MSG file method, so why use it?

•Perhaps the data is already in a file and the file is not large (or performance is unimportant).
In this case, using PRINT may be appropriate since the script is intuitive and easy to write, and may be better
(faster) than copying the existing data to a MSG file first.

3/29/02

13

March 29, 2002 Page 13

hp e3000

strategy
• PARM fileset=./@, entry="main”

This script reads a file produced by LISTFILE,6 and measures CPU
msecs
using entry points and script redirection
if "!entry" = "main" then

setvar savecpu hpcpumsecs
errclear
continue
listfile !fileset,6 > lftemp
if hpcierr = 0 then
xeq !hpfile !fileset entry=read <lftemp

endif
echo ![hpcpumsecs - savecpu] msecs to read !eof records.
deletevar cntr,eof,rec
purge lftemp;temp
return
. . . (continued on next slide)

file i/o - entry points

•The choices of “entry” for the name of the entry control parameter and “main” for the default value of the entry control
parameter value are arbitrary but self-documenting.
•All initialization should be done in the “main” entry portion of the script, rather than earlier in the script. This is more
efficient (and perhaps the only correct way) since the initialization code is invoked only once.

3/29/02

14

March 29, 2002 Page 14

hp e3000

strategy
else

read listfile names into a variable
setvar cntr setvar(eof, finfo(hpstdin, "eof"))
while setvar(cntr,cntr-1) >= 0 and setvar(rec, input())<> chr(1) do
endwhile
return

endif

:readntry
90 msecs to read 24 records.
---> Almost 3times faster than MSG files
---> 8 times faster than the PRINT method!

:readntry @.pub.sys
2400 msecs to read 1,515 records.
---> Over 6 times faster than MSG files
---> 31 times faster than using PRINT!

file i/o - entry points
(cont)

•Uses HPSTDIN to get the name of the redirected input file, so there is less hard coding of the temporary file names.
•This example doesn’t do anything with the contents of the file. Each record is placed in the variable REC, one record
overwriting the previous.

3/29/02

15

March 29, 2002 Page 15

hp e3000

strategy

examples

• a few simple examples

• what version of MPE will run this script?

• creating columnar output

• easy way to print $STDLIST spoolfile for a job

• job synchronization example

• powerfail script example

• flexible way to change directories (CWD)

• INFO= string examples

• create a “random” name or value

• tying many concepts together with the WHERE script

• CI array examples

• grep-like script

• STREAM UDC -abbreviated

3/29/02

16

March 29, 2002 Page 16

hp e3000

strategy

display last N records of a file (no process creation)

• PARM file, last=12 “Tail” script
print !file; start= -!last

display CI error text for a CI error number

• PARM cierr= !cierror “Cierr” script
setvar save_err cierror
setvar cierror !cierr
showvar HPCIERRMSG
setvar cierror save_err
deletevar save_err

alter priority of job just streamed --great for online compiles ;-)

• PARM job=!HPLASTJOB; pri=CS “Altp” script
altproc job=!job;pri=!pri

simple examples

•The tail script has no process create overhead, unlike the POSIX tail.hpbin.sys program.
•The HPCIERRMSG CI variable contains the error text for the error defined by the current value of the CIERROR
variable (JCW). Note that message inserts values, that would normally be displayed by the CI in processing an error,
are not inserted via HPCIERRMSG.

3/29/02

17

March 29, 2002 Page 17

hp e3000

strategy

• LG, LU, LA and LD scripts:

• PARM group= @ “LG”
listgroup !group; format=brief

• PARM user=@ “LU”
listuser !user; format=brief

• PARM acct=@ “LA”
listacct !acct; format=brief

• PARM dir=./@ “LD”
setvar _dir “!dir”
if delimpos(_dir, “./”) <> 1 then

convert MPE name to POSIX name
setvar _dir dirname(fqualify(_dir)) + “/” + basename(_dir)

endif
listfile !_dir, 6; seleq=[object=HFSDIR]; tree

brief acct, group, user, dir listings

•The last example (LD) shows the BASENAME, DELIMPOS, DIRNAME and FQUALIFY functions being used.
•DELIMPOS(_dir, “./”) <> 1 tests if the directory name in _dir starts with a dot or slash, and thus is a POSIX
named directory. The FSYNTAX function could have been used for this purpose too.
•An MPE name can be converted to a POSIX name easily:

•DIRNAME returns the directory portion, in POSIX syntax, of a filename, but does not qualify the name.
•FQUALIFY qualifies the name in _dir. Now, DIRNAME will return the absolute path of the name in
_dir1, less the file portion of the name.
•BASENAME returns just the base (file) portion of the name in _dir. When appended to the result of
DIRNAME(…) the result is a fully qualified, POSIX name.

•LISTFILE will search for just POSIX (HFS) named directories (seleq=[object=hfsdir]), and the TREE option tells
LISTFILE to search recursively, following all sub-directories.

3/29/02

18

March 29, 2002 Page 18

hp e3000

strategy

MPE version

• PARM vers_parm=!hprelversion “Vers” script
react to MPE version string
setvar vers "!vers_parm”
convert to integer, e.g.. "C.65.02" => 6502
setvar vers str(vers,3,2) + rht(vers,2)
setvar vers !vers
if vers >= 7000 then

echo On 7.0!
elseif vers >= 6500 then

echo On 6.5!
elseif vers >= 6000 then

echo On 6.0!
endif

•The CI does not support a direct mechanism to let the programmer know if a certain command, function, variable or
other new feature is present on the system at hand. The bound() function lets you test for the existence of any variable
prior to referencing it. It is trickier to test for the existence of a function prior to invoking it. Thus, it may be necessary
to test the MPE OS version prior to using a new feature. However, the CI version variables only reflect what the version
strings displayed by the :SHOWME command. Thus, as you are aware, the version granularity is sometimes lacking.
•:showvar @vers@
HPOSVERSION = C.70.00
HPRELVERSION = C.70.01
HPVERSION = X.70.11

• :vers
On 7.0!

:vers C.65.01
On 6.5!

3/29/02

19

March 29, 2002 Page 19

hp e3000

strategy
• Aligned fields for output:

PARM cnt=5 “Align” script
setvar i 0
while setvar(i,i+1) <= !cnt do
setvar a rpt('a',i)
setvar b rpt('b',!cnt-i+1)
echo xx ![rpt(' ',!cnt-len(a))]!a xx ![rpt(' ',!cnt-len(b))]!b xx

endwhile

• Example:
: α λ ι γ ν 4
ξ ξ α ξ ξ β β β β ξ ξ
ξ ξ α α ξ ξ β β β ξ ξ
ξ ξ α α α ξ ξ β β ξ ξ
ξ ξ α α α α ξ ξ β ξ ξ

“tab” and other alignments

•The “align” script demonstrates using the rpt() function to pad output with a variable number of spaces, based on the
length of the data fitting in a field.
•Variable A is set from 1 “a” to 4 (parm value) “a”s. Variable B is set from 4 (parm value) “b”s to one “b”s.
•When ![rpt(“ “…)] is used just before echoing a value, that value is right justified.
•When ![rpt(“ “…)] is used just after echoing a value, that value become left justified.

3/29/02

20

March 29, 2002 Page 20

hp e3000

strategy

printing spoolfiles

• PRINTSP script:

PARM job=!HPLASTJOB
Prints spoolfile for a job, default is the last job you streamed
if “!job” = “” then

echo No job to print
return

endif
setvar hplastjob“!job”
if hplastspid = “” then

echo No $STDLIST spoolfile to print for “!job”.
return

endif
print !HPLASTSPID.out.hpspool

• :stream scopejob
#J324
:printsp
:JOB SCOPEJOB,MANAGER.SYS,SCOPE.
Priority = DS; Inpri = 8; Time = UNLIMITED seconds . . .

•The default value for the parameter “JOB” is the job number of the job most recently streamed by you (HPLASTJOB
variable).
•If you have not streamed a job (or HPLASTJOB is empty for some other reason) the script reports an error and exits.
•The HPLASTSPID variable contains the spoolfile number (Onnnn) for the $STDLIST spoolfile for the job referenced in
the HPLASTJOB variable.
•All output spoolfiles live in @.OUT.HPSPOOL.
•Could be improved by saving the value of HPLASTJOB before setting it to the JOB parameter, and then reinstating this
saved value before the script ends.
•Could check for the existence of “!hplastspid.out.hpspool” before trying to print it.

3/29/02

21

March 29, 2002 Page 21

hp e3000

strategy

synchronize jobs

!JOB job0…
!limit +2
!stream job1
!pause job=!hplastjob
!stream job2
!errclear
!pause 600,!hplastjob
!if hpcierr = -9032then
! tellop Job ”!hplastjob” has exceeded the 10 minute limit
! eoj
!endif
!stream job3
!pause job=!hplastjob; WAIT
!input reply, “’Reply ‘Y’ for !hplastjob”; readcnt=1; CONSOLE
!if dwns(reply) = “y” then
. . .

•The job limit is increased by 2.
•The 1st pause sleeps until the job just streamed (job1) completes.
•The 2nd pause sleeps until job just streamed (job2) completes or 10 minutes, whichever happens first. CIERR 9032 is
reported if the pause expires and the job is still alive.
•The 3rd pause sleeps while job3 is introduced or waiting. As soon as job3 starts executing (or terminates, if it is a short
lived job) the pause expires.
•The INPUT command displays a message to the system console and waits for a reply. INPUT will only accept a 1
character response from the operator, in this example. Syntax:

INPUT [NAME=]varname
[[;PROMPT=]prompt] [[;WAIT=]seconds]
[[;READCNT=]chars] [[;DEFAULT=]default_str]
[;CONSOLE]

•HPCIERR shows positive CI errors and negative CI warnings. CIERROR = abs(hpcierr)

3/29/02

22

March 29, 2002 Page 22

hp e3000

strategy

powerfail script

• UPS config file (default is UPSCNFIG.PUB.SYS):

upscnfig.pub.sys
powerfail_message_routing = all_terminals
powerfail_low_battery = keep_running
powerfail_command_file = prodshut.opsys.sys
powerfail_grace_period = 300

• PRODSHUT.OPSYS.SYS example:

warn @; Powerfail detected by UPS. Orderly shutdown BEGIN …
warn @; ***** Please logoff immediately! *****
if jobcnt(“prod1J.usr.acct”, jobID) > 0 then

stream hipriJ
pause 60; job=!hplastjob
abortjob !jobID

endif
errclear
pause 180; job=@s
if cierror = 9032 then

warn @;System going down in 2 minutes!
pause 120

endif
shutdown

UPSMON accepts a default configuration file named UPSCNFIG.PUB.SYS. This file can be overridden via UPSUTIL’s
NEWCONFIG command, which prompts for a simple configuration file (flat ASCII, 32 - 128 bytes wide, numbered or
unnumbered). The UPS config file consists of the following (each occupying its own unique record): the fully qualified
MPE file name (it’s own name) must be the first record. The remaining contents (records) are optional and in the form:
config_keyword = value. Below is the configuration file syntax:

Config_file_name
powerfail_message_routing = <all_terminals | console_only>
powerfail_command_file = <MPE filename> [;parm1 parm2 … parmN] *
powerfail_grace_period = <number of seconds, 0 .. 1800> *
powerfail_low_battery = <system_abort | keep_running (provides ~120 extra sec)> *

* main.line for 7.5 and patch for 7.0

The powerfail_grace_period specifies the number of seconds to wait, after detecting a powerfail, prior to invoking the
script named in the powerfail_command_file setting. After “powerfail_grace_period” seconds expires the script is
executed. This script can perform needed system cleanup, but caution is necessary since the system is running on
batteries at this point. The most inportant consideration is to ensure that all disk writes are consistent.
If the power remains off at some point the battery will run out. The power_fail_low_battery setting allows you to
squeeze approx 2 more minutes from your shutdown script before the system bellies up. The default is not to play
Russian Roulette with your data and abort the system at the 2 minute warning. However, knowledgeable, risk adverse
system managers may specify “keep_running” to gain more time for their cleanup script to complete. The risk is that if
the script fails to complete in the remaining ~2 minutes the system will fail and disk states may be corrupted.

3/29/02

23

March 29, 2002 Page 23

hp e3000

strategy

new location (group, CW D)

• CD script

PARM dir=“”
setvar d “!dir”
“-” means go to prior CWD
if d = ‘-’ and bound(save_chdir) then

setvar d save_chdir
elseif fsyntax(d) = “MPE” then # MPE syntax?
if finfo(“./”+d, “exists”) then # HFS dir?

setvar d “./” + d
elseif finfo(“../”+ups(d), “exists”) then # MPE group?
setvar d “../” + ups(d)

elseif finfo(ups(d), “exists”) then # MPE dir name?
setvar d ups(d)

endif
endif
setvar save_chdir HPC WD
chdir !d

•The HPCWD variable contains your current working directory in POSIX syntax. Your current directory is the same as
your logon group until you explicitly change it via the CHDIR CI command.
•CD script hierarchy is: 1) dirname as is, 2) ./+dirname, 3) group name (“../”+dirname) 4) uppercase MPE dirname
Note: the CHGROUP command also changes your CWD; whereas, the CHDIR command does not alter your logon
group. CHGROUP has security implications since it can give you GU (group user) file access. There are no security
implications with CHDIR.
•cd - changes your current directory to the previous directory you’ve CD’d to.
• CD examples:

(assume CWD = /SYS/PUB)
:cd ../NET # CWD=NET.SYS
:cd - # CWD=PUB.SYS
:cd /TELESUP/PRVXL # CWD=PRIVXL.TELESUP
:cd # CWD=PUB.SYS
:cd foo # CWD=/SYS/PUB/foo
:cd .. # CWD=PUB.SYS
:cd net # CWD=NET.SYS

3/29/02

24

March 29, 2002 Page 24

hp e3000

strategy

• ANYPARM info=![""] # “anyrun” script
run volutil.pub.sys; info=”:!info"

• :anyrun echo "Hi there!”
run volutil.pub.sys;info=”:echo "Hi there!""

^
Expected semicolon or carriage return. (CIERR 687)

• ANYPARM info=![""]
setvar _inf repl('!info', '"', '""') # double up quotes in :RUN
run volutil.pub.sys;info=”:!_inf "

• :anyrun echo "Hi there!”
Volume Utility A.02.00, (C) Hewlett-Packard Co., 1987. All Rights...
volutil: :echo "Hi there!”
"Hi there!”

