hp 3000

MPE A B ogramm ng

for 7.5

...and other tidhts

present ed by
- Jeff Vance, HP-CSY

jeff_vance@hp.com

3/29/02

el outli ne
(read t he not es tod!)

* “recent” @ enhancenents

e script d eanup techn ques

e era handing

¢ debugg ng and good practi ces
e string pars ng

¢ |1/ Oredrediontechn ques

e lds d exanp es

¢ append x

March 29, 2002

Page 2

+*This sequence introduces CI programming building blocks (variables, functions, commands) and then shows how they

can be combined to make simple and powerful scripts and UDCs.

*The appendix contains many slides. Some slides provide background information and other slides offer greater detail

than covered in the main presentation. I strongly encourage you to at least skim through the appendix.

*The notes are an integral part of these slides. Please read the notes, as they contain many more details than are presented

in the slides alone.

3/29/02

“recent” @ enhancenments

hp 3000

* extended POSI Xfilenane characters

« new @ functions. anypar m basenane, drnang, fqudify,
fsyntax, jobcnt, jirfo pnfo wordcnt, xword

e new Q vaialdes: hpdateti me, hpdoy, hphh mmss mmm
hpl eapyear, hpmaxpi n hpyyyy mmdd

« new @ commands: :abortproc, : newci, : new obg, : pur gej obg,
:shut down

< enhanced commands: :I NPUT fromconsd e, FOS ssareto-d sk,
:showvar to see ana her job/sess ons varidd es, :copyto=a
drecary, :dtjob HPR andjobg= :li mit +~N

e :HELP shows dl @ variald es, functions, ONLI NH NFQ NEW

...... Mar ch 29, 2002 Page 3

*Above enhancements begin with MPE/iX release 6.0 and span up to release 7.5.
Extended POSIX filename characters are: “~\$%”+|{}:” in addition to “_-.” that were originally supported.

* Enter HELP on each of these commands to ensure you are current on their usage. For example, did you know the
system manager can display the user set variables from another job or session? Are you aware that you can wait until one
or more jobs terminate via the enhanced PAUSE command? Did you remember that the OPTION command is not just in
a UDC/script header, but can also be used as a CI command? Have you tried using the INPUT command to send a
prompt to the system console and wait for an operator reply? Did you know you can abort a single process without
killing an entire job or session? If you ever run low on processes, did you know the NEWCI command will save you one
process per logon? Do you know an easy way to determine the maximum number of processes supported on one of your
systems (answer: HPMAXPIN variable). In 7.0 Express 1, you can use the PINFO CI function to retrieve detailed
information on an individual process (PIN) or thread.

* HELP NEW - shows all features of the CI that are (relatively) new.
* HELP ONLINEINFO - shows current URLs where information on the 3000 is available online.

* Also, HELP VARIABLES, HELP EXPRESSIONS, HELP OPERATORS, and HELP FUNCTIONS all provide useful
information.

3/29/02

3/29/02

Wpwsss error handling

e use HPAUTOCONT variad ejudidoud y:

e better --
corti nue
command
if hpd er <> 0then ...

e if erar-condtionthen

echo sonethng ...
reun -- a-- escape
endf ...

* :RETURN vs. : ESCAPE
e return goes back ONElevd

* :escape goes backtothe @ levd inasess on toan acive
CONTI NUE, o can abort ajob

* HPA ERRMSG- vaiadecontdnsthe error text for the vd ue o
d ERROR JCW/ vaiad e

¢ ERRCLEAR- sets HPA ERR O ERROR HPFSERR HPQ ERRCOL
variad esto zero

...... March 29, 2002 Page 4

*HPAUTOCONT = true is sometimes useful, but can be a dangerous practice. It allows every command to behave as if it is proceeded
by a :CONTINUE command. This may be desired for some of the commands in a job or script, but not necessarily all of the
commands. I find it safer and more reliable to leave HPAUTOCONT set to false (default) and to use an explicit :continue in front of
each command that I want to test for success or failure. This allows me to control the behavior of the script, e.g., I can do some cleanup
if an error occurs, and at the same time, it permits the script to abort if an unexpected failure arises.

«] think that scripts are more maintainable and easier to read if the error checking portion reports the trouble and then simply exits. This
is preferred to using constructs such as:
if <error> then
report problem. .. # Don’t handle errors this way if possible!
else
execute more code...

if <error> then
report error # Do handle errors this way if possible!
return

endif

*RETURN causes execution to resume in the calling environment. RETURN is useful as a method of exiting an alternate entry in a
script or UDC. RETURN does not set CI error related variables and cannot directly cause the calling environment to abort. Returning
from a script (command file) closes the file; however that is the only cleanup done automatically by the system. Scratch files, file
equations, variable, etc., in general, should be cleaned up prior to exiting a script or UDC.

*ESCAPE causes execution to resume at the main CI level for sessions, and at the calling environment if a :continue proceeded the
invoking command. If the calling environment is a job and the invoking command was not “protected” by a :continue then ESCAPE
will abort the job. Additionally, ESCAPE can set CIERROR and HPCIERR to an error number, but the default is to not alter these
variables. ESCAPE mimics to some degree the TRY/ RECOVER / ESCAPE construct provided by Pascal, which is used by a large
portion of the MPE operating system. ESCAPE is useful when a script or UDC needs to duplicate the CI’s error handling. This
duplication can be further improved by exploiting the HPFSERR and HPCIERRCOL predefined variables, which provide the
associated file system error (if any), and the column position of the offending command line parameter, where the CI would locate the
caret (‘) in an error message.

*The HPCIERRMSG string variable contains the error/warning message associated to the current value of the CIERROR variable. Note
that parameter substitution is not performed in the error message, and thus, some messages will contain “!” as parameter place holders.

*The ERRCLEAR command is useful in the initialization part of scripts to set all error related predefined CI variables to zero. Itis
more than twice as fast compared to setting all four variables individually. It is more than 25% faster than setting only HPCIERR and
CIERROR to zero separately. It is slightly slower (7%) than setting only CIERROR to zero.

*HPCIERR is signed -- CI warnings are negative, CI errors are positive. CIERROR contains the absolute value of HPCIERR -- thus
there are no CI warnings with the same absolute value as a CI error. The CI keeps HPCIERR and CIERROR in sync, but users can
change their values independent of each other.

hp €3000 CIeanup

e ddeevaiades“locd”tothe UDC/ scrift, :dd e evar
pdix_@

e purge scrachfiles

* rese “locd” file equati ons

dorit dothe aboveif dill debugg nd

better, buldina way to preservefiles, variables eéc onthefly
e use acernrd deanup “ertry’ roui ne

e use avariad etocortrd the cleanup rd & ed commands

March 29, 2002

Page 5

Some cleanup examples:

*Using a cleanup “entry” routine -

elseif “lentry” = “cleanup” then
do all script cleanup here
if finfo(_foo_file,”exists™) then
purge ! foo_file
endif
if foo used_feq then
reset |_foo feq
endif
echo End of ![basename(hpfile)] ...
deletevar _foo @
escape 0
endif

*Allowing variables and files to be saved or deleted on the fly -

elseif “lentry” = “cleanup” then

if bound(_foo_debug) then
escape
endif

do all script cleanup here
if finfo(_foo_file, “exists™) then ...

or

!_foo_del reset! foo_feq
! foo_del purge! foo file
| foo_del deletevar foo @

... somewhere _foo del is set as:

setvar _foo del “#” --or-- setvar foo_del “”

3/29/02

wpwwss debugging

e some common prol emns:

¢ syrntax errar (unmat ched parert hes s), vari ad e name typo,
rdiance on avar tha has na beenirntidized htting edf, us ng
an HFSfilefa IOredredion and then referend ng
A NFQ hpstdn) -- G bug, entry nanme typo (case sensitivel), df-
by-one onloop court ers, unexpected user i npu, re-usngthe
same var intwo fd aces tha ae execut edtoget her (2 ed
cournters), read ngfromter mnd but $std nis dready redrectedto
afile

e tricker prod ems tofind

« echdng alited “> withou escap ng word() byindex bu i ndex
ou o bounds, “array’indexincrement andref erenceinsane
loop, unnetched endwhle a endf, asndevar contarning a
“recard’ d mitipetypes, ceaingfilestha coddcontan G
met achars, da e cdcd aionstha cross day, north, year
boundari es,

...... March 29, 2002 Page 6

einsert echo/showvar statements, revealing a variable’s value and/or a location in the script.

*don’t delete variables and scratch files.

turn on command tracing (hpcmdtrace) within suspect sections of the script -- implies omitting OPTION NOHELP too.

echeck OPTION RECURSION setting in UDCs with entry points.

«force an unexpected condition by hard-coding the rare value.

ssteel working fragments from other scripts.

*add your own tracing into complex scripts, via a “hidden” command line parm or a special variable.

euse HPLEAPYEAR, HPDATETIME for date calculations, e.g. :
setvar tmp hpdatetime # reference the predefined var only once
setvar tmpdate Ift(tmp,8) # just the yyyymmdd part
setvar tmptime str(tmp,9,6) # just the hhmmss part
Don’t do below for three reasons:
setvar tmpdate “20'hpyear”+"’hpmonth”+"!hpdate”
1) may need leading zeros in the string date,
2)use HPYYYY (4 digit string) instead of HPYEAR (2 digit integer),
*3) what happens if the month changes after HPMONTH is referenced?