• is this correct now?

INFO= example

•Shows how to set an ANYPARM parameter to null, which is not intuitive! If an ANYPARM parameter is defaulted to
“” the quotes are accepted literally as its default value.
•This example does not handle both kinds of quotes in the info= string.
•This example does not handle single quote mark in the REPL function call.

3/29/02

25

March 29, 2002 Page 25

hp e3000

strategy
• ANYPARM info=![""]

setvar _inf anyparm(!info) # note info parm is not quoted
setvar _inf repl(_inf, '"', '""')
run volutil.pub.sys;info=”:_!inf ”

• :anyrun echo "Hi there, ‘buddy’!”
Volume Utility A.02.00, (C) Hewlett-Packard Co., 1987. All Rights...
volutil: :echo "Hi there, ‘buddy’!”
"Hi there, ‘buddy’!”

INFO= example (cont)

•Do not quote the parameter being passed to the anyparm() function.
•Note: the anyparm() function has some special considerations:

•it cannot be nested inside other functions, e.g.
lft(anyparm(!parm), x) is NOT supported

•it cannot be combined with other expressions, e.g.
anyparm(!parm) + chr(x) is NOT supported.

3/29/02

26

March 29, 2002 Page 26

hp e3000

strategy

random names

• PARM varname, minlen=4, maxlen=8
This script returns in the variable specified as "varname" a ̀random’
name consisting of letters and numbers -cannot start with a number.
At least "minlen" characters long and not more than "maxlen" chars.

expression for a ̀random' letter:
setvar letter "chr((hpcpumsecs mod 26) + ord('A'))”

expression for a ̀random' number:
setvar number "chr((hpcpumsecs mod 10) + ord('0'))"
first character must be a letter
setvar !varname !letter

now fill in the rest, must have at least "minlen" chars , up to "maxlen"
setvar i 1
setvar limit min((hpcpumsecs mod !maxlen) + !minlen, !maxlen)
while setvar(i,i+1) <= limit do
if odd(hpcpumsecs) then

setvar !varname !varname + !letter
else
setvar !varname !varname + !number

endif
endwhile

•Script on jazz at: http://jazz.external.hp.com/src/scripts/randname.txt
•This example shows a script returning a value via a passed in variable.
•Shows using HPCPUMSECS to get a sort of pseudo random number.
•Breaking down the line: setvar letter "chr((hpcpumsecs mod 26) + ord('A'))”

•HPCPUMSECS returns some large number
•mod 26 returns a number in the range of 0..25
•ord(“A”) is 65 and is the decimal number of the letter “A”
•chr(0..25 + 65) is chr(65..90), which is one of the letters A..Z

•The same logic applies to the “number” line above.
•The LIMIT line is evaluated as (using the parameter default values):

• (hpcpumsecs mod 8) is a number in the range of 0..7
• + minlen makes the number in the range 4..11
• min(4..11, 8) returns a pseudo random number in the range of 4..8, which is exactly what is desired.

•The WHILE loop iterates “limit-1” times, filling in the 2nd through “limit” characters in the name. If the
HPCPUMSECS value is odd at this moment we append to the name a “random” letter, else a “random” number is
appended.
•It would be nice to have a pseudo random number and name generator in the CI core, IMO!

3/29/02

27

March 29, 2002 Page 27

hp e3000

strategy

where is that “cmd”?

PARM cmd=“”, entry=main
This script finds all occurrences of "cmd" as a UDC, script or program in
HPPATH. Wildcards are supported for UDC, program and command file names.
Note: a cmd name like "foo.sh" is treated as a POSIX name, not a qualified
MPE name.
if "!entry" = "main" then
errclear
setvar _wh_cmd "!cmd”
if delimpos(_wh_cmd,”/.") = 1 then
echo WHERE requires the POSIX cmd to be unqualified.
return

endif

see if the command could be a UDC (wildcards are supported)
setvar _wh_udc_ok (delimpos(_wh_cmd,'._') = 0)
see if the command could be an MPE filename (wildcards ok, and
MPE names cannot be qualified at all)
setvar _wh_mpe_ok (delimpos(_wh_cmd,'._') = 0)
All command values are assumed to be ok as a POSIX filename.
The dash (-) char is excluded above since it could be in a [a-z] pattern

. . . continued . . .

The where script combines many CI programming ideas: multiple entry points are used with input redirection, two forms
of file I/O are used, several newer CI function are called, output is aligned in columns, and several more complex CI
expressions are encountered. Plus, this script has proven valuable to me and others in CSY numerous times. The next
few slide notes will go over some of the more salient points of the where script.
where can be found on Jazz at: http://jazz.external.hp.com/src/scripts/where.txt
•the PARM line allows the “cmd” argument to default to “”, in which case a usage statement is displayed. The by-
convention “entry=main” argument is used to handle alternate entry points, with the default entry being named “main”.
The user of where will never specify this parameter.
•the ERRCLEAR command is invoked to set CIERROR, HPCIERROR, FSERROR, and HPCIERRCOL predefined
variables to 0.
•the delimpos() function is invoked several times and is better than using pos() when two or more characters are being
checked. For instance, it is more efficient to code:

if delimpos(var,”abc”) > 0
which tests if an “a” or “b” or “c” appears in var, than to code:

if pos(“a”,var) > 0 or pos(“b”,var) > 0 or pos(“c”,var) > 0
•intentionally, there are separate tests to see if the “cmd” parameter could potentially be a UDC and/or a MPE named file.
Currently, these tests are identical; however, over time the rules may change and this script will be easier to maintain in
that event.
•all values of “cmd”, at this point, are assumed to be a legal POSIX filename. Later, the fsyntax() function will be called
to ensure that “cmd” is a legal filename.

3/29/02

28

March 29, 2002 Page 28

hp e3000

strategy

where (cont)

. . .
check for UDCs first
if _wh_udc_ok then
continue
showcatalog >whereudc
if cierror = 0 then
xeq !hpfile !_wh_cmd entry=process_udcs <whereudc

endif
endif

Now check for command/program files
if word(setvar(_wh_syn,fsyntax(“./”+_wh_cmd))) = “ERROR” then
illegal name, could be a longer UDC name, in any event there
no need to check for command/program files.
deletevar _wh_@
return

endif
setvar _wh_wild pos("WILD",_wh_syn) > 0

. . . continued . . .

•now, assuming “cmd” could be a UDC name, the SHOWCATALOG command is executed with output redirected to a
TEMP file named “whereudc”.
•If SHOWCATALOG worked without error, the where script invokes itself recursively, via the XEQ command, to
display relevant UDC information. The predefined HPFILE variable contains the fully qualified name of the current
script, and is used here in case the next author decides to use a different filename. This allows the script filename to not
be hard-coded into the script.
•the XEQ command invokes, via HPFILE, the script again, passing the same “cmd” value as the first argument. An
alternate entry point is passed as the second parameter, via the by-convention usage of “entry=“. Input to where is
redirected from the file that the SHOWCATALOG command created.
•the fsyntax() function is called after processing UDCs since a UDC name can be longer than a valid MPE filename.
Also, the where script expects that all names, even POSIX command names, to be passed in unqualified. There are not
explicit checks for qualified MPE names (f.g.a) since it is ambiguous if a name such as “foo.sh” is the name of a shell
script, or a partially qualified MPE name. Since the user of this script is not expected to use the “MPE-escaped” syntax
for POSIX names, a “./” is prepended to the “cmd” name that is parsed by fsyntax().
•if there is a syntax error the script exits via the RETURN command.
•a variable is set to true if there are any wildcard characters in the “cmd” value. In general, if an expression evaluates to a
boolean (true or false) it can be used to directly set the value of a variable. For example:

setvar x (a > b)
is more efficient than:

if (a > b) then
setvar x true

else
setvar x false

endif

3/29/02

29

March 29, 2002 Page 29

hp e3000

strategy

where (cont)

. . .
loop through hppath
setvar _wh_i 0
while setvar(_wh_tok,word(hppath,”,; “,setvar(_wh_i,_wh_i+1)))<>”” do
if delimpos(_wh_tok,”/.”) = 1 then
we have a POSIX path element
setvar _wh_tok "!_wh_tok/!_wh_cmd”

elseif _wh_mpe_ok then
we have an MPE syntax HPPATH element with an unqualified _tok
setvar _wh_tok "!_wh_cmd.!_wh_tok”

endif
errclear
if _wh_wild then
continue
listfile !_wh_tok,6 >prntlf

elseif finfo(_wh_tok,'exists') then
write to same output file as listfile uses above
echo ![fqualify(_wh_tok)] >prntlf

else
setvar hpcierr -1

endif
if hpcierr = 0 then
xeq !hpfile !_wh_tok entry=process_listf <prntlf

endif
endwhile
deletevar _wh_ @
return

. . . continued. . .

•this slide shows the end of the “main” entry code in the where script.
•here is the loop that parses each element in HPPATH, tests to see if a file exists based on the “cmd” value and the
extracted element from HPPATH, and invokes an entry “subroutine” to display the filename and other file attributes.
•the word() function extracts a token from HPPATH based on the defined delimiters of a comma, semicolon or a space.
The word counter/index (_wh_i) is incremented inside the argument to word(), which is not necessary, but more
convenient and slightly more efficient.
•the delimpos() function is used to see if the extracted HPPATH element is an MPE name or a POSIX name. POSIX
elements are prepended to the “cmd” value and MPE path elements are appended to “cmd”.
•if the “cmd” value was wildcarded, e.g. “grep@”, then the LISTFILE command lists the full filenames to disk.
Otherwise, the non-wildcard name is qualified by calling the fqualify() function, and written to the same output file used
by LISTFILE. This allows a single entry routine to do all of the formatted output for a file.
•XEQ and HPFILE are used again to invoke the script recursively, this time passing the “process_listf” entry name, and
redirecting input to a file that contains the equivalent of a LISTFILE,6 output.
•regardless of success or failure, all _wh_@ variables are deleted and control returns to the invoker of the script. In this
script the two TEMP files are not purged and the file equation, seen later, is not reset. For scripts with more complex
cleanup, I often use an alternate entry point specifically for doing all of the cleanup. This entry is invoked in place of
executing a simple RETURN.

3/29/02

30

March 29, 2002 Page 30

hp e3000

strategy

where (cont)
…
elseif "!entry" = "process_udcs"then
input redirected from the output of showcatalog
setvar _wh_udcf rtrim(input())
setvar _wh_eof finfo(hpstdin,”eof”) -1
while setvar(_wh_eof,_wh_eof-1) >= 0 do
if lft(setvar(_wh_rec,rtrim(input())),1) = " " then
a UDC command name line
ifpmatch(ups(_wh_cmd),setvar(_wh_tok,word(_wh_rec)))then
display: UDC_command_name UDC_level UDC_filename
echo !_wh_tok ![rpt(" ",26-len(_wh_tok))] &

![setvar(_wh_tok2,word(_wh_rec,,-1))+rpt(" ",7-len(_wh_tok2))] &
UDC in !_wh_udcf

endif
else
a UDC filename line
setvar _wh_udcf _wh_rec

endif
endwhile
return

•this is the “process_udcs” entry routine. It is invoked with input redirected to the output of a simple SHOWCATALOG
command.
•it primes the variable _wh_udcf by reading the first record of the input file, which, in this case, is the name of the first
cataloged UDC file.
•setting a counter to the “EOF” value of the input file and decrementing it to zero is a common method of processing the
entire file. The HPSTDIN predefined variable contains the name of the $STDIN input file. In this case, it is the name of
the file input was redirected to (which is the name of the file the SHOWCATALOG output was redirected to).
HPSTDIN is used so that the I/O file name is not hard-coded throughout the script -- only where it is first created.
•the while loop decrements the eof counter, reads a record from the input file, trims trailing spaces from the record,
decides if the record is a UDC filename (leftmost byte <> “ “) or a UDC command name record.
•if the record is a UDC command name that matches the “cmd” parameter value, a line of output is generated, containing:
the UDC command name, the UDC level (user, account or system), and the UDC filename.
•All output is “tabularized” via the rpt() function by prepending or appending the appropriate number of spaces before or
after the echoed value.
•The pmatch() function is an easy way to add pattern matching power to your scripts. HELP pmatch provides more
information. Since “cmd” could also be the name of a POSIX file, its value is not permanently upshifted. Local
upshifting is needed since all UDC names reported by SHOWCATLOG are in uppercase.
•the entry routine exits, via RETURN, back to its caller, which is the “main” entry code. The RETURN command closes
the file (where) and resets I/O redirection back to its state prior to the invocation of the entry point -- in this case input is
back to the terminal $STDIN.

3/29/02

31

March 29, 2002 Page 31

hp e3000

strategy

where (cont)
…
elseif "!entry" = "process_listf"then
input redirected from the output of listfile,6 or a simple filename
setvar _wh_eof finfo(hpstdin,'eof')
while setvar(_wh_eof,_wh_eof-1) >= 0 do
setvar _wh_fc "”
if setvar(_wh_fc, finfo(setvar(_wh_tok,ltrim(rtrim(input()))),'fmtfcode')) = ””
setvar _wh_fc 'script’

elseif _wh_fc <> 'NMPRG' and _wh_fc <> 'PROG' then
setvar _wh_fc "”

endif
if _wh_fc <> "" and finfo(_wh_tok,'eof') > 0 then
setvar _wh_lnk “”
if _wh_fc = “script” and finfo(_wh_tok,'filetype') = 'SYMLINK' then
setvar _wh_fc 'symlink’
get target of the symlink
file lf7tmp;msg
continue
listfile !_wh_tok,7 >*lf7tmp
if hpcierr = 0 then
discard first 4 records
input _wh_lnk <*lf7tmp
input _wh_lnk <*lf7tmp
input _wh_lnk <*lf7tmp
input _wh_lnk <*lf7tmp
input _wh_lnk <*lf7tmp
setvar _wh_lnk "--!>" + word(_wh_lnk,,-1)

endif
endif

•this is the “process_listf” entry routine. It is invoked with input redirected to the output of a LISTFILE,6 command.
•the while loop reads each record in the input file, tests to ensure the file could be a legitimate script or program file, and
symbolic links are resolved.
•the input() function reads each filename in the input file, after which, trailing and leading blanks are trimmed. The
_wh_tok variable is set to this trimmed value. The finfo() function is called, passed this same trimmed name, to obtain
the formatted file code, which is stored in the _wh_fc variable. If the file code is blank (“”) it is arbitrarily set to “script”.
All of this is done is a single command line.
•if the EOF is positive and the file code is “script” then the script tests to see if the name might be the name of a symbolic
link.
•if FINFO returns “symlink” for the file type then the target of the link is retrieved. This is done using a small MSG file
and I/O redirection, as follows: 1) a LISTFILE,7 is written to the MSG file, 2) if the LISTFILE is successful the MSG
file is read (all reads are destructive), 3) the first four records in the MSG file can be discarded, done by reading them and
ignoring the input, 4) the last word/token in the fifth record contains the name of the target of the symlink, which is
extracted, and has “-->” prepended to enhance the final output. The “-->” strings need a “!” to escape the meaning of
“>”, which if not done, causes the following ECHO statement to perform output redirection.