3/29/02

hp €3000 string manipulations

1) parse ou dl tokensin astring var
2) edrad thefirg Ntokens froma sring var
3) extract thelast Ntokensfroma sring var

4 test far “H” somewhereina gring var (a “LOGON’ vs.
“NOL OGON')

5) court tokensin a string var
6) rerove Nhtokenfroma string var

7) renove Nconsecutivetokens froma string var

...... March 29, 2002 Page 7

Il

setvar x "ab c;de,,fg;hij=k Imn,op=qr’

1) setvarj 0 -or-
while j <=len(x) do
setvar tok word(x, , , j, j+1)
endwhile
2136 msec for 500 iterations

this fails on a null token, but otherwise is simple:
setvar j 0
while setvar(tok, word(x, ,setvar(j,j+1))) < “” do
endwhile

1686 msec

2) setvar toks 1ft(x, delimpos(x, , N)-1) -or-
note the var toks includes the delimiters
between the individual tokens

3) setvar toks rht(x, -delimpos(x, , -N)-1) -or-
same notes as for 2)

setvar j 0

while setvar(j,j+1) <= wordcnt(x) do
setvar tok word(x, , j)

endwhile
2298 msec

setvar j O and setvar toks
while setvar(j,j+1) <= N do
setvar toks toks + word(x,,j) + “
endwhile
note toks does not contain the original delimiters

setvar j 0 and setvar toks
while setvar(j,j+1) <= N do

setvar toks toks + word(x,,-j) + ¢
endwhile

4) pos(“hi”,x) is potentially wrong. What if you want only “hi”” and not “hij”?

if word(x, , , ,pos(“hi”,x)) = “hi” then ...

5) setvar cnt wordent(x)

6) setvar y Ift(x,delimpos(x,,N-1) + rht(x,-delimpos(x,,N)-1)
removes the right hand delimiter from x after extraction

526 msecs for 1000 iterations

7) # assume we are removing tokens 5,6,7 so N=3 and START=5:

-or- setvar y xword(x, ,N)

same result but easier (and faster)!
364 msecs

setvar y Ift(x,delimpos(x,,START-1)) + rht(x,-delimpos(x,,START+N-1)-1)

3/29/02

hp 63000 Cl i/o redirection

* >nanme -redrect oupu from$STDL ST to“name”
* “name” wil be over wittenif it dready ex s
« file vill be saved as “nane”;rec=256,, Vv, asdi;d sc=10000, TEMP
« file nane can be MPE o POS X syrt ax
e >>pane -redrect, append ou put from$STDL ST to“nane”
» sane file dtribues far “nane” ifitis aeaed
* <name -redrect inpu from$STO Nto“nang”
e “name” nust exst (TEMP files| ooked far bef ore PERMfil es)

» |/ Oredrection has no nean ngif the command does na dol/ Oto $STO N
or $STDU ST

« avalal e on dl commands, except:

« IF BLSHFE SETVAR CALG WHILE COMMENT, SETJCW TELL,
TELLOP, WARN, REMOTE

...... March 29, 2002 Page 8

+I/O redirection in the CI works similarly to the same feature in DOS and Unix systems. Of course, there are some exceptions: on
MPE the file created by output redirection is a TEMP, variable record width file. The motivation for these choices is that we didn’t
want to mistakenly overwrite a permanent file if the “>” or “>>” symbols on a command line were not really intended for
redirection. We decided to make the default record with be variable so that the file created and also be read more easily by the CI,
since trailing spaces (found in fixed ASCII files) would not need to be stripped. All of the 1/O redirection defaults can be
overridden via a file equation.

*There arel1 CI command that do not accept I/O redirection. Five of these are commands that introduce an expression as one of
their parameters. Since expressions can contain “<*, “>" it was decided to disable I/O redirection on these command. The
remaining commands are excluded because we were conservative and careful when I/O redirection was introduced in MPE XL
Release 2.1. We did not want to break existing scripts, UDCs, or JCL that might have “>" or “<* in one of these commands,
causing the CI would to remove the symbol and following name, and write to a file.

3/29/02

wpws Cl i/o redirection (cont)

* howit works:
* (ensuresthe commandis na one d the exd uded commands

e d scansthe commandlinelookingfa < > >>fdlowed by a possilie
filename (dte exdidt variald eresd uion has dready occurred)

— textinsde quaesis exdudedfromths scan

— text ind de square bracketsis excluded fromthe scan
« filenameis opened and “exchanged’ for the $STDI Nar $STDLI ST
e ater the command conpl eesthe redredionis undone

» exanp es
* INPUT varnane <filename
e ECHO The next answer is !result >>filename
e USTHLE ./ @6 >filenane
* PURGEACCT myacct <Yesfile
* PURGE foo @;tenp ;nocorfir m>$null
e ECHO You needtoindude!<TH 9 >tod

...... March 29, 2002 Page 9

*The CI first replaces all explicit variable referencing by the variable’s value. Next, all ![expression] references are evaluated
and replaced by the result. Then, the CI deals with processing any I/O redirection it encounters on the command line. This order
allows a target redirection filename to be contained in a variable or ![expression]. Also, by this time in the command processing,
the CI has determined the command name and thus can check the exclusion list to make sure I/O redirection is permitted for the
command being executed

*If an I/O redirection symbol is found but the token immediately right of it is not a legal filename, the CI assume I/O redirection
was not intended. E.g.:

:echo abc >123 does not create a file named “123” but instead echo's:

abc >123

*Also, if the I/O redirection symbol appear inside a quoted string or inside square brackets, it is not interpreted an I/O redirection.
E.g.:

:echo abc “>xyz” does not create a file named “XYZ” but instead echo's:
abc “>xyz”

And,
:echo abc [>def] does not create a file named “DEF” but instead echo's:
abc [>def]

The reason that square brackets are excluded is to support selection equations which are contained by square brackets and allow
relational operators, such as “<* and “>".

*To tell the CI to ignore I/O redirection in commands that it would otherwise accept I/O redirection you need to place a “!” in
front of the I/O redirection token. This “escapes” the special meaning of the I/O redirection symbol and is consistent with the use
of multiple exclamation marks in front or potential variable names.

3/29/02

W file ilo

e why na usel NPUTin WH LEtoread afla file? eg:

whle na ed do
inpu varname <filenane
endwhl e

* three ma n dterndives:
» witeto(ceae) andreadfrom a MSGfilevial/ Oredrection
 use:PR NT and I/ Oredreciontoreadfile lrecord a ati me
e use erntry pdrts and I/ Oredrecti on

* MSG file works because each read is destructive, so next INPUT
reads next record

...... March 29, 2002 Page 10

« INPUT <flat_file in the WHILE loop fails because the CI opens the redirected file for each iteration in the loop. Thus, an
open is done for each record in the file. Not only is this expensive, it also means that the file’s record pointer (current record)
is reset to the beginning of the file each time INPUT is executed. Therefore, INPUT from a flat file in a WHILE loop always
reads (and re-reads!) the first record of the file.

3/29/02

10

wpwwsa file i/o - MSG file

* PARMfileset=/@
Th s saipt reads U STHLE 6 out pu and measures CPU nilli secs
ud ng a MSGfile

setvar savecpu hpcpunsecs readnsg

errd ear 259 nsecstoread 22 records
file nsg=7/t np USTH LE nsg; MSG

corti nue readnmsg @pub. sys

ligfil e lfil eset, 6 >* ms g 15,845 nsecstoread 1 515

if hpd er =0then

#readlidfilenamesinoavaiab e

setvar crir sevar(ed, firfo *nsd, "ed"))

whil e setvar(cntr, cntr-1) >=0 do

input rec <* nsg

endwhil e
endf
echo ![hpcpunsecs - savecpu] msecstoread!edf records.
dd e evar crir, edf, rec

...... March 29, 2002

Page 11

*Each read of a MSG file is destructive so it works with INPUT in a while loop.
*Example shows using POSIX names to keep temporary files.
*Shows setting two variables in one CI command line.

*Shows how to measure the performance of a script or UDC.

3/29/02

11

hp €3000

file i/o - :print

PARMfil eset=/@

This script reads afile produced by U STHLE 6 and neasures CPU nsecs
#usng PR NT as aninter ned ae step

setvar savecpu hpcpunsecs

errd ear :readpr rt
corti nue 735 nsecstoread 22 records
ligfil elfil eset, 6 >Iftenp 3ti mes d ower than MSGfil es

if hpd err = 0then
#readlidfilenanesinoavaiade :readont @pub.sys
setvar criir 0 74,478 msecstoread 1515 recs
sevar ed firfo(lftemg,"ed™) over 4ti mes d ower than MSGfil es!
whil e setvar(cntr, cntr+1) <=eof do
prirt Iftemp; start= cntr;end= cntr >Iftempl
input rec dftenpl
endwhil e
endf
echo ![hpcpunsecs - savecpu] nmsecstoread!ed records.
dd e evar crir, eof,rec

...... March 29, 2002 Page 12

*The PRINT method is the least efficient of the three choices presented. This technique requires two opens and closes for
each record in the file: one open for PRINT, one open for the output redirection, one close for PRINT and another close to

redirect output back to $SSTDLIST.
*The PRINT technique is also not any easier to code than the MSG file method, so why use it?

*Perhaps the data is already in a file and the file is not large (or performance is unimportant).

In this case, using PRINT may be appropriate since the script is intuitive and easy to write, and may be better

(faster) than copying the existing data to a MSG file first.

3/29/02

12

hp €3000

file i/o - entry points

* PARM fileset=./@, entry="main”
This script reads a file produced by LISTFILE,6 and measures CPU
msecs
using entry points and script redirection
if "lentry" = "main" then
setvar savecpu hpcpumsecs
errclear
continue
listfile !fileset,6 > Iftemp
if hpcierr = 0 then
xeq ! hpfil e!fileset entry=read dftenp
endif
echo ![hpcpumsecs - savecpu] msecs to read !eof records.
deletevar cntr,eof,rec
purge Iftemp;temp
return
... (continued on next slide)

...... March 29, 2002

Page 13

*The choices of “entry” for the name of the entry control parameter and “main” for the default value of the entry control

parameter value are arbitrary but self-documenting.

*All initialization should be done in the “main” entry portion of the script, rather than earlier in the script. This is more

efficient (and perhaps the only correct way) since the initialization code is invoked only once.

3/29/02

13

3/29/02

=Wl file i/o - entry points
(cont)

dse
#readlidfilenamesirnoavaial e
setvar crir setvar(ed, firfo(hpstdn "ed™))
whl e setvar(cntr, crir-1) >= 0 and setvar(rec, input()) <> chr(1) do
endwhl e
regun
endf

:readriry

90 nsecstoread 24 records.

---> A nost 3ti mes faster than MSGfiles
---> 8ti mes faster thanthe PR NT nethod

:readriry @pub. sys

2400 nsecstoread 1,515 records.
---> Qver 6ti mes faster than MSGfiles
--->31ti mes faster than us ng PR NT!

...... March 29, 2002 Page 14

*Uses HPSTDIN to get the name of the redirected input file, so there is less hard coding of the temporary file names.

*This example doesn’t do anything with the contents of the file. Each record is placed in the variable REC, one record
overwriting the previous.

14

3/29/02

hp €3000 examples

» afews np e exampl es

e what verson d MPE wll runths saipg?

e creaing cd umar ou put

* easy wayto pirt $STDL ST spoolfilefa ajob
» job synchrori zaion exanp e

» powerfadl sorip exanp e

» flex de way to change dred aies (CWD)

e INFO= string exanp es

e creae a“randonf nane o vdue

* tying many conceptstoget her viththe WHERE scri gt
A aray exanpes

* greplike scrip

 STREAM UDC - abbrewv & ed

...... March 29, 2002 Page 15

15

simple examples

hp €3000

dsdaylast Nrecords o afile(no process creaion)
* PARMfile last=12 “Tal” script
prirt lfile stat=-!last

dsday @ eratext fa a @ era nunber
e PARMder=!deror “Qerr” scrip
setvar save_err derrar
setvar dera !'der
showar HPA ERRMSG
setvar dera save_err
dd e evar save_err

dter piaity djabjust sreaned -- gea fa orline conpiles ;-)
+ PARMjob= HPLASTJOB pi=CS “Atp saip
dtprocjobdjob pid pri

...... March 29, 2002 Page 16

*The tail script has no process create overhead, unlike the POSIX tail.hpbin.sys program.

*The HPCIERRMSG ClI variable contains the error text for the error defined by the current value of the CIERROR
variable (JCW). Note that message inserts values, that would normally be displayed by the CI in processing an error,
are not inserted via HPCIERRMSG.

3/29/02

16

W brief acct, group, user, dir listings

*« LG LY LA andLDscrigs

*« PARM group= @ “LG
lisgoup!goup for mat =bri &

e PARMuser=@ “LU
liguser luser; fa met =bri &

¢« PARMacct=@ “LA
ligacct !acct; far mat=hri &

e PARMdr=/ @ “LD
setvar _dr “ldr”
if ddi mpos(_dr, “./") <> 1then
convert MPE nanmeto POS X name
sgvar _dr drname(fquaify(_dr)) +*/" + basename(_dr)
endf
ligfile!_dr, 6 sd eq obj ect=HFSOR; tree

...... March 29, 2002 Page 17

*The last example (LD) shows the BASENAME, DELIMPOS, DIRNAME and FQUALIFY functions being used.

*DELIMPOS(dir, “./”) <> I tests if the directory name in _dir starts with a dot or slash, and thus is a POSIX
named directory. The FSYNTAX function could have been used for this purpose too.

*An MPE name can be converted to a POSIX name easily:

*DIRNAME returns the directory portion, in POSIX syntax, of a filename, but does not qualify the name.

*FQUALIFY qualifies the name in _dir. Now, DIRNAME will return the absolute path of the name in
_dirl, less the file portion of the name.

*BASENAME returns just the base (file) portion of the name in _dir. When appended to the result of
DIRNAME(...) the result is a fully qualified, POSIX name.

*LISTFILE will search for just POSIX (HFS) named directories (seleq=[object=hfsdir]), and the TREE option tells
LISTFILE to search recursively, following all sub-directories.

3/29/02

17

wpws MPE versi on

* PARMvers_parne! hprdverson
#react to MPE verd on string
setvar vers "lvers_par mi
convert toirteger, eg. "C65 02" => 6502
setvar vers sr(vers, 32 +rh(vers, 2
setvar vers!vers
if vers >= 7000 then
echo On7.0
d sdaf vers >= 6500 then
echo On 69
d sdaf vers >= 6000 then
echo On 6.0
endf

“Vers” saip

March 29, 2002

Page 18

*The CI does not support a direct mechanism to let the programmer know if a certain command, function, variable or
other new feature is present on the system at hand. The bound() function lets you test for the existence of any variable
prior to referencing it. It is trickier to test for the existence of a function prior to invoking it. Thus, it may be necessary
to test the MPE OS version prior to using a new feature. However, the CI version variables only reflect what the version
strings displayed by the :SHOWME command. Thus, as you are aware, the version granularity is sometimes lacking.

«:showvar @vers@
HPOSVERSION = C.70.00
HPRELVERSION = C.70.01
HPVERSION = X.70.11

*.vers

On 7.0!

:vers C.65.01
On 6.5!

3/29/02

18

Wpws “tab” and other alignments

» Aignedfiddsfa oupu:
PARM cnt =5 “Aign’ scrip
setvari 0
whil e setvar(i,i+1) <=!crnt do
setvar arpg(d,i)
setvar brpg('b,!ot-i +2)
echo xx ![rpt(',lent-len(@))]laxx [rpt(', cnt-len(b))]Lb xx

endwhl e
e Exanpe
CaAlyv 4
138 a && PBPBBB &8
13K ao &¢ BBB ¢&¢
& & aaa &¢ BB &€&
€& aaaa &¢ B &¢

...... March 29, 2002 Page 19

*The “align” script demonstrates using the rpt() function to pad output with a variable number of spaces, based on the
length of the data fitting in a field.

*Variable A is set from 1 “a” to 4 (parm value) “a”s. Variable B is set from 4 (parm value) “b”’s to one “b”’s.
*When ![rpt(“ “...)] is used just before echoing a value, that value is right justified.

*When ![rpt(“ ““...)] is used just after echoing a value, that value become left justified.

3/29/02

19

WgwsS pri nti ng spoadlfiles

¢« PR NTSP scrip:

PARM job= HPLASTJ OB
Rirts spodfilefor ajoh defadtisthelast job you streamed

if “job’ =“"then
echo Nojobto prirt
reun

endf

setvar hpl astj ob “ljob’
if hdastspid =“"then
echo No $STDU ST spodfileto prirt for “lj o”.
reun
endf
prirt ! HFLASTSRP D ou. hpspod
* :streamscopg ob
#1324
tprintsp
:JOB SCOPEJOB,MANAGER.SYS,SCOPE.
Priority = DS; Inpri = 8; Time = UNLIMITED seconds . . .

...... March 29, 2002 Page 20

*The default value for the parameter “JOB” is the job number of the job most recently streamed by you (HPLASTJOB
variable).

*If you have not streamed a job (or HPLASTJOB is empty for some other reason) the script reports an error and exits.

*The HPLASTSPID variable contains the spoolfile number (Onnnn) for the $STDLIST spoolfile for the job referenced in
the HPLASTJOB variable.

*All output spoolfiles live in @.OUT.HPSPOOL.

*Could be improved by saving the value of HPLASTJOB before setting it to the JOB parameter, and then reinstating this
saved value before the script ends.

*Could check for the existence of “!hplastspid.out.hpspool” before trying to print it.

3/29/02

20

Wpwss synchroni ze j obs

1JOBjoh0 ...

i it +2

Idreamj obl

I pause j ob=! hpl astj ob

Isreamj ob2

lerd ear

Ipause 600, ! hdastjob

lif hpci err =-9032 then

I tdlop Job "l hd astj ob’ has exceeded the 10 ninut eli nit
' eg

lendf

Igreamjob3

Ipausejob= hd astjoly WAI T

linpu redy, “ Redy'Y fa !'hd astjob”; readcni =1; CONSOLE
lif dwns(redy) ="y’ then

...... March 29, 2002 Page 21

*The job limit is increased by 2.
*The 1st pause sleeps until the job just streamed (jobl) completes.