3/29/02

32

March 29, 2002 Page 32

hp e3000

strategy

where (cont)
…

display: qualified_filename file_code or "script" andlink if any
echo !_wh_tok ![rpt(" ",max(0,26-len(_wh_tok)))] !_wh_fc &

![rpt(" ",7-len(_wh_fc))] !_wh_lnk
endif

endwhile
return
endif

• :where @sh @

SHOWME USER UDC in SYS52801.UDC.SYS
SH SYSTEM UDC in HPPXUDC.PUB.SYS
SH.PUB.VANCE NMPRG
SHOWVOL.PUB.VANCE script
BASHELP.PUB.SYS PROG
HSHELL.PUB.SYS script
PUSH.SCRIPTS.SYS script
RSH.HPBIN.SYS NMPRG
SH.HPBIN.SYS NMPRG
/bin/csh NMPRG
/bin/ksh symlink --> /SYS/HPBIN/SH
/bin/remsh symlink --> /ENM/PUB/REMSH
/bin/rsh symlink --> /SYS/HPBIN/RSH
/bin/sh symlink --> /SYS/HPBIN/SH

•this concludes the “process_listf” entry and the where script.
•the ECHO command displays qualified (MPE or POSIX) filename, the file code (which can be set to a non-MPE value
of “script”, and symbolic link info, if pertinent. Note again that the rpt() function is used to left justify the file code string
and any symlink display.
•as should be done for all entry routines, RETURN exits back to the “main” entry, where cleanup is done.
•Example:
HPPATH = !HPGROUP,PUB,PUB.SYS,ARPA.SYS,scripts.sys,hpbin.sys,/bin
:where @sh@

ΣΗΟΩΜ Ε ΥΣ Ε Ρ Υ ∆Χ ι ν ΣΨΣ52 8 0 1 . Υ ∆ Χ . Σ Ψ Σ
ΣΗ ΣΨΣΤ Ε Μ Υ ∆Χ ι ν ΗΠ ΠΞΥ∆Χ. Π Υ Β . Σ ΨΣ
ΣΗ . Π Υ Β . ςΑΝΧ Ε ΝΜ Π ΡΓ
ΣΗΟΩ ς Ο Λ . Π Υ Β . ς ΑΝΧΕ σχ ρ ι π τ
ΒΑΣΗΕ Λ Π . Π Υ Β . Σ ΨΣ Π Ρ ΟΓ
ΗΣΗΕΛ Λ . Π Υ Β . Σ ΨΣ σχ ρ ι π τ
Π ΥΣΗ . Σ Χ Ρ Ι Π Τ Σ . Σ Ψ Σ σχ ρ ι π τ
Ρ ΣΗ . Η Π Β Ι Ν . Σ ΨΣ ΝΜ Π ΡΓ
ΣΗ . Η Π Β Ι Ν . Σ Ψ Σ ΝΜ Π ΡΓ
/ β ι ν / χ σ η ΝΜ Π ΡΓ
/ β ι ν / κ σ η σψ µ λ ι ν κ − − >
/ Σ Ψ Σ / Η Π Β Ι Ν / ΣΗ
/ β ι ν / ρ ε µ σ η σψ µ λ ι ν κ − − >
/ Ε Ν Μ / Π ΥΒ / Ρ Ε Μ Σ Η
/ β ι ν / ρ σ η σψ µ λ ι ν κ − − > / Σ Ψ Σ / Η Π Β Ι Ν / Ρ ΣΗ
/ β ι ν / σ η σψ µ λ ι ν κ − − > / Σ Ψ Σ / Η Π Β Ι Ν / ΣΗ

3/29/02

33

March 29, 2002 Page 33

hp e3000

strategy

• :setvar a “!!b” # B is not referenced, 2!’s fold to 1

• :setvar b “123”

• :showvar a, b A=!b B=123

• :echo b is !b, a is !a b is 123, a is 123

• :setvar a123 “xyz”

• :echo Compound var "a!!b": !"a!b” Compound var "a!b": xyz

• :setvar J 2
:setvar VAL2 “bar”
:setvar VAL3 “foo”

• :calc VAL!J bar

• :calc VAL![J] bar

• :calc VAL![decimal(J)] bar

• :calc VAL![setvar(J,J+1)] foo

compound variables

•The CI allows two or more variable names to be concatenated to form a new variable name, and to reference the value of this
derived variable.
•A common application of compound names is variable arrays, discussed next.
•The value of a variable can reference another variable, e.g..

:setvar color “red”
:setvar bg “!!color”
:showvar bg
BG = !color
:echo 123 !color 456
123 red 456

3/29/02

34

March 29, 2002 Page 34

hp e3000

strategy

• simple convention using standard CI variables

• varname0 = number of elements in the array
varname1 …varnameN = array elements, 1 ..!varname0
varname!J = name of element J
!”varname!J” = value of element J

• :showvar buffer@

BUFFER0 = 6
BUFFER1 = aaa
BUFFER2 = bbb
BUFFER3 = ccc
BUFFER4 = ddd
BUFFER5 = eee
BUFFER6 = fff

variables arrays

•CI does not formally support arrays, but this simple convention works well. The technique also support hetroogenous arrays.
•Max number of CI variables depends on the length of the variable name and the size of its value.
•In 7.5 an approximate maximum number of user variables is 10,800 unique variables. This is derived as follows:

deletevar @
setvar z 0
while true do

setvar z z+1
setvar zz 0
while setvar(zz,zz+1) <= 26 do

setvar ![chr(ord(“A”)+zz-1)]!z true # A1, B1, C1… Z1 followed by
endwhile # A2, B2, C2…Z2 etc.

endwhile
Executing this script fills the variable table, evident by the CI error reported below:
Symbol table full: addition failed. To continue, delete some variables, or start a new session. (CIERR 8122)
:calc ((z-1)*26)+zz+2 (the +2 is for the two local vars z, zz)
10804, $2A34, %25064

•An approximate more typical maximum number of user variables on 7.5 is: 8,347 unique variables, derived as:
deletevar @
setvar z 0
setvar name ‘!![rpt(chr((hpcpumsecs mod 26)+ord("A")),(hpcpumsecs mod 14)+2)]’
var names begin w/ A-Z, from 2..15 chars long

setvar value ‘!![rpt(chr((hpcpumsecs mod 26)+ord("A")),(hpcpumsecs mod 60)+1)]’
var values begin w/ A-Z, from 1 to 60 chars long

while true do
setvar !name![setvar(z,z+1)] “!value”

endwhile
:calc z+3 # + 3 for local variables: z, name, and value
8347, $209B, %20233

3/29/02

35

March 29, 2002 Page 35

hp e3000

strategy

• centering output:

PARM count=5 “Center” script
setvar cnt 0
while setvar(cnt,cnt+1) <= !count do

setvar string!cnt,input("Enter string !cnt: ")
endwhile
setvar cnt 0
while setvar(cnt,cnt+1) <= !count do

echo ![rpt(" ",39-len(string!cnt))]!"string!cnt”
endwhile

:center

Enter string 1: The great thing about Open Source
Enter string 2: software is that you can
Enter string 3: have any color
Enter string 4: "screen of death”
Enter string 5: that you want.

Τ η ε γ ρ ε α τ τ η ι ν γ α β ο υ τ Ο π ε ν Σ ο υ ρ χ ε
σ ο φ τω α ρ ε ι σ τ η α τ ψ ο υ χ α ν

η α ϖ ε α ν ψ χ ο λ ο ρ
"σχ ρ ε ε ν ο φ δ ε α τ η”

τ η α τ ψ ο υ ω α ν τ .

variable array example

•The “center” script shows generically the following:
•how to create a CI variable “array”
•how to access a variable “array”
•the !”literal!name1” construct, which allows compound variable names to be referenced. If literal = FOO,
name1 = FUM and FOOFUM = 23 then

!”literal!name1” = !”FOO!name1” = !”FOOFUM” = !FOOFUM = 23
•![rpt(“ “, fieldWidth - lenOfVar)] puts the correct number of blanks before echoing the field’s value.

•Specifically, the “count” parameter is the number of elements in the “array”.
•string!cnt, where cnt is from 1..5, defines each element in the “array”.
•!”string!cnt” references the value of each element in the “array”.
•The rpt() function places the correct number of spaces before each line is echoed.

(The Open Source quote comes from Gavin Scott, Allegro Consultants, June ‘01 from the HP3000-L list.)

3/29/02

36

March 29, 2002 Page 36

hp e3000

strategy

filling variables arrays -- wrong!

• example 1: # array name is “rec”
setvar j 0
setvar looping true
while looping do

input name, “Enter name “
if name = “” then

setvar looping false
else
setvar j j+1

setvar rec!j name
endif

endwhile
setvar rec0 j

• :xeq exmpl1

• infinite loop!, won’t end until <break>

•The previous “center” example had the size (or number of elements) of the array defined and thus hard-coded. This example is more
general, in that, the size of the “array” is determined based on user input. In this case, when the user just presses <return>, meaning no
more input, that defines the size of the array. These arrays can be very dynamic, limited only by the maximum number of variables
supported by the CI. See the notes from a few slides back for this discussion.
•To fix the infinite loop bug the variable “name” needs to be cleared or deleted inside the while loop. Recall that the INPUT command
does not change the value of the variable if it times out or if the input value is null (“”). Thus we need to :deletevar name each
iteration, or set it to “”, or use the input() function. Recall that the input() function returns an empty string, “”, if it times out or if the
user just presses <return>.

•Syntax: INPUT [NAME=]varname
[[;PROMPT=]prompt] [[;WAIT=]seconds]
[[;READCNT=]chars] [[;DEFAULT=]default_str]
[;CONSOLE]

•The variable, varname, will always be created by INPUT if it does not yet exist. Varname's value is typically the exact value entered
as a response by the user; however, if the user enters no response (either by just pressing the enter key, or via the INPUT read expiring)
varname's value is determined as follows:

- if a DEFAULT= value is provided that becomes the value for varname.
- if no DEFAULT= is specified and varname already exists it is not changed.
- if no DEFAULT= is specified and varname does not exist it is created with a value of "" (empty string).

3/29/02

37

March 29, 2002 Page 37

hp e3000

strategy

filling variables arrays (cont)

• example 2:
setvar j 0
setvar looping true
while looping do

setvar NAME “”
input name, “Enter name “
if name = “” then

setvar looping false
else

setvar j j+1
setvar rec!j name
endif

endwhile
setvar rec0 j

• :xeq exmpl2 <datafile (datafile has 20 text records)

(“enter name” prompt shown 20 times snipped…)

End of file on input. (CIERR 900)

input name, "enter name “

Error executing com mands in WHILE loop. (CIERR 10310)

•Script as written works fine interactively!
•Works correctly if a line in DATAFILE is empty (but it must be variable width file)
•Otherwise, if datafile is fixed ASCII, you will see the “Enter name” prompt 20 times (no crlf) and get eof error on INPUT, as shown in
the slide.
•The next slide shows how to modify this script to work correctly when $STDIN is redirected and still function as expected when
invoked interactively.

3/29/02

38

March 29, 2002 Page 38

hp e3000

strategy

filling variables arrays (cont)

• example 3;
setvar j 0
if HPINTERACTIVE then

setvar prompt “’Name = ‘”
setvar limit 2̂ 30
setvar test ‘name= “” ‘

else
setvar prompt “”
setvar limit FINFO (HPSTDIN, ”eof”)
setvar test “false”

endif
while (j < limit) do

setvar name “”
input name , !prompt
if !test then

setvar limit 0 # exit interactive input
else

setvar j j+1
setvar rec!j name

endif
endwhile
setvar rec0 j

•Don’t want blank lines in datafile to stop while loop, so we don’t test for “” in the redirected case.
•Each variable, rec!j, is 80 bytes long -- no blanks were stripped. This may be fine, or you can use the rtrim() function to remove the
trailing spaces.
•Shows how you can make a dynamic CI command line, e.g.. if !test then ...
•Shows finfo(), HPINTERACTIVE and HPSTDIN.

3/29/02

39

March 29, 2002 Page 39

hp e3000

strategy

filling variables arrays (cont)

• :xeq exmpl3 <datafile

• :showvar rec@
REC1 = line1
REC2 = line2
…
REC20 = line20
REC0 = 20

• performance:

• Script as is: 100 records: 530 millisecs
• Script modified for file input only:

100 records: 380 millisecs

•The script as written works correctly for both interactive and redirected environments; however, the most common usage is when
input is redirected to a file. The next slide shows the script optimized for file input.

3/29/02

40

March 29, 2002 Page 40

hp e3000

strategy

filling variables arrays (cont)

• can we fill arrays (and read files) faster?

• example 4:

setvar rec0 0
setvar limit FINFO (HPSTDIN, ”eof”)
while setvar(rec0, rec0+1) <= limit and &

setvar(rec![rec0+1], input()) <> chr(1) do
endwhile
setvar rec0 rec0-1

• performance (:xeq exmpl4 <datafile):

• 100 records: 185 millisecs (twice as fast!)

• Is rec0 being incremented TWICE in the while loop?
• No! Explicit referencing, ![rec0+1] is performed by the CI before the command name is even known to be “WHILE”. Thus, the
command actually processed by the WHILE CI code is:

setvar(rec0, rec0+1) <= limit and setvar(!rec1, input()) <> chr(1)
Note: if rec![rec0+1] was replaced with rec!rec0, as I originally wrote the test script, then the loop counter and array high water mark
(rec0) would be overwritten by the first record in the input file.