*The 2nd pause sleeps until job just streamed (job2) completes or 10 minutes, whichever happens first. CIERR 9032 is
reported if the pause expires and the job is still alive.

*The 3rd pause sleeps while job3 is introduced or waiting. As soon as job3 starts executing (or terminates, if it is a short
lived job) the pause expires.

*The INPUT command displays a message to the system console and waits for a reply. INPUT will only accept a 1
character response from the operator, in this example. Syntax:
INPUT [NAMES] var nane
[[; PROMPTS] pronpt] [[; WAl T=] seconds |
[[; READCNT=] chars] [[; DEFAULT=] defaut_str]
[; CONSOLE]

*HPCIERR shows positive CI errors and negative CI warnings. CIERROR = abs(hpcierr)

3/29/02

21

hp 3000 powerfail script

* UPS corfigfile(defadtis UPSCNH G PUB SYS):

upscnfig.pub.sys
powerfail message routing = all_terminals
powerfail_low_battery =keep_running

powerfail command file = prodshut.opsys.sys
powerfail grace period =300

» PRODSHUT. OPSYS SYS exanple

warn @ Powerfail deected by UPS Oderly shudown BEQ N....
warn @ **** Reaselogdfi mmed aelyl ¥
if jobcnt(“prodld. usr. acct”, jod D >0then
dreamhbprid
pause 60; j ob= hg astj ob
abortjob!ljod D
endf
errd ear
pause 180, job= @&
if derar =9032then
warn @Systemgad ng downin 2 mnu es!
pause 120
endf
shut down

...... March 29, 2002 Page 22

UPSMON accepts a default configuration file named UPSCNFIG.PUB.SYS. This file can be overridden via UPSUTIL’s
NEWCONFIG command, which prompts for a simple configuration file (flat ASCII, 32 - 128 bytes wide, numbered or
unnumbered). The UPS config file consists of the following (each occupying its own unique record): the fully qualified
MPE file name (it’s own name) must be the first record. The remaining contents (records) are optional and in the form:
config_keyword = value. Below is the configuration file syntax:

Config_file name
powerfail _message routing = <all terminals | console only>

powerfail command file =<MPE filename> [;parml parm?2 ... parmN] *
powerfail grace period = <number of seconds, 0 .. 1800> *
powerfail low_battery = <system_abort | keep_running (provides ~120 extra sec)> *

* main.line for 7.5 and patch for 7.0

The powerfail grace period specifies the number of seconds to wait, after detecting a powerfail, prior to invoking the
script named in the powerfail command file setting. After “powerfail_grace period” seconds expires the script is
executed. This script can perform needed system cleanup, but caution is necessary since the system is running on
batteries at this point. The most inportant consideration is to ensure that all disk writes are consistent.

If the power remains off at some point the battery will run out. The power fail low_battery setting allows you to
squeeze approx 2 more minutes from your shutdown script before the system bellies up. The default is not to play
Russian Roulette with your data and abort the system at the 2 minute warning. However, knowledgeable, risk adverse
system managers may specify “keep running” to gain more time for their cleanup script to complete. The risk is that if
the script fails to complete in the remaining ~2 minutes the system will fail and disk states may be corrupted.

3/29/02

22

3/29/02

S newl ocati on (group, CAD)

e CDscripg

PARMdr="
setvar d “1dr”
#“-” means goto pia CWD
if d="-" and bound(save_chdr) then
sevar d save_chdr
dsdf fsyntax(d) =“ MPE' then # MPE syntax?
iffirfo“./"+d “exXsts’) then # HFS dr?
sevar d “/" +d
dsaf firfo("../"+ups(d), “exi&s’) then # MPE g oup?
setvar d “./” + ups(d)
dsdf firf o ups(d), “ex ¢5") then # MPE dr nanme?
setvar d ups(d)
endf
endf
setvar save_chdr HPCWD
chdr!d

...... March 29, 2002 Page 23

*The HPCWD variable contains your current working directory in POSIX syntax. Your current directory is the same as
your logon group until you explicitly change it via the CHDIR CI command.

*CD script hierarchy is: 1) dirname as is, 2) ./+dirname, 3) group name (“../”+dirname) 4) uppercase MPE dirname
Note: the CHGROUP command also changes your CWD; whereas, the CHDIR command does not alter your logon
group. CHGROUP has security implications since it can give you GU (group user) file access. There are no security
implications with CHDIR.

ecd - changes your current directory to the previous directory you’ve CD’d to.

* CD examples:
(assume CWD =/SYS/PUB)

:cd ../NET # CWD=NET.SYS

:ed - # CWD=PUB.SYS

:cd /TELESUP/PRVXL # CWD=PRIVXL.TELESUP
ed # CWD=PUB.SYS

:cd foo # CWD=/SYS/PUB/foo

ed .. # CWD=PUB.SYS

:cd net # CWD=NET.SYS

23

*Shows how to set an ANYPARM parameter to null, which is not intuitive! If an ANYPARM parameter is defaulted to
the quotes are accepted literally as its default value.

«»

hp €3000

| NFO= exanpl e

ANYPARMi rfo3[™] # “anyrun” script
run vd uil. pub sys; irfo=":!i rf 0"
+ :anyrun echo"H there”

run volutil.pub.sys;info=":echo "Hi there!""
A

Expected semicolon or carriage return. (CIERR 687)

ANYPARMIi rf o=[™]
setvar _irfred(lirfgd, '™, ")
run vd uil. pub sys;info="!_irf "

e :anyrun echo"H therd”

double up quotes in :RUN

Volume Utility A.02.00, (C) Hewlett-Packard Co., 1987. All Rights...

volutil: :echo "Hi there!”
"Hi there!”

isths correct now?

...... March 29, 2002

Page 24

*This example does not handle both kinds of quotes in the info= string.

*This example does not handle single quote mark in the REPL function call.

3/29/02

24

mpl | NFO= exanpl e (cont)

* ANYPARMIi rf o=[™]
setvar _irf anyparny(lirfo # note info parm is not quoted
setvar (irfred(.irf,"™,"™)
run vd uil. pub sys;info=": _lirf "

e :anyrun echo "H there ‘buddy!”
Volume Utility A.02.00, (C) Hewlett-Packard Co., 1987. All Rights...
volutil: :echo "Hi there, ‘buddy’!”
"Hi there, ‘buddy’!”

...... March 29, 2002

Page 25

*Do not quote the parameter being passed to the anyparm() function.
*Note: the anyparm() function has some special considerations:

«it cannot be nested inside other functions, e.g.

Ift(anyparm(!parm), x) is NOT supported
+it cannot be combined with other expressions, e.g.
anyparm(!parm) + chr(x) is NOT supported.

3/29/02

25

3/29/02

W randomnanmes

« PARMvarnanme, mnlen=4, maxden=8
This scrip reurnsinthe vari ad e spedfied as "varnanme" a‘random
name cons ging d ldtes and nunbers - canna stat wth anunber.
A least "mren' charactersiong and nat norethan” max en" chars.

expressonfa a‘random | eter:
setvar letter "chr((hpcpunmsecs nod 26) +ord(' A))"

expressonfar a‘random nunber:

setvar nunmber “"chr((hpcpunsecs nod 10) +ord(' 0))"
##fird character nust be aleter

setvar lvarname !l dter

nowfillintherest, must have a least " mren" chars, upto " max en"
setvari 1
setvar limt mn((hpcpunmsecs nod! max en) +! mren, ! maxlen)
whil e setvar(i,i +1) <=li it do
if odd(hpcpunsecs) then
setvar lvarname !varnane +!leter
dse
setvar lvarname !varnane +!number
endf
endwhle

...... March 29, 2002

Page 26

«Script on jazz at: http://jazz.external.hp.com/src/scripts/randname.txt
*This example shows a script returning a value via a passed in variable.
*Shows using HPCPUMSECS to get a sort of pseudo random number.
*Breaking down the line: setvar letter "chr((hpcpumsecs mod 26) + ord(‘A’))”
*HPCPUMSECS returns some large number
*mod 26 returns a number in the range of 0..25
eord(“A”) is 65 and is the decimal number of the letter “A”
echr(0..25 + 65) is chr(65..90), which is one of the letters A..Z
*The same logic applies to the “number” line above.
*The LIMIT line is evaluated as (using the parameter default values):
* (hpcpumsecs mod 8) is a number in the range of 0..7

* + minlen makes the number in the range 4..11

» min(4..11, 8) returns a pseudo random number in the range of 4..8, which is exactly what is desired.

*The WHILE loop iterates “limit-1” times, filling in the 2nd through “limit” characters in the name. If the

HPCPUMSECS value is odd at this moment we append to the name a “random” letter, else a “random” number is

appended.

*It would be nice to have a pseudo random number and name generator in the CI core, IMO!

26

hp €3000 whereistha “cmd” ?

PARM cmd=", entry=mei n

This script finds dl occurrences o "cnd' as a UDG script or programin

HPPATH W dcards are supportedfa UDG programand command fil e nanmes.
Note acnd nane like"foo sh'istreaed as a POS X nane, na a qudified

MPE nane.
if "lentry" =" nai n" then
ard ear

sevar _wh_cnd "lcnd”

if ddi mpos(_wh_cmd,”/.") =1then
echo WHERE requiresthe POS X cnd to be unqudified
rewn

endf

seeif the command cou d be a UDC (wl dcar ds a e supported)

setvar _wh_udc_ok (ddi mpos(_wh_cmd,".') =0

seeif the command cod d be an MPE fil ename (wl dcar ds ok, and

MPE nanes cannat be qudified & dl)

sevar _wh_npe_ok (ddi npos(_wh_cmd,'.') =0

Al command vd ues are assued to be ok as a POS Xfilenane.

The dash (-) char is exd uded above snceit codd beina[aZ paten

... cortinued. ..

...... March 29, 2002 Page 27

The where script combines many CI programming ideas: multiple entry points are used with input redirection, two forms
of file I/O are used, several newer CI function are called, output is aligned in columns, and several more complex CI
expressions are encountered. Plus, this script has proven valuable to me and others in CSY numerous times. The next
few slide notes will go over some of the more salient points of the where script.

where can be found on Jazz at: http://jazz.external.hp.com/src/scripts/where.txt

*the PARM line allows the “cmd” argument to default to “, in which case a usage statement is displayed. The by-
convention “entry=main” argument is used to handle alternate entry points, with the default entry being named “main”.
The user of where will never specify this parameter.

*the ERRCLEAR command is invoked to set CIERROR, HPCIERROR, FSERROR, and HPCIERRCOL predefined
variables to 0.

sthe delimpos() function is invoked several times and is better than using pos() when two or more characters are being
checked. For instance, it is more efficient to code:

if delimpos(var,”abc”) > 0
which tests if an “a” or “b” or “c” appears in var, than to code:

if pos(“a”,var) > 0 or pos(“b”,var) > 0 or pos(“c”,var) >0

eintentionally, there are separate tests to see if the “cmd” parameter could potentially be a UDC and/or a MPE named file.

Currently, these tests are identical; however, over time the rules may change and this script will be easier to maintain in
that event.

«all values of “cmd”, at this point, are assumed to be a legal POSIX filename. Later, the fsyntax() function will be called
to ensure that “cmd” is a legal filename.

3/29/02

27

S wher e (cont)

#check for UDCs first
if _wh_udc_ok then
corti nue
showcat d og >wher eudc
if deror =0then
xeq ! hpfile!_wh_c md entry=process_udcs <whereudc
endf
endf

Now check fa command programfiles

if word(setvar(_wh_syn,fsyntax(“./”+ wh_cnd))) =“ERROR’ then
#illegd name, cod d be alonger UDC nan®, inany event there
#no need to check far command progr amfil es.
dd gevar _wh_@
return

endf

setvar _wh_wld pos(" WLD', _wh_syn) >0

... cortinued. ..

...... March 29, 2002 Page 28

*now, assuming “cmd” could be a UDC name, the SHOWCATALOG command is executed with output redirected to a
TEMP file named “whereudc”.

*If SHOWCATALOG worked without error, the where script invokes itself recursively, via the XEQ command, to
display relevant UDC information. The predefined HPFILE variable contains the fully qualified name of the current
script, and is used here in case the next author decides to use a different filename. This allows the script filename to not
be hard-coded into the script.

*the XEQ command invokes, via HPFILE, the script again, passing the same “cmd” value as the first argument. An
alternate entry point is passed as the second parameter, via the by-convention usage of “entry=". Input to where is
redirected from the file that the SHOWCATALOG command created.

«the fsyntax() function is called after processing UDCs since a UDC name can be longer than a valid MPE filename.
Also, the where script expects that all names, even POSIX command names, to be passed in unqualified. There are not
explicit checks for qualified MPE names (f.g.a) since it is ambiguous if a name such as “foo.sh” is the name of a shell
script, or a partially qualified MPE name. Since the user of this script is not expected to use the “MPE-escaped” syntax
for POSIX names, a “./”” is prepended to the “cmd” name that is parsed by fsyntax().

«if there is a syntax error the script exits via the RETURN command.

+a variable is set to true if there are any wildcard characters in the “cmd” value. In general, if an expression evaluates to a
boolean (true or false) it can be used to directly set the value of a variable. For example:
setvar x (a>Db)
is more efficient than:
if (a>b) then
setvar x true
else
setvar x false
endif

3/29/02

28

3/29/02

S wher e (cont)

#l oop through hppat h
sevar _wh_i 0
— whil e setvar(_wh_tok word(hppat h,”,; “, set var(_wh_i, _wh_i +1))) <" do
if ddi npos(_wh_tok,"/.”) =1then
we have a POS X pah d ement
sevar _wh_tok "I_wh_tok/! _wh_cmd’
dsdaf _wh_npe_ok then
we have an MPE syntax HPPATH d enent with an unqudified _tok
setvar _wh_tok "I_wh_cnd.!_wh_tok’
endf
erdear
if _wh_wildthen
corti nue
ligfile! _wh_t ok, 6 >prrtlf
dsdf firfol_wh_tok,' ex ss) then
witeto same ou pu fil e as li fil euses above
echo ![f quaify(_wh_tok)] >prrtlf
dse
setvar hpd err -1
endf
if hpd err =0then
xeq ! hpfile!_wh_t ok entry=process_listf <prntlf
endf
— endwhile
dd etevar _wh_ @
return

... cortinued .. [&F]

...... March 29, 2002 Page 29

«this slide shows the end of the “main” entry code in the where script.

shere is the loop that parses each element in HPPATH, tests to see if a file exists based on the “cmd” value and the
extracted element from HPPATH, and invokes an entry “subroutine” to display the filename and other file attributes.

the word() function extracts a token from HPPATH based on the defined delimiters of a comma, semicolon or a space.
The word counter/index (_wh_i) is incremented inside the argument to word(), which is not necessary, but more
convenient and slightly more efficient.

sthe delimpos() function is used to see if the extracted HPPATH element is an MPE name or a POSIX name. POSIX
elements are prepended to the “cmd” value and MPE path elements are appended to “cmd”.

«if the “cmd” value was wildcarded, e.g. “grep@?”, then the LISTFILE command lists the full filenames to disk.
Otherwise, the non-wildcard name is qualified by calling the fqualify() function, and written to the same output file used
by LISTFILE. This allows a single entry routine to do all of the formatted output for a file.

*XEQ and HPFILE are used again to invoke the script recursively, this time passing the “process_listf” entry name, and
redirecting input to a file that contains the equivalent of a LISTFILE,6 output.

eregardless of success or failure, all _wh_(@ variables are deleted and control returns to the invoker of the script. In this
script the two TEMP files are not purged and the file equation, seen later, is not reset. For scripts with more complex
cleanup, I often use an alternate entry point specifically for doing all of the cleanup. This entry is invoked in place of
executing a simple RETURN.

29

S wher e (cont)

dsef "lentry" ="process_udcs" then
#inpu redrected fromthe out pu o showcat d og
setvar _wh_udcf rtri nfi nput())
sevar _wh_ed finfo(hpstd n”eof”) -1
whil e setvar(_wh_ed, _wh_ed-1) >=0do
if Ift(setvar(_wh_rec,rtri nfi nput())),) =" " then
#a UDC command nane line
if pmat ch(ups(_wh_c nd), set var(_wh_t ok, wor d(_wh_r ec))) then
#dsday. UDC_command_nane UDCleved UDC_filenanme
echo!_wh_tok ![rpt(" ", 261 en(_wh_t ok))] &
I[setvar(_wh_t ok2 wor d(_wh_rec,,-1))+p(" ", 7 en(_wh_t ok2))] &
UDCin!_wh_udcf
endf
dse
#a UDCfil ename li ne
sevar _wh_udd _wh_rec
endf
endwhil e
return

...... March 29, 2002 Page 30

«this is the “process_udes” entry routine. It is invoked with input redirected to the output of a simple SHOWCATALOG
command.

«it primes the variable _wh_udcf by reading the first record of the input file, which, in this case, is the name of the first
cataloged UDC file.

esetting a counter to the “EOF” value of the input file and decrementing it to zero is a common method of processing the
entire file. The HPSTDIN predefined variable contains the name of the $STDIN input file. In this case, it is the name of
the file input was redirected to (which is the name of the file the SHOWCATALOG output was redirected to).
HPSTDIN is used so that the I/O file name is not hard-coded throughout the script -- only where it is first created.

the while loop decrements the eof counter, reads a record from the input file, trims trailing spaces from the record,
decides if the record is a UDC filename (leftmost byte <> “ *) or a UDC command name record.

«if the record is a UDC command name that matches the “cmd” parameter value, a line of output is generated, containing:

the UDC command name, the UDC level (user, account or system), and the UDC filename.

*All output is “tabularized” via the rpt() function by prepending or appending the appropriate number of spaces before or
after the echoed value.