• This version of the script is twice as fast with just a little thought.
• Shows the input() function.
• Shows empty WHILE body.
• The test against chr(1) is arbitrary but needed to have an empty while body.

3/29/02

41

March 29, 2002 Page 41

hp e3000

strategy

CI grep
• PARM pattern, file, entry=main

This script implements unix $grep -in <pattern> <file>.
setvar savecpu hpcpumsecs
if '!entry' = 'main' then

errclear
setvar _grep_matches 0
if not finfo('!file','exists') then

echo File "!file" not found.
return

endif
continue
xeq !HPFILE !pattern !file entry=read_match <!file
echo ![hpcpumsecs-savecpu] msecs …
echo !_grep_eof records read --!_grep_matches lines match "!pattern”
deletevar _grep_@
return
. . . (continued on next slide)

3/29/02

42

March 29, 2002 Page 42

hp e3000

strategy

elseif '!entry' = 'read_match' then
finds each "pattern" in "file" and echoes the record + line num
input redirected to "!file”
setvar _grep_eof finfo("!file","eof")
setvar _grep_recno 0
setvar _grep_pat ups("!pattern")
while setvar(_grep_recno,_grep_recno+1) <= _grep_eof and &

setvar(_grep_rec, rtrim(input())) <> chr(1) do
if pos(_grep_pat,ups(_grep_rec)) > 0 then

echo !_grep_recno) !_grep_rec
setvar _grep_matches _grep_matches+1

endif
endwhile
return

endif

• 4667 msecs …
1669 records read --18 lines match "version”

• 4627 msecs …
1669 records read --0 lines match "foo"

CI grep (cont)

•It takes approximately 4.6 seconds to read, upshift and find a string literal in a 1669 record ascii file, and
approximately 123 seconds to so the same in a 45,149 record file.

•xeq grep.hpbin.sys “-in pattern file” is much faster for large files! The GREP program in HPBIN.SYS does not
support CI or shell wildcarding. If you need to grep a pattern on a set of files start grep from the shell.

3/29/02

43

March 29, 2002 Page 43

hp e3000

strategy

stream UDC - overview

• STREAM
ANYPARM streamparms = ![“”]
OPTION nohelp, recursion
. . .
if main entry point then

initialize …
-if “jobq=“ not specified then read job file for job “card”
-if still no “jobq=“ then read config file matching “[jobname,]user.acct”
-stream job in HPSYSJQ (default) or derived job queue
-clean up

else
alternate entries
separate entry name from remaining arguments
. . .
if entry is read_jobcardthen read job file looking for “:JOB”, concatenate
continuation lines (&) and remove user.acct passwords
. . .

elseif entry is read_configthen
read config file, match on “[jobname,]user.acct”

. . .
endif

•http://jazz.external.hp.com/src/scripts/stream.txt
•Shows entry points used with UDC. ANYPARM requires more parsing and a convention for the entry specification. In
my example, the entry is always specified as “entry=name” and is the last argument in the command line.
•Shows how to default an ANYPARM value to nothing, ![“”]. Quotes by themselves don’t work, and, in fact, cause the
value to default to the quote marks literally.
•OPTION NOHELP chosen since this UDC overrides a built-in CI command. If a user enters “help stream” they will
not see the contents of this UDC; instead, they will see the HELP text for the real STREAM command.
•OPTION RECURSION is specified since there are several recursive calls to the STREAM UDC as a way to process
the various entry points. OPTION NORECURSION will be executed prior to invoking the real :stream command.
•Sample job queue configuration file:

(All comments appear at the end of this file for search performance reasons)
j@,usr1.acct jobqJ
usr1.acct jobq1
@.acct jobq2
@.@ mySysDefq
...

3/29/02

44

March 29, 2002 Page 44

hp e3000

strategy # comments …
if "!streamparms" = "" or pos("entry=","!streamparms") = 0 then

main entry point of UDC
setvar _str_jobfile word("!streamparms") # extract 1st arg
. . .
extract remaining stream parameters
setvar _str_parms ups(&

repl(rht("!streamparms",-delimpos("!streamparms"))," ",""))
if setvar(_str_pos, pos(“;JOBQ=“,_str_parms)) > 0 then

setvar _str_jobq word(_str_parms,,2,,_str_pos+5)
endif
if _str_jobq = “” then

no jobq=name in stream command so look at JOB “card”
STREAM _str_jobcard entry=read_jobcard <!_str_jobfile
if setvar(_str_pos,pos(";JOBQ=",_str_jobcard)) > 0 then
setvar _str_jobq word(_str_jobcard,,2,,_str_pos+5)

endif
endif

stream UDC - “main”

•The main entry point is detected by the absence of all parameters or by the lack of the “entry=“ keyword.
•The first parameter extracted is the name of the file to be streamed.
•The remaining parameters are captured in the variable _str_parms, after the command line has been upshifted and all
blanks have been removed.
•If the “;JOBQ=“ keywords is found in the command line the queue name is extracted. You might wonder why the
second word (instead of the default of 1), and why at a position that indexes the “=“ rather than the character
immediately right of the “=“? Using word(_str_parms,,,,_str_pos+6) works in all cases, including a null (empty) jobq
value. However, it fails when ;jobq= with no value is the last token on the command line. It fails in this case since the
index (_str_pos+6) is beyond the end of the _str_parms string length. Extracting the second word starting at the “=“
works in all cases.
•If “jobq=“ is not present in the command line, the STREAM UDC invokes itself (highlighted in blue) using an
alternate entry point, with $STDIN redirected to the file being streamed. This method allows the stream file to be read
efficiently by the UDC.

3/29/02

45

March 29, 2002 Page 45

hp e3000

strategy

stream UDC - “main” (cont)

if _str_jobq = '' and finfo(_str_config_file,'exists') then
No jobq=name specified so far so use the config file.
STREAM ![word(_str_jobcard,";")] _str_jobq entry=read_config &

<!_str_config_file
if _str_jobq <> '' then

found a match in config file, append jobq name to stream command line
setvar _str_parms _str_parms + ";jobq=!_str_jobq"

endif
endif
. . .
now finally stream the job.
if _str_jobq = '' then

echo Job file "!_str_jobfile" streamed in default "HPSYSJQ" job queue.
else
echo Job file "!_str_jobfile" streamed in "!_str_jobq" job queue.

endif
option norecursion
continue

stream !_str_jobfile !_str_parms
. . .

•If “jobq=“ is not found in the job “card” and if the simple configuration file exists, the STREAM UDC is again
invoked recursively to read the config file looking for a match. The config file has two fields: the first field is a
[jobname,]user.acct name, the second field is the corresponding job queue name. Wildcards are supported in the first
field. The code that processes the config file is shown later.
•Finally, the real STREAM CI command is invoked with an appended jobq=name if appropriate. To execute the real
STREAM command, OPTION NORECURSION is specified; otherwise the STREAM UDC would be invoked (and in
this case we would have an infinite loop -- eventually stopped by a CI limit that disallows UDC nesting beyond 100
levels.

3/29/02

46

March 29, 2002 Page 46

hp e3000

strategy

else
alternate entry points for UDC.
setvar _str_entry word("!streamparms",,-1)
remove entry=name from parm line
setvar _str_entry_parms lft('!streamparms',pos('entry=','!streamparms')-1)

if _str_entry = "read_jobcard" then
Arg 1 is the *name* of the var to hold all of the JOB card right of "JOB".
Input redirected to the target job file being streamed
Read file until JOB card is found. Return, via arg1, this record,
including continuation lines, but less the "JOB" token itself. Remove
all passwords, if any. Skip leading comments in job file.
setvar _str_arg1 word(_str_entry_parms)
while str(setvar(!_str_arg1,ups(input())),2,4) <> "JOB " do
endwhile
remove line numbers, if appropriate
if setvar(_str_numbered, numeric(rht(!_str_arg1,8))) then
setvar !_str_arg1 lft(!_str_arg1,len(!_str_arg1)-8)

endif
...

stream UDC - “read_jobcard”

•The next few slides detail the two alternate entry points for the STREAM UDC. If the entry is not “main” then it is an
alternate entry. The first step is to determine which entry is being called by extracting the entry name. By convention
the entry name is the last parameter passed to the UDC, and thus is extracted via word(…,-1).
•Next, the “entry=name” needs to be removed from the parameter line so that the alternate entry routines can freely
parse the arguments.
•Now a test can be made for each individual entry name, and each entry point can be coded like a subroutine. All
entries have read and write access to all of the variables set by the UDC.
•The “read_jobcard” entry defines the first parameter (arg1) to be the name of a CI string variable that will contain the
full job “card” line minus the pseudo colon and the word “JOB” (“!JOB “).
•Input has been redirected to the stream job file, which the “main” entry verified exists.
•Since there can be comments preceding the JOB command line, these are skipped by the WHILE loop above. This
WHILE loop reads the JOB record, via the input() function, and stops.
•A simple test is made to determine if the stream file is numbered or unnumbered: if the last 8 characters of the JOB
card record are numeric then the entire file is considered numbered.
•continued...

3/29/02

47

March 29, 2002 Page 47

hp e3000

strategy

…
concatenate continuation (&) lines
while rht(setvar(!_str_arg1,rtrim(!_str_arg1)),1) = '&' do
remove & and read next input record
setvar !_str_arg1 lft(!_str_arg1,len(!_str_arg1)-1)+ltrim(rht(input(), -2))
if _str_numbered then

setvar !_str_arg1 lft(!_str_arg1,len(!_str_arg1)-8
endif

endwhile
remove passwords, if any
while setvar(_str_pos,pos('/',!_str_arg1)) > 0 do
setvar !_str_arg1 repl(!_str_arg1,"/"+word(!_str_arg1,'.,;',,,_str_pos+1),"")

endwhile
return, upshifted, all args right of "JOB", and strip all blanks.
setvar !_str_arg1 ups(repl(xword(!_str_arg1)," ",""))
return

stream UDC - “read_jobcard” (cont)

•If the JOB record is continued (ends with an ampersand) then the first WHILE loop above will read the remaining
continuation lines.
•Each continuation line is appended to the return variable (arg1) after numbers and leading spaces (ltrim) are removed.
•!_str_arg1 is referenced, rather than simply “_str_arg1” since the contents of _str_arg1 is the name of a variable. For
instance, in the STREAM UDC arg1 is passed as “_str_jobcard”. After calling the read_jobcard entry the main body of
the UDC will test the value of _str_jobcard, looking for a JOBQ parameter. Using !_str_arg1 on the left side of a
SETVAR is like using “_str_jobcard”.
•Next, any user, account and/or group passwords, if present, are removed (not blanked over). If a password is found
(pos of “/” > 0) then the “/” and the password itself are replaced with “”.
•Finally, the concatenated, password filtered, de-numbered, de-blanked and upshifted JOB record is returned, via arg1,
to the caller. The “:JOB “ portion is also removed by the xword function.

3/29/02

48

March 29, 2002 Page 48

hp e3000

strategy

elseif _str_entry = "read_config" then
Arg 1 is the "[jobname,]user.acct" name from the job card.
Arg 2 is the *name* of the var to return the jobQ name if the acct name
Input redirected to the jobQ config file.
setvar _str_arg1 word(_str_entry_parms," ")
setvar _str_arg2 word(_str_entry_parms," ",2)
setvar _str_eof finfo (hpstdin, “eof”)
…
read config file and find [jobname,]user.acct match (wildcards are ok)
while setvar(_str_eof ,_str_eof-1) >= 0 and &

(setvar(_str_rec,ltrim(rtrim(input()))) = “” or &
lft(_str_rec,1) = '#' or &
not pmatch(ups(word(_str_rec,,-2)),_str_ua) or &
(pos(',',_str_rec) > 0 and lft(_str_rec,2) <> '@,’ and &
not pmatch(ups(word(_str_rec)),_str_jname))) do

endwhile
if _str_eof >= 0 then
[jobname,]user.acct match, return jobq name
setvar !_str_arg2 word(_str_rec,,-1)

endif
return

stream UDC - “read_config”

•The “read_config” entry reads the config file (verified by “main” to exist) looking for a user.acct match. This entry
defines the first parameter (arg1) to be the string “[jobname,]user.acct” from the JOB record returned by the
read_jobcard entry. The second parameter (arg2) is defined to be the name of a CI string variable the will hold “” or the
corresponding job queue name.
•These two arguments are easily extracted via word(…,1) and word(….,2). Note that one is the default parameter
number for word().
•Input has been redirected to the configuration file.
•The WHILE loop stops if the entire config file has been read or on the first match. Based on this implementation,
specific entries (specific [jobname,]user.acct) names should proceed generic, wildcarded names.
•The WHILE loop continues for empty (blank) records and comment (#) lines.
•A match is defined as: user.acct matches and if a jobname is present in the config file (and not simply “@”) the
jobnames must match too. Wildcard support is easy with pmatch()!
•Line by line evaluation of this WHILE loop:

•decrement a counter that initially contains the number of records in the config file. When this counter is
negative the file has been completely read.
•set the variable _str_rec to a record in the config file, after trimming all trailing and leading blanks, test if the
result is empty and if so continue the while loop.
•if the _str_rec record starts with “#” then skip it since it is a comment record.
•if the second-to-last word in the record (this is the user.acct token -- second-to-last is used rather than first to
handle an optional jobname which is terminated by a comma) doesn’t match the user.acct already extracted
from the JOB card then continue the loop.
•if user.acct matches and the config record has a jobname (pos comma > 0) and the jobname is not “@” and
the jobname doesn’t match the already extracted jobname from the JOB card then continue the loop.

•The loop ends when either all records have been read without a match, or there is a match. If the loop counter
(_str_eof) is >= 0 then there was a match and the corresponding job queue name (last word in the config file record) is
returned via arg2.