*The pmatch() function is an easy way to add pattern matching power to your scripts. HELP pmatch provides more
information. Since “cmd” could also be the name of a POSIX file, its value is not permanently upshifted. Local
upshifting is needed since all UDC names reported by SHOWCATLOG are in uppercase.

sthe entry routine exits, via RETURN, back to its caller, which is the “main” entry code. The RETURN command closes
the file (where) and resets 1/O redirection back to its state prior to the invocation of the entry point -- in this case input is
back to the terminal $STDIN.

3/29/02

30

S wher e (cont)

dsef "lentry" ="process_listf" then
#inpu redrectedfromthe ou put o ligfile 6 o as np efilename
sevar _wh_ed firfo(hpstd n' ed")
— whil e setvar(_wh_ed, _wh_ed-1) >= 0do
sevar _wh_fc™
if setvar(_wh_fc firfo(setvar(_wh_tok Itr nfrtri nfi nput()))),'f mf code)) ="
setvar _wh_fc'script’
dsdf _wh_fc <>'NMPRG and _wh_fc <>' PROG then
sevar _wh_fc"
endf
if _wh_fc <>" andfirfa_wh_tok'ed"') >0then
setvar _wh_Ink*”
if _wh_fc ="scrig” and fi rf o _wh_t ok,'fileype) ="' SYMLINK then
setvar _wh_fc'synhink
get taget of the sy nhi nk
filelf 7 mp; msg
corti nue
listfile! _wh_tok, 7 >If 7 np
if hpd err =0then
#dscardfirs 4records
input _wh_l nk <1f7 mp
input _wh_Ink <1f7 np
input _wh_Ink <1f7 np
input _wh_Ink <1f7 np
input _wh_Ink <1f7% np
setvar _wh_Ink "--1>" + word(_wh_I nk,,-1)
endf

endf [}}B

...... March 29, 2002 Page 31

«this is the “process_listf” entry routine. It is invoked with input redirected to the output of a LISTFILE,6 command.

the while loop reads each record in the input file, tests to ensure the file could be a legitimate script or program file, and
symbolic links are resolved.

«the input() function reads each filename in the input file, after which, trailing and leading blanks are trimmed. The
_wh_tok variable is set to this trimmed value. The finfo() function is called, passed this same trimmed name, to obtain
the formatted file code, which is stored in the _wh_fc variable. If the file code is blank (‘) it is arbitrarily set to “script”.
All of this is done is a single command line.

«if the EOF is positive and the file code is “script” then the script tests to see if the name might be the name of a symbolic
link.

«if FINFO returns “symlink” for the file type then the target of the link is retrieved. This is done using a small MSG file
and I/O redirection, as follows: 1) a LISTFILE,7 is written to the MSG file, 2) if the LISTFILE is successful the MSG
file is read (all reads are destructive), 3) the first four records in the MSG file can be discarded, done by reading them and
ignoring the input, 4) the last word/token in the fifth record contains the name of the target of the symlink, which is
extracted, and has “-->" prepended to enhance the final output. The “-->” strings need a ““!” to escape the meaning of
“>”_which if not done, causes the following ECHO statement to perform output redirection.

3/29/02

31

«this concludes the “process_listf” entry and the where script.

3/29/02

S wher e (cont)

‘ endf

—endwhile

reun
endf

e :where Bh@

SHOWME
SH

SH.PUB.VANCE

SHOWVOL.PUB.VANCE
BASHELP.PUB.SYS
HSHELL.PUB.SYS
PUSH.SCRIPTS.SYS
RSH.HPBIN.SYS

SH.HPBIN.SYS

/bin/csh
/bin/ksh
/bin/remsh
/bin/rsh
/bin/sh

#dsday. qudified_filenane file_code o "scrig" andlirkif any
echo!_wh_tok [[rpg(" ", max(0, 26-l en(_wh_t ok)))] ! _wh_fc &
" ", 7-len(_wh_fc))] ! _wh_Ink

USER UDC in SYS52801.UDC.SYS
SYSTEM UDC in HPPXUDC.PUB.SYS
NMPRG

script

PROG

script

script

NMPRG

NMPRG

NMPRG

symlink -->/SYS/HPBIN/SH

symlink -->/ENM/PUB/REMSH
symlink -->/SYS/HPBIN/RSH
symlink -->/SYS/HPBIN/SH

...... March 29, 2002

Page 32

*the ECHO command displays qualified (MPE or POSIX) filename, the file code (which can be set to a non-MPE value
of “script”, and symbolic link info, if pertinent. Note again that the rpt() function is used to left justify the file code string

YAX . ZWZX

.2 W

/' WX /HOBIN / PXH

and any symlink display.

«as should be done for all entry routines, RETURN exits back to the “main” entry, where cleanup is done.
*Example:

HPPATH = 'HPGROUP,PUB,PUB.SYS,ARPA.SYS,scripts.sys,hpbin.sys,/bin

:where @sh@

2HOQME YZEP YAX v 2W35280 1 .
2H SWITEM YAX 1v HION=ZYAX. TTYB
2H . MYB . ¢ANXE NMMPI

2HOQCOA . MYB . ¢ANXE OXPITT

BAZHEAN. MYB . X WYX npePor

HXHEAA . NYB . 2W¥WX OXpITT

NYZH .2XPINTX . 2¥YZ OXPITT

P>XH .HMBIN .ZWZX NMIMPI

2H .HMBIN. ZWZ NMIMPI

I Btv [/ xon NMMOPI

/ Btv / Kk on OYHALV K - ->

/ W2 /JHOBIN /ZH

I Btv /[pepon OWHAILV K - =->

/| ENM /N YB/PEMZH

I Btv /[pon OYHUALY K - =->

I Biv /on CYMUAIV K -=-> [/ ZWZ /HNOBIN /ZH

32

hp €3000 compound variables

o sgvar a“llly # Bisna rdeaenced 2'sfddtol
e :seva b“123"

e :showar a b A=lb B=123

« :echo bis!'h ais'a bis 123 ais 123

e seva al23“xyz’

« :echo Conpound var "d!b" !"a b” Conpound var "d b": xyz

e sdvarJ2

:setvar VAL2 “bar”
:sevar VAL3 “fod’

e :cdc VALJ bar
e :cdc VAL[J bar
e :cdc VAU[ded md (J)] bar
e :cdc VAU[setvar(J J+1)] foo

...... March 29, 2002 Page 33

*The CI allows two or more variable names to be concatenated to form a new variable name, and to reference the value of this
derived variable.

*A common application of compound names is variable arrays, discussed next.

*The value of a variable can reference another variable, e.g..
:setvar color “red”
:setvar bg “!!color”
:showvar bg
BG = !color
:echo 123 !color 456
123 red 456

3/29/02

33

W Vvariables arrays

* & ndeconvention us ng gandard @ vari al es

¢ varnanme0
varnamel ..varnameN
varname! J
"varname! J”

number d denentsinthe aray
aray denents, 1.. lvanane0
nane o denent J
vdue d denent J

e :showar bufe@

BUFFERO = 6
BUFFERI1 = aaa
BUFFER2 = bbb
BUFFER3 = ccc
BUFFER4 = ddd
BUFFERS = eee
BUFFERG6 = fff

...... March 29, 2002 Page 34

*CI does not formally support arrays, but this simple convention works well. The technique also support hetroogenous arrays.

*Max number of CI variables depends on the length of the variable name and the size of its value.

*In 7.5 an approximate maximum number of user variables is 10,800 unique variables. This is derived as follows:
deletevar @
setvarz 0
while true do
setvar z z+1

setvar zz 0
while setvar(zz,zz+1) <= 26 do
setvar ![chr(ord(“A”)+zz-1)]!z true #Al,B1, Cl... Z1 followed by
endwhile #A2,B2, C2...72 etc.
endwhile

Executing this script fills the variable table, evident by the CI error reported below:
Symbol table full: addition failed. To continue, delete some variables, or start a new session. (CIERR 8122)

:calc ((z-1)*26)+zz+2 (the +2 is for the two local vars z, zz)
10804, $2A34, %25064

*An approximate more typical maximum number of user variables on 7.5 is: 8,347 unique variables, derived as:

deletevar @
setvar z 0
setvar name ‘!![rpt(chr((hpcpumsecs mod 26)+ord("A")),(hpcpumsecs mod 14)+2)]’

var names begin w/ A-Z, from 2..15 chars long
setvar value ‘!![rpt(chr((hpcpumsecs mod 26)+ord("A")),(hpcpumsecs mod 60)+1)]’

var values begin w/ A-Z, from 1 to 60 chars long
while true do

setvar !name![setvar(z,z+1)] “!value”

endwhile

:calc z+3 # + 3 for local variables: z, name, and value
8347, $209B, %20233

3/29/02

34

Wpwws variable array example

e centering ou pu:

PARM cournt =5
setvar crt 0
whil e setvar(crt, crt +1) <=!count do
setvar string! cnt,input("Enter sring!ent: ")
endwhle
setvar crt 0
whil e setvar(crt, crt +1) <=!count do
echo ![rpt(" ",3%len(string! cnt))]!"string' cnt”
endwhle
rcernter

Enter string 1: The great thing about Open Source
Enter string 2: software is that you can

Enter string 3: have any color

Enter string 4: "screen of death”

Enter string 5: that you want.

Tne ypeat tnivy afouvt Omev
CoOQTWapEeE 10 TnNAT Yyou
noawe avy XoAop

"oxXpeev o deatn”

TNAaT You wWAVT .

“Center” scrip

X av

...... March 29, 2002

ZOoOupyxE

*The “center” script shows generically the following:
*how to create a CI variable “array”

*how to access a variable “array”

sthe !”literal!namel” construct, which allows compound variable names to be referenced. If literal = FOO,

namel = FUM and FOOFUM = 23 then

1”literal!name1” = !”FOO!namel” = ”FOOFUM” = [FOOFUM = 23

![rpt(“ «, fieldWidth - lenOfVar)] puts the correct number of blanks before echoing the field’s value.

*Specifically, the “count” parameter is the number of elements in the “array”.
string!cnt, where cnt is from 1..5, defines each element in the “array”.

*!”string!cnt” references the value of each element in the “array”.

*The rpt() function places the correct number of spaces before each line is echoed.

(The Open Source quote comes from Gavin Scott, Allegro Consultants, June ‘01 from the HP3000-L list.)

3/29/02

35

3/29/02

wpwwss filling variables arrays -- wrong!

e exanpel # aray naneis‘rec’
setvarj 0
setvar | oop ng true
whil el oop ng do
inpu nane, “Enter name “
if nane =" then
setvar | oopingfdse
dse
setvar jj+1
sevar reclj nane
endf
endwhil e
setvar recO |

e :xegexnp 1

e irffinteloop!, worit end urtil <break>

...... March 29, 2002 Page 36

*The previous “center” example had the size (or number of elements) of the array defined and thus hard-coded. This example is more
general, in that, the size of the “array” is determined based on user input. In this case, when the user just presses <return>, meaning no
more input, that defines the size of the array. These arrays can be very dynamic, limited only by the maximum number of variables
supported by the CI. See the notes from a few slides back for this discussion.

*To fix the infinite loop bug the variable “name” needs to be cleared or deleted inside the while loop. Recall that the INPUT command
does not change the value of the variable if it times out or if the input value is null (“”’). Thus we need to :deletevar name each
iteration, or set it to “”, or use the input() function. Recall that the input() function returns an empty string, “”, if it times out or if the
user just presses <return>.

*Syntax: INPUT [NAME=]varname
[[;PROMPT=]prompt] [[;WAIT=]seconds]
[[[READCNT=]chars] [[;DEFAULT=]default str]
[;CONSOLE]

*The variable, varname, will always be created by INPUT if it does not yet exist. Varname's value is typically the exact value entered
as a response by the user; however, if the user enters no response (either by just pressing the enter key, or via the INPUT read expiring)
varname's value is determined as follows:

- if a DEFAULT= value is provided that becomes the value for varname.
- if no DEFAULT= is specified and varname already exists it is not changed.

- if no DEFAULT= is specified and varname does not exist it is created with a value of "" (empty string).

36

wpwwss filling variables arrays (cont)

 exanple 2

sevaj 0

setvar | ood ng true

whil el oop ng do
setvar NAME *”
inpu nane, “Ente name “
if name ="" then

setvar | oop ng fd se

dse
setvarjj+l
sevar reclj name
endf
endwhl e
setvar recO j

e :xeqexnp 2 <datdile (dat dil e has 20 text recor ds)
(“erter nanme” pronpt shown 20ti mes sni pped ..)
End of file oninput. (G ERR 900)
input name, "enter name “

Error executing commands in WH LE | oop. (G ERR 10310)

...... March 29, 2002 Page 37

«Script as written works fine interactively!
*Works correctly if a line in DATAFILE is empty (but it must be variable width file)

3/29/02

*Otherwise, if datafile is fixed ASCII, you will see the “Enter name” prompt 20 times (no crlf) and get eof error on INPUT, as shown in

the slide.

*The next slide shows how to modify this script to work correctly when $STDIN is redirected and still function as expected when

invoked interactively.

37

3/29/02

wpwws filling variables arrays (cont)

e exanple 3
setvarj 0
if HA NTERACTI VE t hen
sevar ponpt “Name ="
setvar li it 2*30
setvar test ‘nane=
dse
setvar pronpt
setvar limit A NFO (HPSTDO N "ed”)
setvar test “fd se’
endf
while (j <li nit) do
seévar name
inpu name, !pronpt
if ltest then
setver li nt O # exitineadiveinpu
dse
setvarjj+l
sever reclj nane
endf
endwhl e
setvar recO j

...... March 29, 2002 Page 38

3

*Don’t want blank lines in datafile to stop while loop, so we don’t test for **’ in the redirected case.

*Each variable, rec!j, is 80 bytes long -- no blanks were stripped. This may be fine, or you can use the rtrim() function to remove the
trailing spaces.

*Shows how you can make a dynamic Cl command line, e.g.. if !test then ...
*Shows finfo(), HPINTERACTIVE and HPSTDIN.

38

wpwws filling variables arrays (cont)

e :xeqexnp 3 <dat dile

e :showar rec @
RECI = linel
REC2 = line2

REC20 = line20
RECO =20

« pefa mance

e Scrigg asis 100 records: 530 millisecs
e Scripg nodfiedfor fileinput ony:
100 records: 380 miillisecs

...... March 29, 2002

*The script as written works correctly for both interactive and redirected environments; however, the most common usage is when

input is redirected to a file. The next slide shows the script optimized for file input.

3/29/02

39

3/29/02

wpwwss filling variables arrays (cont)

« can wefill arays (and read fil es) faster ?
e exanpe 4

setvar recO 0

setvar limt A NFO (HPSTO N "edf”)

whil e setvar(recO, recO+1) <=lint and &
sevar(rec! [recO+1], inpu()) <> chr(1) do

endwhil e

setvar recOrecC-1

» perfa mance (:xeq exnp 4 <dat il e):
e 100 records: 185 nillisecs (tw ce asfast!)

...... March 29, 2002 Page 40

* Is rec0 being incremented TWICE in the while loop?

* No! Explicit referencing, ![rec0+1] is performed by the CI before the command name is even known to be “WHILE”. Thus, the
command actually processed by the WHILE CI code is:

setvar(rec0, recO+1) <= limit and setvar(!recl, input()) <> chr(1)
Note: if rec![rec0+1] was replaced with rec!rec0, as I originally wrote the test script, then the loop counter and array high water mark
(rec0) would be overwritten by the first record in the input file.

* This version of the script is twice as fast with just a little thought.

* Shows the input() function.

* Shows empty WHILE body.

* The test against chr(1) is arbitrary but needed to have an empty while body.

40

hp €3000 CI grep

¢ PARM patern file entry=nmai n
Thssaipinpdements urix $grep-in <patern> <ilex
setvar savecpu hpcpunsecs
if'lertry =' maif then
ardear
sevar _gep_matches 0
if na firfa('!file,'exi sts) then
echo FRle"!fil€' na found
reun
endf
corti nue
xeq! HPA LE !pattern!file ertry=read_met ch dfile
echo ![hpcpunsecs-savecpu] nsecs ...
echo!_gep_ed recordsread -- ! _gep_met ches lines mat ch "l patern’
dddevar _gep @
regun
(cortinued on next dide)

...... March 29, 2002

Page 41

3/29/02

41

hp €3000 CI grep (cont)

dsdf'lertry ='read_metcH then
#finds each "patern'in"filé' and echoes therecord +line num
#inpu redrected to"lfil &
sevar _gep_ed firfo"!fil €,"ed")
setvar _grep_recno 0
sevar _gep_pa ups(" patern’)
whil e setvar(_grep_recno,_gep_recno+l) <= _gep_eof and &
setvar(_grep_rec, rtri nfi nput())) < chr(1) do
if pos(_grep_pat, ups(_grep_rec)) > 0then
echo!_gep_recno) ! _gep_rec
sevar _gep_natches _grep_me ches+1
endf
endwhil e
reun
endf
e 4667 msecs ...
1669 records read -- 18lines metch "version’
e 4627 nsecs ...
1669 records read -- Olines natch “fog"

...... March 29, 2002 Page 42

«It takes approximately 4.6 seconds to read, upshift and find a string literal in a 1669 record ascii file, and
approximately 123 seconds to so the same in a 45,149 record file.

*xeq grep.hpbin.sys “-in pattern file” is much faster for large files! The GREP program in HPBIN.SY'S does not
support CI or shell wildcarding. If you need to grep a pattern on a set of files start grep from the shell.

3/29/02

42

3/29/02

hp €3000 stream UDC - overview

« STREAM
ANYPARM streampar ns =![“"]
OPTI ON nohd p recursi on

if mainentry pont then
#intidize ...
-if jobg=" na spedfiedthenreadjobfilefa job“card
-if dill no*jobg="then read corfigfile net ch ng “[j obname,] user. acat”
- dreamjobin HPSYSJ Q(def adt) or derivedjob queue
- dean up
dse
#dtenae ertries
separae ertry name fromrensi nng agunents

if ertryisread_jobcardthen readjob filelook ngfa “:JOB’, conca ena e
corti nuati onlires (& and renove user. aca passwor ds

dsdf ertryisread_configthen
read corfigfile match on‘“[j obnane,] user. acat”

endf

...... March 29, 2002 Page 43

*http://jazz.external.hp.com/src/scripts/stream.txt

*Shows entry points used with UDC. ANYPARM requires more parsing and a convention for the entry specification. In
my example, the entry is always specified as “entry=name” and is the last argument in the command line.