3/29/02

49

March 29, 2002 Page 49

hp e3000

strategy

• redo enhancements

• CO M MAND vs. HPCICOM MAND intrinsics

• CI programming features:

• commands

• variables

• expressions

• UDCs and scripts

• file layouts

• feature comparisons

• performance considerations

• parameters

appendix

3/29/02

50

March 29, 2002 Page 50

hp e3000

strategy

• delete a word

• dw, >dw, dwddw, dwiXYZ

• delete up to a special character

• d., d/, d*, d/iXYZ, d.d

• delete to end-of-line

• d>

• delete two or more non-adjacent characters

• d d

• upshift/downshift a character or word

• ,̂ ̂ w, v, vw, >̂ , >v, ̂ >, v>

• append to end-of-line

• >XYZ

• replace starting at end of line

• >rXYZ

• change one string to another

• c/ABCD/XYZ, c:123::

• undo last or all edits

• u, u twice

• available in CI, VOLUTIL, STAGEMAN, DEBUG others...

redo

•Redo was enhanced in late 5.5 to operate on “words”. A word is defined as any set of characters delimited by a: space,
comma, semicolon, equal sign, left or right parentheses, left or right brackets, single quote or double quote. A “word”
in redo is the same as the default word definition used by the DELIMPOS, WORD and XWORD CI functions.
•Redo deals with words as it does with characters. Words can be deleted (dw), upshifted (^w) and downshifted (vw).
•Words can be operated on from the end of the line: >dw - deletes the last word, >^w - upshifts the last word, >vw -
downshifts the last word.
•Upshifting and downshifting can be useful when editing POSIX file names, or entering procedure names in the
debugger -- times when character case matters.

3/29/02

51

March 29, 2002 Page 51

hp e3000

strategy

COMMAND intrinsic

• CO M MAND is a programmatic system call (intrinsic)

syntax: COM MAND (cmdimage, error, parm)

• implemented in native mode (NM, PA-RISC mode)

• use COM MAND for system level services, like:

• building, altering, copying purging a file

• no UDC search (a UDC cannot intercept “cmdimage”)

• no command file or implied program file search

• returns command error number and error location

(for positive parmnum), or file system error number for negative parmnum

COMMAND is a user-callable system level API that executes the command passed in as the cmdimage
argument. Cmdimage can name any built-in MPE command including the XEQ command, which directly
executes scripts and program files. Cmdimage cannot name a UDC or imply a script or program filename.
Cmdimage must be terminated with an ASCII carriage return (#13) and cannot exceed 512 bytes, including
the CR.
It is recommended to call the COMMAND intrinsic to obtain a system service, such as creating a file, etc.
Other intrinsics may provide the same function, yet it is sometimes easier to call COMMAND since the
programmer is likely familiar with the interactive CI command that provides the desired service.
COMMAND is recommend over HPCICOMMAND in this case since the cmdimage passed to
COMMAND cannot be intercepted by a UDC. For example, to create a new file one could call
COMMAND passing the string: “build filename”. The built-in MPE BUILD command will be executed,
even if there exists a UDC named “BUILD” -- which may do anything, and may not actually create the file
at all.
The error argument returns zero, or a CI error number in case of a command execution error. This is the
same error number reported if cmdimage is executed interactively, and is the value of the predefined
CIERROR JCW/variable. If cmdimage executes with an error or warning there is no indication of this fact,
other than the error return value. Specifically, there is no error message reported to $STDLIST, and the
CIERROR and HPCIERR CI variables are not modified. In fact COMMAND operates by locally setting
the HPMSGFENCE variable to 2, thus suppressing all CI error and warning messages. This is verifiable by
executing SHOWVAR programmatically via the EDITOR, e.g.:

:showvar hpmsgfence (= 0)
:editor
/:showvar hpmsgfence (= 2) Note: a leading “:” causes editor to call COMMAND with the

string following the “:”. This is common for many programs.

3/29/02

52

March 29, 2002 Page 52

hp e3000

strategy

HPCICOMMAND intrinsic

• HPCICOM MAND is an intrinsic
syntax: HPCICOM MAND (cmdimage,error,parm

[,msglevel])

• implemented in native mode (NM, PA-RISC mode)

• use HPCICOM M AND for a “window” to the CI, e.g.:

• providing a command interface to a program, “:cmdname”

• UDCs searched first

• command file and implied program files searched

• returns command error number and error location or file system error

number.

• Msglevelcontrols CI errors/warnings --similar to the HPMSGFENCE

variable

HPCICOMMAND is a user-callable system level API that executes the command passed in as the
cmdimage argument. Cmdimage is identical to that passed to the COMMAND intrinsic, except that it can
name UDCs, scripts and program filenames, in addition to most of the built-in MPE commands. Due to
implementation constraints the following built-in commands cannot be executed via COMMAND or
HPCICOMMAND:

ABORT, BYE, CHGROUP, DATA, DISMOUNT, DO, EOD, EOJ, EXIT, HELLO, IMF,
IMFMGR, JOB, LISTREDO, MOUNT, NRJE, REDO, RESUME, RJE, SETCATALOG,
VSUSER.

However, the remaining 245 CI commands can all be executed programmatically via COMMAND or
HPCICOMMAND.
It is recommended to call the HPCICOMMAND intrinsic as a simple way for a program to provide a
“window” to the CI. It is common for MPE programs to accept a leading colon (“:”) to indicate that what
follows is a CI command to execute, and not a command recognized by the program. A nice feature of
HPCICOMMAND is that it executes UDCs, which makes the “window” to the CI more natural and
powerful for the end user.
The error argument and parm arguments work the same as in COMMAND, except HPCICOMMAND will
set the CIERROR and HPCIERR CI variables to 0, or an error number if the passed in command fails.
The optional msglevel parameter is unique to HPCICOMMAND and controls the HPMSGFENCE setting
described in the COMMAND notes. By default msglevel is passed as 0, meaning that all CI errors and
warning messages are written to $STDLIST, just as if cmdimage was executed interactively. Msglevel can
be set to any legal HPMSGFENCE value and causes HPCICOMMAND to control error, warning and some
diagnostic output identically to how the CI interprets HPMSGFENCE. Entering HELP hpmsgfence will
show the details.

3/29/02

53

March 29, 2002 Page 53

hp e3000

strategy
• IF, ELSEIF, ELSE, ENDIF branching

ESCAPE, RETURN

• W HILE, END WHILE looping

• ECHO, INPUT terminal, console, file I/O

• SETVAR, DELETEVAR create/modify/delete/display a variable
SHO WVAR

• ERRCLEAR sets CI error variables to 0

• RUN invoke a program
XEQ invoke a program or script

• PAUSE sleep; job synchronization

• OPTION recursion only way to get recursion in UDCs

common CI “programming”
commands

•The CI supports commands that provide the basic requirements of a programming language: storage, branching/looping and I/O. The
CI expands on these necessities by providing a rich set of predefined variables and functions, many of which are described later.

•There are 270 CI commands as of release 7.5, but the 18 commands above are common in most scripts and UDCs that have any level
of complexity, such that they are considered a “program”.

3/29/02

54

March 29, 2002 Page 54

hp e3000

strategy

CI variables

• 113 predefined “HP” variables

• user can create their own variables via :SETVAR

• variable types are: integer (signed 32 bits), Boolean and string(up 1024 characters)

• variable names can be up 255 alphanumeric alphanumeric and “_” (cannot start with
number)

• predefined variable cannot be deleted, some allow write access

• :SHO WVAR @ ; HP --shows all predefined variables

• can see user defined variables for another job/session (need SM)

• :SHO WVAR @ ; job=#S or Jnnn

• the bound()function returns true if the named variable exists

• variables deleted when job / session terminates

• :HELP variables and :HELP VariableName

•CI variables can be strings (up to 1024 bytes in length), 32 bit signed integers or boolean TRUE/FALSE. There is not
support for 64 bit integers or unsigned 32 bit numbers.
•See the slides on variable arrays for a method to determine the maximum number of CI variables that can be defined.
This maximum is a function of the length of the variable’s name and the length of its value. The longer your variable
names and/or their values the fewer variables can be stored by the CI. A typical range is 8,000 to 9,000 user variables
can be defined.
•A summary of all of the predefined variables is available by entering HELP VARIABLES. The details for a specific
variable can bee seen by entering HELP varname. For example, if you have trouble remembering the new values for
the HPMSGFENCE variable, enter HELP HPMSGFENCE and see:

HPMSGFENCE A variable used by the CI that controls the output for all
CI errors, warnings and skipped commands. Skipped commands refer to commands that are not
executed by the CI because they follow a conditional expression that evaluated FALSE.

HPMSGFENCE is divided into 2 fields, 3 bits each in size.
The low order field (bits 29..31) controls the output of CI error and warning messages as:
0 = display all CI errors and warning
1 = show only errors, warning are suppressed
2 = suppress all CI errors and warning messages.
The next field (bits 26..28) controls the output of skipped commands and the
"*** EXPRESSION FALSE: ...", "*** EXPRESSION TRUE: ...", and "*** RESUME

EXECUTION OF COMMANDS" messages:
0 = show all skipped commands and the above "***…” messages
1 = show only the "***..." messages, suppress commands that are skipped. Integer value is 8.
2 = suppress the skipped commands and the "***...” messages. Integer value is 16.
Etc…

•HPMAXPIN is new to 7.0 and returns the maximum number of processes supported by your system

3/29/02

55

March 29, 2002 Page 55

hp e3000

strategy

predefined variables

• HPAUTOCONT -set TRUE causes CI to behave as if each command is protected by a
:continue.

• HPCMDTRACE - set TRUE causes UDC / scripts to echo each command line as long
as OPTION NOHELP not specified. Useful for debugging.

• HPCPUMSECS - tracks the number of milliseconds of CPU time used by the process.
useful for measuring script performance.

• HPC WD - current working directory in POSIX syntax.
• HPDATETIME - contains the date/time in

CenturyYearMonthDateHourMinuteSecondMicrosecond format.
• HPDOY - the day number of the year from 1..365.
• HPFILE - the name of the executing script or UDC file.
• HPINTERACTIVE - TRUE means $STDIN and $STDLIST do not form an interactive

pair, useful to test if it is ok to prompt the user.
• HPLASTJOB - the job ID of the job you most recently streamed, useful for a default

parm value in UDCs that alter priority, show processes, etc.

•I rarely use HPAUTOCONT. I prefer to be explicit when I am anticipating that the next command may fail. Also,
there is slight extra overhead with HPAUTOCONT. Lastly, its original value should be saved and re-instated before the
script ends.
•HPCMDTRACE is often useful, despite being overly verbose . There is a simple example that toggles the
HPCMDTRACE value in the “Examples” section of this presentation.
•My CI prompt contains HPCWD, e.g.. :setvar hpprompt “!!hpcwd: “
•I use HPCPUMSECS to measure script performance as follows:

- save its value at script entry
- save its value near the script end
- calculate the time in the script as: end_value - start_value.

•Express 1 of 6.0 added 5 new variables related to the date and time.
- HPDATETIME - is a string that contains “YYYYMMDDHHMMSSMMM”. The value of this

variable is that the date and time are retrieved autonomously, thus you are
guaranteed that the time portion of the variable is not early the next day.

Note: currently the microseconds field has only tenths of a second resolution due to restrictions on
the CLOCK intrinsic call.

- HPDOY - an integer variable containing
- HPHHMMSSMMM - current time in hour, minutes, seconds, micro-seconds.
- HPLEAPYEAR - a boolean variable that is true when the current year is a leap year.
- HPYYYYMMDD - a string variable that contains the year, month and date as an autonomous

value.
•HPFILE reduces the need to hard-code the filename of your script, e.g.:

if user-selected-help then
echo ![hpfile] -- Syntax: …
…

•HPLASTJOB can be modified which is useful when referencing the HPLASTPSID variable. E.g..
:setvar hplastjob “#J12”
:print !hplastspid.out..hpspool

3/29/02

56

March 29, 2002 Page 56

hp e3000

strategy

predefined variables (cont)

• HPLASTSPID - the $STDLIST spoolfile ID of the last job streamed, useful in
:print !hplastspid.out.hpspool

• HPLOCIPADDR - IP address for your system.
• HPMAXPIN - the maximum number of processes supported on your system.
• HPPATH - list of group[.acct] or directory names used to search for script and program

files
• HPPIN - the Process Identification Number (PIN) for the current process.
• HPPRO MPT - the CI’s command prompt, useful to contain other info like: !!HPCWD,

!!HPCMDNUM, !!HPGROUP, etc.
• HPSPOOLID - the $STDLIST spoolfile ID -- if executing in a job.
• HPSTDIN - the filename for $STDIN, useful in script ”subroutines” where input has been

redirected to a disk file
• HPSTREAMEDBY - the “Jobname,User.Acct (jobIDnum)” of the job/session that

streamed the current job.
• HPUSERCAPF - formatted user capabilities, useful to test if user has desired capability,

e.g. if pos(“SM”,hpusercapf) > 0 then

•My HPPATH contains “HPBIN.SYS” so I can run the POSIX programs more easily.
•HPREMIPADDR and HPREMPORT are useful for determining how a user is connecting to your system.
•HPSTREAMEDBY shows the same information as seen at the beginning of the $STDLIST output of a job
•A common way to see if the user has sufficient capabilities is:

:if pos(“SM”,hpusercapf) > 0 then # has SM cap
or
setvar has_SM (pos(“SM”,hpusercapf) > 0)

3/29/02

57

March 29, 2002 Page 57

hp e3000

strategy

variable scoping

• all CI variables are job/session global, exceptthe following:
HPAUTOCONT, HPCMDTRACE, HPERRDUMP, HPERRSTOLIST,
HPMSGFENCE

• easy to set “persistent” variables via logon UDC

• need care in name of UDC and script “local” variables to not collide with
existing job/session variables

• _scriptName_varname --for all script variable names. Use:deletevar
scriptName @ at end of script

• Can create unique variable names by using !HPPIN, !HPCIDEPTH,
!HPUSERCMDEPTH as part of the name, e.g.

:setvar _script_xyz_!hppin , value

• save original value of some “environment” variables

• :setvar _script_savemsgfence hpmsgfence
:setvar hpmsgfence 2

•The variables that are not job/session global reside in a local CI data structure, and thus are unique to each CI. If you
run a child CI program it can have a different value for these variables, and any settings you do in that CI are not
reflected when you exit back to the root CI.
•Since (almost) all CI variables are scoped global to the job or session environment, you can set/create variables in
logon UDC, scripts etc. and these variables are available to the job or session. User variables are not automatically
deleted when a script or UDC ends.
•Since (almost) all CI variables are scoped global to the job or session environment, you may need care in choosing a
unique variable name. If you have a variable named XYZ defined from the CI, and you execute a script that sets XYZ
and then deletes it before exiting, your CI set XYZ variable is gone. For this reason, it is generally important to use
script variable names that have a decent chance of being unique to that script. A convention I use is to prefix all script
variable names with the name of the script. For example, if my script is named CH and I need a counter variable named
“j”, I will named it _CH_J in my script.

3/29/02

58

March 29, 2002 Page 58

hp e3000

strategy

variable referencing

• two ways to reference a variable:

• explicit --!varName

• implicit -- varName

• some CI commands expect variables as their arguments, e.g.

• :CALC, :IF, :ELSEIF, :SETVAR, :WHILE

• use implicitreferencing here, e.g.
:if (HPUSER = “MANAGER”) then

• most CI commands don’t expect variable names (e.g. BUILD, ECHO,
LISTF)

• use explicitreferencing here, e.g.
:echo You are logged on as: !HPUSER.!HPACCOUNT

• note: all UDC/script parameters must be explicitly referenced

• all CI functions accept variable names, thus implicit referencing works

• :while JINFO (HPLASTJOB, “exists”) do… better than ...
:while JINFO (“!HPLASTJOB”, “exists”) do

•I see many people confused on when to put an exclamation mark in front of a variable name and when you don’t need
to. Since it almost always works to code as !varname or “!varname” this becomes the standard practice. Some users
find the rules to be ambiguous so they opt to use !varname. Although, I think this is unnecessary and less “attractive”, it
works fine most of the time. There are, however, situations when using !varname results in difficult-to-diagnose
programming bugs, which are shown in the next slide.

3/29/02

59

March 29, 2002 Page 59

hp e3000

strategy

explicit referencing -
!varname

• processed by the CI early, before command name is known

• can cause hard-to-detect bugs in scripts -array example

• loose variable type --strings need to be quoted, e.g..
“!varName”

• !! (two exclamation marks) used to “escape” the meaning of “!”, multiple “!’s”
are folded 2 into 1

• even number of “!” --> don’t reference variable’s value

• odd number of “!” --> reference the variable’s value

• useful to convert an ASCII number to an integer, e.g.
setvar int “123” or input foo, “enter a number”
if !int > 0 then … if !foo = 321 then ...

• the only way to reference UDC or script parameters

• the only way for most CI commands to reference variables

•Bang folding: echo !!!!varname writes !!varname to $stdlist
echo !!!varname writes ! followed by varname’s value to $stdlist

•Number conversion example:
:setvar x “123”
:if !x > 0 then …
:input x, “enter a value” # user enters 123
:if x = 123 then # ERROR, x is a string!
:if !x = 123 then # OK

•Here is an example when using explicit variable referencing is incorrect:
(assume an “array” of variables: name1, name2, name3, etc.)

1) setvar j 0
2) while setvar(j,j+1) <= limit and name!j <> “EXIT” do …

Line 2 will always be reference the N-1th element in the “array”, and, worse, will try to reference ‘name0’ the first time.
Solution: 2) while setvar(j,j+1) <= limit and name![j - 1] <> “EXIT” do … -- or --

while setvar(j,j+1) <= limit do
if name!j <> “EXIT” then ...

•The biggest issue with regards to using !varname is that varname’s type is lost. Sometimes, this is exactly what is
desired, as shown in the number conversion examples. Other times, the type was never intended to be lost, and
therefore the user needs to surround a string !varname with quotes to preserve its type. It is this second usage that I am
trying to reduce because, in my opinion, readability and maintainability suffer.

3/29/02

60

March 29, 2002 Page 60

hp e3000

strategy
• evaluated during the execution of the command --later than explicit
referencing

• makes for more readable scripts

• variable type is preserved --no need for quotes, like: “!varname”

• only 5 commands accept implicitreferencing: CALC, ELSEIF, IF,
SETVAR, WHILE --all others require explicit referencing

• all CI function parameters accept implicit referencing

• variables inside ![expression] may be implicitly referenced

• performance differences:

• “!HPUSER.!HPACCOUNT” = “OP.SYS” 4340 msec

• HPUSER + “.” + HPACCOUNT = “OP.SYS” 4370 msec

• HPUSER = “OP” and HPACCOUNT = “SYS” 4455 msec*
(*with user match true)

my preference is the last choice since many times :IF will not need to
evaluate the expression after the AND

implicit referencing -
just varname

•I prefer to use implicit referencing whenever possible. It makes scripts easier to read (closer to conventional
programming), avoids problems of early explicit referencing shown on the previous page, and preserves the variable’s
type. So my recommendation is that in the five commands listed above, and for all function arguments, and inside
![expressions] use implicit referencing as your first choice.

3/29/02

61

March 29, 2002 Page 61

hp e3000

strategy

CI expressions

• operators:

• + (ints and strings), -, *, /, ̂, (), <, <=, >, >=, =, AND, BAND, BNOT,
BOR, BXOR, CSL, CSR, LSL, LSR, MOD, NOT, OR, XOR

• precedence (high to low):

• 1) variable dereferencing

• 2) unary + or -

• 3) bit operators (csr, lsl…)

• 4) exponentiation (̂)

• 5) *, /, mod

• 6) +, -

• 7) <, <=, =, >, >=

• 8) logical operators (not, or…)

• left to right evaluation, except exponentiation is r-to-l

•HELP operators and HELP band, etc. provides additional information.

3/29/02

62

March 29, 2002 Page 62

hp e3000

strategy

• what is an expression?

• any variable, constant or function with or without an operator, e.g:
MYVAR, “a”+”b”, x̂ 10*y/(j mod 6), false, (x > lim) or (input() =“y”)

• partial evaluation:
if true or x # “x” side not evaluated
if false and x # “x” side not evaluated
if bound(z) and z > 10 then # if “z” not defined it won’t be referenced

– problems when MPEX runs the script

• where can expressions be used?

• 5 commands that accept implicitvariable references:
:calc, :if, :elseif, :setvar, :while

• ![expression] can be used in any command:
:build afile; rec=-80; disc= ![100+varX]
:build bfile; disc= ![finfo(“afile”,”eof”)*3] # file b is 3 times bigger

• examples:
• :print ![input(“File name? “)]

• :setvar reply ups(rtrim(ltrim(reply)))

CI expressions

•Expressions are expected naturally in five CI command (CALC, IF, ELSEIF, SETVAR and WHILE), but they
must be forced to be evaluated in the remaining CI commands. This forcing is done by enclosing the expression
inside square brackets with a leading “!”.
•A powerful feature of CI expression evaluation is what is called “partial evaluation”. Most programming
languages support this concept, which is, performing the minimum level of evaluation needed to determine if a
boolean expression is true or false. Not only does this allow the CI to evaluate expressions more efficiently, it is
necessary for some compound expressions. For example, consider the following expression:

if FALSE and lft(input(“OK to continue?”),1) = “y” then …
If the CI had to evaluate the entire expression then the user would see the prompt and be required to enter input.
Clearly this is not desirable since the expression will be FALSE regardless of the user input, and the user should
not be bothered with the prompt. To my knowledge, MPEX still does not support partial evaluation with respect
to the existence or not of variables. That is, in a statement like:

if TRUE or lft(varA, 1) = “” then …
MPEX evaluates the expression and enforces that “varA” exists, even though the TRUE clause could halt the left-
to-right evaluation. The above expression produces no errors in the CI (regardless of varA’s existence), thus CI
scripts written to exploit partial evaluation may not work correctly in an MPEX environment.
•As will be seen in the examples at the end of this presentation, some expressions can be long and complex. The
motivation for writing expressions this way is purely performance, and sometimes hinders support of the script.

3/29/02

63

March 29, 2002 Page 63

hp e3000

strategy

CI functions

• functions are invoked by their name, accept zero or more parms and
return a value in place of their name and arguments

• file oriented functions:

• BASENAME, DIRNAME, FINFO, FSYNTAX, FQUALIFY

• string parsing functions:

• ALPHA, ALPHANUM, DELIMPOS, D WNS, EDIT, LEN, LFT, LTRIM,
NUMERIC, PMATCH, POS, REPL, RHT, RPT, RTRIM, STR, UPS,
W O RD, WORDCNT, XWORD

• conversion functions:

• CHR, DECIMAL, HEX, OCTAL, ORD

• arithmetic functions

• ABS, MAX, MIN, M OD, ODD

• job/process functions:

• JINFO, JOBCNT, PINFO

• misc. functions:

• ANYPARM, BOUND, INPUT, SETVAR, TYPEOF

•The CI currently supports 56 functions, over twice as many functions as in the base release of 5.0. However, the CI
only supports predefined functions -- user written functions are unavailable.
•Help is available for all functions by entering HELP functionName. A summary of the CI functions can be seen by
entering HELP FUNCTIONS. To get function help on a function that has the same name as a CI command, enter HELP
function_nameFN, e.g.. HELP setvarFN or HELP inputFN.
•The arguments to a function can be a literal constant, the name of a variable, or another function. When a variable is
used as a function argument, its value will be used as the argument value. However, five functions accept a variable
name but do not evaluate the variable (i.e. they don’t use its value): JINFO, PINFO, SETVAR, WORD and XWORD.
•Functions can be nested, that is, function A can invoke function B to obtain the value for one of function A’s
parameters. The only nesting limit is defined by the size of the CI’s internal buffer that holds the command line --
currently 511 bytes. There is an exception to nesting -- the ANYPARM function is special. Since anyparm() ignores all
delimiters, including all but the last right parentheses, it cannot be nested inside other functions, nor can other functions
be nested within anyparm’s argument.
•DIRNAME(“f.g.a”) “/A/G”
•FSYNTAX(“f.g.a”) “MPE”

FSYNTAX(“./a[c-g]”) “POSIX;WILD”
•FQUALIFY(“f”) “F.GRP.ACCT” or “/CWD/F”

FQUALIFY(“./f”) “/CWD/f”
•DELIMPOS(“a,b;c d”) 2 useful when delimiter is a set of two or more characters
•EDIT(“ab;cd,ef”,”dw”) “;cd ef” full REDO programmatic editing
•PMATCH(“ab”,”abc”) FALSE easy way to add pattern matching
PMATCH(“ab@”,”abc”) TRUE

•WORDCNT(“a b,c=,d”) 5 test if a variable contains the expected number tokens
(value of ‘c’ is null, but counts as a token -- consistent with
word and xword)

•XWORD(“Hi there, Fred”) “there, Fred”

3/29/02

64

March 29, 2002 Page 64

hp e3000

strategy

JINFO function

syntax: JINFO (“[#]S|Jnnnn”, “item” [,status])
wherejobID can be “[#]J|Snnn” or “0”, meaning “me”

• 63 unique items: Exists, CPUSec, IPAddr, JobQ, Com mand,

JobUserAcctGroup, JobState, StreamedBy, Waiting ...

• status parm is a variable name. If passed, CI sets status to JINFO error

return --normal CI error handling bypassed

• can see non-sensitive data for any job on system

• can see sensitive data on: “you”; on other jobs w/ same

user.acctif jobsecurity is LOW; on other jobs in same

acctif AM cap; on any job if SM or OP cap

• :help JINFO provides all of the items, security rules and some examples.
• if JINFO (HPLASTJOB, “EXISTS”) then …

you know the job exists, at least right now!

• if JINFO (“S543”, “IPADDR”) <> “” then
Session 543 is connected via the network

• if JINFO (target_job, “FMTPRIORITY”) = “DQ” then
‘target_job’ is currently in the DQ dispatcher queue

• setvar state JINFO (HPLASTJOB, “STATE”, status)
while status = 0 and state = “WAIT” do …

setvar state JINFO (HPLASTJOB, “STATE”, status)
endwhile

• if JOBCNT(“@J”, list) > 0 then
while JINFO (word(list), “EXISTS”) do

setvar list xword(list)
….

• while JINFO(hplastjob, ”EXECUTING”) do ...

3/29/02

65

March 29, 2002 Page 65

hp e3000

strategy

JOBCNT function

syntax: JOBCNT (“job_spec” [,joblist_var])

• “Job_Spec” can be:

• “user.account”

• “jobname,user.account”

• “@J”, “@S”, “@”

• “@J:[jobname,]user.acct” or “@S:[jobname,]user.acct”

• wildcarding is supported

• use empty jobname (“,”) to select jobs without jobnames

• omit jobname to match any jobname

The JOBCNT function returns the number of job/sessions that match the “job_spec”, regardless of the state of the
matching job/sessions. In other words, JOBCNT does not filter based on whether the job is waiting, scheduled,
executing, etc. The function return is valid only for the moment it is returned, as a system’s job/session count can
continually fluctuate.
The “job_spec” parameter allows just jobs or just session to be selected for a given “user.acct” specification. For
example, to find only the jobs logged on as MANAGER.SYS use:

JOBCNT (“ @J:MANAGER.SYS”)
It is possible to retrieve the job/session IDs for the matching jobs by passing the “joblist_var” parameter. This unquoted
argument names an existing or new CI string variable. It will be set to a list of matching job/session IDs of the form:
J|Snnn, followed by a space, followed by the next ID, etc. For example:

“S123 S445 J9 S567 J10”

Since CI string variables currently cannot exceed 1024 characters, it is possible that the “joblist_var” passed to
JOBCNT cannot contain all of the matching job IDs. This situation is only detected by comparing the number of tokens
in the “joblist_var” against the function return. For example:

setvar cnt JOBCNT(“@”,jlist)
if cnt <> wordcnt(jlist) then ... # not all matching jobs in variable

Assuming three digit job numbers, approximately 204 matches will fit in the “joblist_var” variable. Possible solutions
to this restriction are:

• use separate JOBCNT calls for jobs and sessions
• use separate JOBCNT calls for various target accounts

There are no restrictions on the use of JOBCNT. Any user, regardless of their capabilities, can specify any “job_spec”
and retrieve the matching job/session IDs.

3/29/02

66

March 29, 2002 Page 66

hp e3000

strategy

PINFO function

syntax: PINFO (pin, “item” [,status])
where PIN can be a string, “[#P]nnn[.tin]”, or a simple integer, “0” is “me”

• 66 unique items: Alive, IPAddr, Parent, Child, Children, Proctype,

WorkGroup, SecondaryThreads, NumOpenFiles, ProgramName, etc.

• status parm is a variable name. If passed, CI sets status to PINFO error
return --normal CI error handling bypassed

• can see non-sensitive data for any user process on system

• follows SHO WPROC’s rules for sensitive data

• documented in 7.0 Express 1 Communicator or on Jazz at:
http://jazz.external.hp.com/papers/Communicator/7.0/exp1/ci_enhancements.html

•:help PINFO provides all of the items, security rules and some examples.
• if PINFO (HPPIN, “Info”) = “PRINT” then …

info=“PRINT” was specified for your process...

• if PINFO (547, “IPADDR”) <> “” then
This process is connected via the network

• if PINFO (target_pin, “SchedQ”) = “DS” then
‘target_pin’ is currently in the DS dispatcher queue

•walk down process tree:
setvar p PINFO (0, “jsmainPin”)
while p <> 0 do

setvar p PINFO (p, “child”)
endwhile

•walk up process tree:
setvar p 0
while PINFO (p, “proctype”) <> “JSMAIN” do

setvar p PINFO (p, “parent”)
endwhile

•find state of each descendant process:
setvar kids PINFO (0, “children”)
setvar kids word(kids,”/”,2) # get rid of count field
setvar k 0
while setvar(p,word(kids,,setvar(k,k+1))) <> “” and PINFO (p, ‘alive’) do

echo Pin: !p, state=![PINFO (p, “procState”)]
endwhile

3/29/02

67

March 29, 2002 Page 67

hp e3000

strategy

UDCs

• user defined command files (UDCs) -a single file that contains 1 or
more command definitions, separated by a row of asterisks (***)

• features:

• simple way to execute several com mands via one command

• allow built-in MPE commands to be overridden

• can be invoked each time the user logs on

• require lock and (read or eXecute)access to the file

• cataloged (defined to the system) for easy viewing and prevention of
accidental deletion --see :SETCATALOG and :SHO W CATALOG
commands

• can be defined for each user or account or at the system level

• more difficult to modify since file usually opened by users

UDCs were the only way to group commands together and execute them as a single command on classic
MPE V systems and earlier. Today, we can still use UDCs, and we can use command files (or “scripts) for
the same basic purpose. However, there are important differences between UDCs and scripts that users
should consider. The similarities and differences of UDC compared to scripts are discussed in the next few
slides.

Similarities
•UDCs and scripts reside in standard MPE ASCII files
•they both support parameters with optional default values
•they both require read or execute access
•they both support the options: HELP, NOHELP, LIST, NOLIST, BREAK, NOBREAK, PROGRAM,
NOPROGRAM

Differences
1. Cataloging:
One or more UDCs are collected into a single file. This file can be assigned (or cataloged) to a particular
user, an account or the entire system. Multiple UDC files can be cataloged to the same or to different users
and/or accounts simultaneously. The SHOWCATALOG and SETCATALOG commands provide this
cataloging service. Once a UDC file is cataloged it is opened by the user process and cannot be deleted or
modified until after the file has been un-cataloged (and closed). However, the POSIX shell’s “mv”
command does allow an open UDC file to be replaced. The changes are immediate to users just logging on,
but are not seen by current users unless the re-logon, or re-setcatalog.
The benefits of UDC cataloging are:

•many UDCs can reside in the same physical file,
•the UDC file cannot be accidentally purged or modified, since the file is open,
•visibility as to which UDCs are available to which users on the system.

The disadvantages of this cataloging approach are:
•cumbersome to modify individual UDCs defined in the UDC file,
•overhead to catalog the UDC file at logon time.

3/29/02

68

March 29, 2002 Page 68

hp e3000

strategy

command files (scripts)

• command file- a file that contains a single command definition

• features:

• same convenience as UDCs

• searched for after UDCs and built-in commands using the HPPATH

variable --default HPPATH includes “logon group, PUB.logon account,

PUB.SYS, ARPA.SYS”

• require read or eXecute access

• easy to modify since file is only in use while it is being executed

• very similar to unix scripts or DOS bat files

Command files (scripts) are single files that contain the commands to be executed. These files can reside
anywhere on a system; however, typically they are located in groups or directories referenced in the
HPPATH variable. Like UDCs, scripts are invoked via their name, however, since a script is a file, it can
be entered as a qualified filename or as an unqualified filename. Most commonly, script names are entered
as unqualified names (just the base name), and thus the HPPATH variable is used to complete (“qualify”)
the name based on successive group/directory names defined in HPPATH. UDC names can be up to 16
characters long, and thus are longer than standard MPE filenames; however, POSIX script names can be
longer than UDC names.
2. Command override mechanism:
A UDC name can be the same name as a built-in MPE command. The CI resolves a user entered command
name by checking for a UDC prior to searching for a built-in CI command. Thus, a UDC can hide a built-
in CI command. For example, a UDC can be named RUN, hence overriding the :RUN command.
A script cannot override a built-in CI command. For example, if a command file named RUN.PUB.SYS
exists and the user enters “:run ….”, the built-in :RUN command will be executed, not the script. Typically,
command file names are different from UDC and built-in command names. The :XEQ command is
provided to execute scripts with the same name as built-in commands or UDCs.
Note: after a user has logged on, UDCs are searched for in the following order:

•user level UDCs, starting at the first user file shown by :SHOWCATALOG
•account level UDCs,. starting at the first account file listed by :SHOWCATALOG
•system level UDCs, starting at the first system file displayed by :SHOWCATALOG.

Multiple files at the same level (user, account, system) are searched for (and executed, if found) based upon
the order the files are cataloged.
Note: OPTION RECURSION causes the UDC commands within the option recursion UDC to be searched
for starting at the first file cataloged at the user level, regardless of the level of the executing UDC.
Note: the UDC search order is different at logon time.

3/29/02

69

3. Logon execution:
UDCs support the OPTION LOGON option. A single UDC at each level (user, account and system) can be
executed at logon. Even if there are several UDCs at a given level with OPTION LOGON defined, only
one UDC (the first) per level will be executed at logon time -- the remaining OPTION LOGON UDCs at
that level are ignored at logon. The order that UDCs are executed during logon is the opposite of the
execution order after logon. Namely, system level UDC are invoked first, followed by account UDCs,
followed last by user level logon UDCs. This order allows system managers to control access to their
system and to administer other security related policies via a system level logon UDC. Users cannot
override a system level logon UDC, at logon time nor during normal command usage.
Scripts do not support OPTION LOGON. However, it is not uncommon for an OPTION LOGON UDC to
simply invoke a script to do the real work. For example:

MYLOGONUDC file: LOGIN
OPTION LOGON # my logon script
invoke login script setvar hppath hppath+”,scripts.sys,hpbin.sys”
xeq login setvar hpredosize 100
*** if hpinteractive then ...

4. Command name:
A UDC name can be from 1 to 16 character long and consist solely of alphanumeric characters, with the
first character being a letter.
Note: UDC filename can be an MPE syntax symbolic link pointing to a POSIX named UDC file, if for
some reason the actual UDC file needed to reside in the HFS. For example,

:newlink udclk, /usr/local/udcs/system.udc
:setcatalog udclk ; append

March 29, 2002 Page 69

hp e3000

strategy

UDC / script comparisons

• similarities:

• ASCII, NOCCTL, numbered or unnumbered, max 511 record width

• optional parameter line ok - max of 255 arguments

• optional options, e.g. HELP, NOBREAK, RECURSION

• optional body (actual commands)

– no inline data, unlike Unix ‘here’ files :(

• can protect file contents by allowing eXecute access-only security, i.e.,

denying read access

3/29/02

70

March 29, 2002 Page 70

hp e3000

strategy

UDC / script comparisons (cont)

• differences:

• scripts can be variable record width files

• UDCs require lock access, scripts don’t

• script names can be in POSIX syntax, UDC filenames must be in MPE
syntax

• UDC name cannot exceed 16 chars, script name length follows rules for

MPE and POSIX named files

• EOF for a script is the real eof, end of a UDC command is one ormore

asterisks, starting in column 1

A script name follows the same rules as all filenames. These rules differ depending on the syntax specified.
MPE syntax filenames must be from 1 to 8 alphanumeric characters, with the first character being a letter.
If the MPE name is qualified it can contain a lockword, group and account names, each having the same
restrictions. POSIX syntax script names follow the rules for any POSIX-named file: 1 to 255 characters
long, beginning with any valid character except a dash (-), case sensitive and several special characters are
supported. Like MPE names, POSIX names can be qualified or unqualified. Unqualified (base) names are
completed by pre-pending POSIX elements from the HPPATH variable to the base name.
Note: a POSIX named script cannot be qualified via HPPATH unless HPPATH contains directory names in
POSIX syntax.

3/29/02

71

March 29, 2002 Page 71

hp e3000

strategy

 filename: AUDC.PUB.SYS

header:

body:

end-of-UDC

 header:

body:

UDC file layout

UDCcommandname [parm1] [p2 [= value]]
[ANYPARM parm4 [= value]]
[OPTION option_list]

any MPE command, UDC or script
(option list or option recursion supported in body too)

********** (end of this command definition)

NextUDCcommand [parm1]
[PARM P2, P3 = value]
[OPTION option _list]
any MPE command etc…

•A UDC file contains one or more individual UDCs, separated by an asterisk in column one (characters
right of the asterisk are ignored).
•The header consists of the UDC name (required), zero or more parameters, and zero or more UDC
options.

•The parameter line may immediately follow the UDC name, or can begin on the following line
introduced with the reserved word PARM.
•If ANYPARM is specified it must be the last parameter defined.
•The OPTION line conventionally follows all parameters, though this is not required. Two
options (RECURSION and LIST) may appear in the body as well as the option line.
•The header ends at the first non-PARM, non-ANYPARM, non-OPTION command line.

•The body consists of zero or more commands, where the command can be a comment (#), a UDC, a built-
in CI command, a command file name or a program file name. The body ends when an asterisk is found in
column one. However, a UDC can exit prior to this end point in several ways:

•an error can cause the UDC to terminate
•the :RETURN command exits the UDC
•the :ESCAPE command exits the UDC
•the :EOJ command in a UDC executing in a job
•the :BYE command in a UDC executing in a session

3/29/02

72

March 29, 2002 Page 72

hp e3000

strategy

script file layout

 filename: PRNT.SCRIPTS.SYS

header:

 body:

eof

filename: LG.SCRIPTS.SYS
 header:

body:

[PARM parm1, parm2 [= value]]
[ANYPARM parm3 [= value]]
[OPTION option_list]

any MPE command, UDC or script
(:option list or :option recursion supported in body too)

PARM …
OPTION nohelp ...
any MPE command etc...

•A script has the same parts (header, body) as a UDC with a few differences:
•There is no script name in the header -- the script name is the filename, thus if there are any
parameters a PARM or ANYPARM line is required.
•An asterisk does not terminate a script. Thus a file equation can be reference the name of a
script to execute from within a script. For example:

file xy z= /bin/scripts/local-xyz
*xyz parm1 parm2 …

The above “*xyz” works only in a script -- in a UDC, the leading ‘*’ (if it was in column one)
would indicate the end of the UDC command.

3/29/02

73

March 29, 2002 Page 73

hp e3000

strategy

File: UDCUSER.udc.finance

1. Invoke UDCC, which calls UDCA with
the argument “ghi”

2. UDCA is found, starting after the UDCC
definition (option NOrecursion default)

3. The line “p1=ghi” is echoed

4. Invoke UDCB, which calls UDCA passing
the arg “def”. The recursion option causes
the first UDCA to be found. This calls
UDCC and follows the path at step 1
above

5. The line “p1=def” is echoed

UDC search order

UDCA p1 = abc
option NOrecursion
udcC !p1

UDCB p1 = def
option recursion
udcA !p1

UDCC p1 = ghi
udcA !p1

UDCA p1 = xyz
echo p1=!p1

•In the example above, :HELP UDCA, only finds the first definition of the UDC.
•OPTION RECURSION is necessary in UDCs that support multiple entry points, otherwise a UDC would not be able to
invoke itself recursively - as required by entry points (which are discussed elsewhere).
•OPTION RECURSION causes the UDC search to start completely over -- all the way back to the first user level UDC
cataloged. From this point all user, account and system level UDCs are checked in order to resolve the command name.
•OPTION NORECURSION is the UDC default and causes resolution of the next command to commence just after the
current UDC. Thus, in the example above, when udcC is processing the command “udcA”, it tries to resolve that command
name by first checking if it it a UDC defined somewhere “below” the definition of udcC. However, when udcB calls udcA
with OPTION RECURSION set, the search goes back to the first UDC catalogued. In this example, that is the udcA, at the
beginning of the file. The RECURSION scope is local to the current UDC and is not inherited by successive UDCs. So, when
the first udcA calls udcC which calls udcA, this invocation of udcA is not recursive, and thus executes the last udcA defined
in the file.
•OPTION RECURSION and NORECURSION are also CI built-in commands and can appear anywhere in the UDC body.
•Scripts are recursive by definition and OPTION NORECURSION has no meaning.
•Like OPTION RECURSION, none of the UDC/script options are inherited when one UDC invokes another UDC in a nested
fashion, except for OPTION NOBREAK. Once a UDC or script is encountered with OPTION NOBREAK specified,. all
other UDCs/scripts that are called by the NOBREAK UDC/script are treated as if OPTION NOBREAK were specified --
regardless of how BREAK is defined in the called UDC/scripts. OPTION NOBREAK is somewhat common in conjunction
with OPTION LOGON UDCs.
•OPTION NOPROGRAM is new to MPE/iX (MPE XL). This option indicates that the UDC or script is not allowed to be
executed from within a program (via calling the HPCICOMMAND intrinsic). Once an OPTION NOPROGRAM UDC is
encountered all UDC searching stops. The command in question may still be resolved to be a built-in command, or a script or
program file, but further UDC searching ceases. For example, define a UDC named LISTF, with OPTION NOPROGRAM,
which simply does ECHO LISTF!. If :LISTF is executed from the CI it will execute the LISTF UDC. If :LISTF is executed
from VOLUTIL (which calls the HPCICOMMAND intrinsic to execute all non-VOLUTIL commands), the UDC is found,
but, since it is OPTION NOPROGRAM, the UDC is not executed and no other UDCs are processed. :LISTF is found to be a
known CI command, and the real :LISTF command is executed. In the slide example above, if the first UDCA had OPTION
NOPROGRAM defined, and :UDCC was executed from VOLUTIL, the last UDCA would be executed. However, if UDCB
was executed from VOLUTIL, the first UDCA would be located, and since it is OPTION NOPROGRAM, it would not be
executed. Also, the second UDCA in the file would not be discovered, because all UDC processing stopped when the
NOPROGRAM UDCA was found.

3/29/02

74

March 29, 2002 Page 74

hp e3000

strategy

script search order

• scripts and programs searched for after command is known to not be a
UDC and to not be a built-in command

• same order for scripts and for program files

• fully or partially qualified names are executed without qualification

• unqualified names are combined with HPPATH elements to form qualified
filenames:

• first match is executed

• filecode = 1029, 1030 for program files

• EOF > 0 and filecode in 0..1023 for script files

• to execute POSIX named scripts a POSIX named directory must be

present in the HPPATH variable

•HPPATH can contain POSIX names, e.g.. “/bin, /usr/bin/local” etc., mixed with or not mixed with
traditional MPE group and group.account names.
•Typically script names should be chosen to not collide with UDC names nor with built-in command
names.
•Qualifying a script name that is also a UDC or built-in command name does not work. For example,
suppose you have a script named ABORTIO, which is also the name of a CI command,and this script
resides in the XEQ.SYS group. If you enter:

:abortio.xeq.sys 17,20
you will see this CI error:

ABORTIO has exactly one parameter, the device number. (CIERR 3027)

Why? The CI is really executing the built-in ABORTIO command and passing the arguments: “.xeq.sys”,
“17”, “20”. The CI has “strange” name parsing rules for reasons of MPE V compatibility, and decides the
command name ends on the first non-alpha character -- “.” in this case. Thus, the command name is
“ABORTIO” and the first parameter is “.xeq.sys”. The ABORTIO command only expects a single LDEV
number and thus reports the above error.
The remedy is to use the XEQ command which expects its first parameter to be the name of a script or
program file.

:xeq abortio 17, 20 or
:xeq abortio.xeq.sys 17, 20 works fine.

3/29/02

75

March 29, 2002 Page 75

hp e3000

strategy

UDCs vs. scripts

• option logon

• UDCs only (a script can be executed from an “option logon” UDC)

• logon UDCs executed in this order:
– 1. System level 2. Account level 3. User level

(opposite of the non-logon execution order!)

• CI command search order:
• A. UDCs (1. User level 2. Account level 3. System level)

– thus UDCs can override built-in commands

• B. built-in MPE commands, e.g. LISTFILE

• C. script and program files. HPPATH variable used to qualify
unqualified filenames

• :XEQ command allows script to be same name as UDC or built-in

command, e.g. :xeq listf.scripts.sys

3/29/02

76

March 29, 2002 Page 76

hp e3000

strategy

UDCs vs. scripts (cont.)

• performance
• logon time:

9 UDC files, 379 UDCs, 6050 lines: 1/2 sec.

most overhead in opening and cataloging the UDC files

– to make logons faster remove unneeded UDCs

• execution time:
identical (within 1 msec) for simple UDCs vs scripts,
however:

– factorial script:
:fac 12 157 msec

– factorial UDC (option recursion):
:facudc 12 100 msec

– file close logging impacts performance for scripts more since they
are opened/closed for each invocation

Script FAC: UDC FACUDC:
PARM f FACUDC f
compute up to 12 factorial. OPTION RECURSION
if typeof(!f) <> 1 or !f <= 0 or !f >= 13 then if typeof(!f) <> 1 or !f <0 or !f >= 13 then

echo Expected an integer between 1 and 12. echo Expected an integer between 1 and 12.
return return

endif endif
if not bound(factor) then if not(bound) factor then

setvar savecpu hpcpumsecs setvar savecpu hpcpumsecs
setvar factor 1 setvar factor 1
echo !f factorial used .… echo !f factorial used …

endif endif
if !f > 1 then if !f > 1 then

setvar factor factor * !f setvar factor factor*!f
xeq !hpfile ![!f-1] facudc ![!f-1]

else else
all done, report answer and cpu time # all done, report answer and cpu time
echo ![hpcpumsecs-savecpu] msecs to compute. echo ![hpcpumsecs-savecpu] msecs to...
echo Answer is: !factor ![octal(factor)] ![hex(factor)] echo Answer is : !factor ![octal(factor)] ...
deletevar factor deletevar factor

endif endif

3/29/02

77

March 29, 2002 Page 77

hp e3000

strategy

UDCs vs. scripts (cont.)

• maintenance / flexibility / security
• SETCATALOG opens UDC file, cannot edit without un-cataloging file,
but difficult to accidentally purge UDC file

• UDC commands grouped together in same file, easier to view and
organize

• UDC file can be lockword protected but users don’t need to know
lockword to execute a UDC

• scripts opened while being executed (no cataloging), can be purged
and edited more easily than UDCs

• scripts can live anywhere on system. Convention is to place general
scripts in a common location that grants read or eXecute access to all,
e.g. “XEQ.SYS” group

• if script protected by lockword then it must be supplied each time the
script is executed

•SETCATALOG user needs to know the lockword, but the the user executing individual UDCs does not ever need to
specify a lockword.
•Note: the POSIX shell’s “mv” command allows a new UDC to overwrite an existing UDC file that is being accessed.
The result of this is that user that just logon see the new UDC file, while users that were cataloged to the original file
see no difference until the re-logon. Once they all re-logon, the old file is purged by the system, since the file open
count went to zero.

3/29/02

78

March 29, 2002 Page 78

hp e3000

strategy

UDC / script exit

• EOF -- real EOF for scripts, a row of asterisks (starting in column 1) for
UDCs

• :BYE, :EOJ, :EXIT -- terminate the CI too, to use BYE or EOJ must be the
root CI

• :RETURN -- useful for entry point exit, error handling, help text - jumps back
one call level

• :ESCAPE -- useful to jump all the back to the CI, or an active :CONTINUE.
In a job without a :CONTINUE, :escape terminates the job. Sessions are
not terminated by :escape. Can optionally set CIERROR and HPCIERR
variables to an error number

3/29/02

79

March 29, 2002 Page 79

hp e3000

strategy

parameters

• syntax: ParmName [= value]

• supplying a value means the parameter is optional. If no value is

defined the parameter is considered required.

• max parm name is 255 bytes, chars A-Z, 0-9, “_”

• max parm value is limited by the CI’s command buffer size (currently
511 characters)

• all parm values are un-typed, regardless of quoting

• Parms are separated by a space, comma or semicolon

• default value may be a: number, string, !variable, ![expression], an

earlier defined parm (!parm)

• all parameters must be explicitly referenced in the UDC/script body, e.g.

!parmname

• the scope of a parm is the body of the UDC/script

•A parameter and variable can have the same name but this should be avoided to improve support of UDC and scripts
•PARM p1=abc
setvar p1, “xyzzy”
echo P1=!p1 ---> P1=abc
echo P1=![p1] ---> P1=xyzzy

Note: explicit referencing (!x) looks for parameters first, then if no match searches for variables. Implicit referencing
(x) does not look for parameters at all, and only searches for a variable name.

•PARM p1, p2=abc, p3=“def”, p4=1, p5=“1”, p6=true,p7=“false”, p8=!p2, p9=![rht(HPJOBNAME,-2)]
•Argument P1 is required. Argument P8 contains the value of P2. Argument P9 defaults to the value of the
HPJOBNAME variable -- less the first character.
•Internal to the CI all parameter values are stored as strings, but since parameters must be explicitly referenced
(!parmname) their string type is not preserved. Thus, to a CI programmer all parameter values are un-typed:

•calc typeof(p2) = 0 # no meaning since parm p2 was not explicitly referenced (assume no
variable named P2)

•calc typeof(!p2) = 0 # no meaning (assume no variable named ABC)
•calc typeof(“!p2”) = 2 # string, regardless of p2’s value since value was quoted
•calc typeof(!p4) = 1 # integer
•calc typeof(!p5) = 1 # integer, quotes around default value don’t matter
•calc typeof(!p6) = 3 # boolean
•calc typeof(“!p6”) = 2 # string since I quoted it!
•calc typeof(!p7) = 3 # boolean

3/29/02

80

March 29, 2002 Page 80

hp e3000

strategy • all parameters are passed “by value”, meaning the parm value cannot be
changed within the UDC/script

• a parm value can be the name of a CI variable, thus it is possible for a
UDC/script to accept a variable name, via a parm, and modify that variable’s
value, e.g.

SUM a, b, result_var SUM is a UDC name
setvar !result_var !a + !b

:SUM 10, 2̂ 10, x
:showvar x X = 1034

:setvar I 10
:setvar J 12
:SUM i, j, x inside SUM: setvar x, i + j
:showvar x X = 22

parameters (cont)

•Note: inside the SUM UDC the parameters A and B cannot be changed. For example, if
:setvar a,a+1

appeared inside SUM, it would try to create a CI variable named A, but would fail since a job/session global variable
named A does not exist and thus cannot be referenced. If instead,

:setvar a,!a+1
appeared inside the SUM UDC, this would create a new CI variable named A with a value equal to the value of the
parameter A+1. Neither example alters the parameter’s value.

3/29/02

81

March 29, 2002 Page 81

hp e3000

strategy
• all delimiters ignored

• must be last parameter defined in UDC/script

• only one ANYPARM allowed

• only way to capture user entered delimiters, without requiring user to quote
everything

• example:

TELLT user
ANYPARM msg = “”
prepends timestamp and highlights msg text
tell !user; at !hptimef: ![chr(27)]&dB !msg

:TELLT op.sys Hi, what’s up,,,, system seems fast!
FROM S68 JEFF.UI/3:27 PM: Hi, what’s up,,,, system seems…

• anyparm()function is useful with ANYPARM parameters

ANYPARM parameter

•A few examples using ANYPARM and the anyparm function are shown in other parts of this talk, with respect to
capturing an INFO= string.
•The only way to get an ANYPARM parameter value to default to “” (empty string) is as follows:

ANYPARM p = ![“”] # correct
ANYPARM p = “” # wrong - default value is literally the two quote marks

3/29/02

82

March 29, 2002 Page 82

hp e3000

strategy

entry points

• simple convention for executing same UDC/script starting in different
“sections” (or subroutines)

• a UDC/script invokes itself recursively passing in the name of an entry

(subroutine) to execute

• the script detects that it should execute an alternate entry and skips all the
code not relevant to that entry.

• most useful when combined with I/O redirection, but can provide the
appearance of generic subroutines

• benefits are: fewer script files to maintain, slight performance gain since
MPE opens an already opened file faster, can use variables already

defined in script

• UDCs need OPTION RECURSION to use multiple entry points

•There is no limit to the number of entry points, and there is no required order: all entry points can appear in the
beginning of the script, the end or both.
•An entry point is just a programming convention implemented by adding another parameter to the PARM line, and
passing the desired entry point name to the script/UDC when it is invoked. This extra parameter is never explicitly
provided by the user.
•By definition, all scripts and UDCs using alternate entries are recursive.

3/29/02

83

March 29, 2002 Page 83

hp e3000

strategy

entry points (cont)

• two approaches for alternate entries:

• define a parm to be the entry point name, defaulting to the main part
of the code (“main”)

• the UDC/script invokes itself recursively in the main code, and may
use I/O redirection here too

• each entry point returns when done (via :RETURN command)

---------------------------or---------------------------------

• test HPSTDIN or HPINTERACTIVE variable to detect if script/UDC
has I/O redirected.

• if TRUE then assume UDC/script invoked itself.

• limited only to entry points used when $STDLIST or $STDIN are
redirected

• limited to a single alternate entry point, may not work well in jobs

•My preference is the first approach since it is the most flexible method. In fact, I usually structure my scripts to be able
to work with multiple alternate entry points, even if I need only a single alternate entry at the time the script is being
first written.

3/29/02

84

March 29, 2002 Page 84

hp e3000

strategy

entry points (cont)

• generic approach:

PARM p1 … entry=main # default entry is “main”

if “!entry” = “main”then

… initialize etc…

xeq !HPFILE !p1, … entry=go # run same script, different entry

… cleanup etc…

return

elseif “!entry” = “go” then...

execute the GO subroutine ...

return

elseif “!entry” = …
...

endif

•This shows a script structured so that it can accept multiple alternate entry points.
•There should be little or no code before the if “!entry” = “main” line.
•Notice that RETURN is used to exit the main and all alternate entries. This is not required since the CI will drop out of
the entry block of code, reach the eof and naturally return back to where the script called itself. However, performance
is improved using RETURN in the manner shown above.
•ANYPARM scripts with entries use a slightly different structure and require more parsing:

ANYPARM p1 = ![‘’]
if “!p1” = “” or pos(“entry=“,”p1”) = 0 then

main entry for script …..
xeq !hpfile some parm value entry =do_this
return

else
parse out entry name and execute entry subroutine, entry name is last word
setvar _entry word(“!p1”,,-1)
remove “entry=name” from parm line
setvar _parm lft(“!p1”,pos(‘entry=‘,”!p1”)-1)
case on entry name
if _entry = “do_this” then …

return
elseif _entry = ...
endif

endif
•UDCs with entries need to specify OPTION RECURSION so that the UDC can invoke itself with the alternate entry
name. OPTION RECURSION can be in the UDC header or a separate CI command.

3/29/02

85

March 29, 2002 Page 85

hp e3000

strategy

entry points (cont)

• i/o redirection specific approach:

PARM p1 … # no “entry” parm defined

if HPSTDIN = “$STDIN”then

… (“main” entry --initialize etc…)

xeq !HPFILE !p1, … <somefile

… (cleanup etc…)

return

else # no elseif since only 1 alternate

execute the entry to read “somefile”

setvar eof FINFO(hpstdin, “eof”)

…

return

endif

•Note: the HPSTDIN = “$STDLIST” test above could be replaced with:
if HPINTERACTIVE then…

•This approach to alternate entry points works fine for its limited uses. It does not handle multiple alternate entries and
requires I/O redirection for the single alternate entry.
•In a job you must use the HPSTDLIST test since HPINTERACTIVE is always FALSE.
•If the script itself is run with I/O redirected then both tests (HPSTDIN and HPINTERACTIVE will be inaccurate, and
the generic approach must be used.