Shows how to default an ANYPARM value to nothing, ![”’]. Quotes by themselves don’t work, and, in fact, cause the
value to default to the quote marks literally.

*OPTION NOHELP chosen since this UDC overrides a built-in CI command. If a user enters “help stream” they will
not see the contents of this UDC; instead, they will see the HELP text for the real STREAM command.

*OPTION RECURSION is specified since there are several recursive calls to the STREAM UDC as a way to process
the various entry points. OPTION NORECURSION will be executed prior to invoking the real :stream command.

*Sample job queue configuration file:
(All comments appear at the end of this file for search performance reasons)

j@,usrl.acct jobqJ
usrl.acct jobql
@.acct jobqg2

@.@ mySysDefq

43

3/29/02

hp €3000 stream UDC - “main”

#comments ...
if "Istreanmpar ns" ="" or pos("entry=","!streanpar n8") =0then
mainentry point o UDC
sevar _str_j otfile wor d("! greanparms") # extract 1t ag

#extrad rems ring streamparaneters
sevar _str_par ms ups(&
red(rht("!streampar ns",-ddi npos(" sreanpar ns"))," ","")
if setvar(_str_pos, pos(“;JOBQ=", _str_par ns)) > 0then
sevar _str_jobq word(_str_par ns,, 2, _str_pos+5)
endf
if _str_jobg =""then
noj obg=name i n sreamcommand solook & JOB “card’
STREAM _str_jobcard entry=read_j obcard < _str_jokfil e
if setvar(_str_pos, pos("; JOBQ=", _str_j obcard)) > 0then
setvar _str_jobq wor d(_str_jobcard, 2, _str_pos+5)
endf
endf

...... March 29, 2002 Page 44

*The main entry point is detected by the absence of all parameters or by the lack of the “entry=" keyword.

*The first parameter extracted is the name of the file to be streamed.

*The remaining parameters are captured in the variable str parms, after the command line has been upshifted and all
blanks have been removed.

«If the “;JOBQ=" keywords is found in the command line the queue name is extracted. You might wonder why the
second word (instead of the default of 1), and why at a position that indexes the “=" rather than the character
immediately right of the “="? Using word(_str_parms,,,, str_pos+6) works in all cases, including a null (empty) jobq
value. However, it fails when ;jobq= with no value is the last token on the command line. It fails in this case since the
index (_str_pos+6) is beyond the end of the _str_parms string length. Extracting the second word starting at the “=*
works in all cases.

oIf “jobg=" is not present in the command line, the STREAM UDC invokes itself (highlighted in blue) using an
alternate entry point, with $STDIN redirected to the file being streamed. This method allows the stream file to be read
efficiently by the UDC.

44

Wpwse stream UDC - “main” (cont)

if _str jobg =" and firfo(_str_corfig_file'ex ss) then
No j obg=name spedfied sofa so use the corfigfile

d_dr_corfig file
if _str_jobg <>" then
#found a matchin corfigfile appendjobq name tostreamcommand line
setvar _str_par ms _str_par ms +";jobg= _str_j obq"
endf
endf

nowfindly sreamthejoh
if _str_jobg =" then
echo Jobfile"l_str_j olfil €' sreamedin defadt "HPSYSJ Q' j ob queue.

dse
echo Jobfile"l_str_j okfil €' sreamedin™ _str_j obq' j db queue.
endf
opti on nor ecur sion
corti nue

stream! _str_jobfile!_str_parms

...... March 29, 2002 Page 45

oIf “jobg=" is not found in the job “card” and if the simple configuration file exists, the STREAM UDC is again
invoked recursively to read the config file looking for a match. The config file has two fields: the first field is a
[jobname, Juser.acct name, the second field is the corresponding job queue name. Wildcards are supported in the first
field. The code that processes the config file is shown later.

*Finally, the real STREAM CI command is invoked with an appended jobq=name if appropriate. To execute the real
STREAM command, OPTION NORECURSION is specified; otherwise the STREAM UDC would be invoked (and in

this case we would have an infinite loop -- eventually stopped by a CI limit that disallows UDC nesting beyond 100
levels.

3/29/02

45

3/29/02

W stream UDC - “read_jobcard”

dse
#dtenaeenrypdrntsfa UDC
setvar _str_entry word("!streanpar ns",,-1)
#renove ertry=nanme frompar mline
setvar _str_entry_par ns Ift('! streampar ns', pos(' entry=,"!streanpar ns')-1)

if _str_entry ="read_j obcar d" then

Ag listhe*name* o the var tohd d dl d the JOB cardright o "JOB'.
#Inpu redrecedtothetarget jobfile ba ng streaned

Read file urtil JOB cardisfound Retun viaagl thisrecord

#ind ud ng cortinuati onlines, bu lessthe"JOB' token itsdf. Renove

#dl passwords, if any. Skiplead ng commentsinjobfile

setvar _str_argl word(_str_erntry_par ns)

whl e str(setvar(!_str_argl, ups(i nput())),2 4 <>"JOB" do

endwhil e

#renove line numbers, if appropri de

if setvar(_str_numbered, nuneri(rht(!_str_argl, 8)) then

setvar | _str_argl Ift(!_str_argllen(!_str_argl)-8
endf

...... March 29, 2002 Page 46

*The next few slides detail the two alternate entry points for the STREAM UDC. If the entry is not “main” then it is an
alternate entry. The first step is to determine which entry is being called by extracting the entry name. By convention
the entry name is the last parameter passed to the UDC, and thus is extracted via word(...,-1).

*Next, the “entry=name” needs to be removed from the parameter line so that the alternate entry routines can freely
parse the arguments.

*Now a test can be made for each individual entry name, and each entry point can be coded like a subroutine. All
entries have read and write access to all of the variables set by the UDC.

*The “read_jobcard” entry defines the first parameter (argl) to be the name of a CI string variable that will contain the
full job “card” line minus the pseudo colon and the word “JOB” (“!JOB).

Input has been redirected to the stream job file, which the “main” entry verified exists.

+Since there can be comments preceding the JOB command line, these are skipped by the WHILE loop above. This
WHILE loop reads the JOB record, via the input() function, and stops.

*A simple test is made to determine if the stream file is numbered or unnumbered: if the last 8 characters of the JOB
card record are numeric then the entire file is considered numbered.

econtinued...

46

3/29/02

mpwwss stream UDC - “read_jobcard” (cont)

concat enat e conti nuati on (& li nes
whlerh(sevar(!_str_arglrtri nf! _str_argl)),1) ='& do
#renove & andread next i npu record
sevear ! _str_arglIft(!_str_argllen(!_str_argl)- 1) Atrin(r ht(i nput(), -2)
if _str_nunberedthen
sevar!_str_argllft(!_str_argllen!_str_argl)-8
endf
endwhil e
#renove passwords, if any
whl e setvar(_str_pos, pos('/',!_str_argl)) >0 do
setvar | _str_argl red(!_str_argl,"/"+wor (! _str_argl'.,;',,, _str_pos+1),")
endwhil e
#reun upshifted, dl agsright d "JOB', and stri p dl d anks.
setvar ! _str_argl ups(refd (xwor d(! _str_argl)," ","))
reun

...... March 29, 2002 Page 47

oIf the JOB record is continued (ends with an ampersand) then the first WHILE loop above will read the remaining
continuation lines.

*Each continuation line is appended to the return variable (argl) after numbers and leading spaces (ltrim) are removed.

3

o! str argl is referenced, rather than simply “ str_argl” since the contents of _str_argl is the name of a variable. For
instance, in the STREAM UDC argl is passed as ““_str_jobcard”. After calling the read_jobcard entry the main body of
the UDC will test the value of _str_jobcard, looking for a JOBQ parameter. Using ! str_argl on the left side of a
SETVAR is like using “_str_jobcard”.

*Next, any user, account and/or group passwords, if present, are removed (not blanked over). If a password is found
(pos of “/” > 0) then the “/” and the password itself are replaced with “”.

*Finally, the concatenated, password filtered, de-numbered, de-blanked and upshifted JOB record is returned, via argl,
to the caller. The “:JOB “ portion is also removed by the xword function.

47

3/29/02

W stream UDC - “read_config”

dsef _str_entry ="read_config" then
A g listhe "[jobname,]user. aca" nane fromthejob card
Ag 2isthe*name* o the var toreturnthejobQ nameif the acat name
#Inpu redrecedtothejobQ corfigfile
setvar _str_argl word(_str_entry_par ns," ")
setvar _str_arg2 word(_str_entry_par ns," ", 2
savar _str_ed finfo (hpstd n “ed™)

#read corfi gfil e and fi nd [j obname, Juser. aca et ch (wil dcards are ok)

whle setvar(_str_eof ,_str_eof-1) >= 0 and &
(setvar(_str_recItri nfrtri n§i nput()))) =" a &
Ift(_str_rec, 1) ='# a &
na pmat ch(ups(wor d(_str_rec,,-2), _str_ua) a &
(pos(',',_str_rec) >0 andlft(_str_rec,2 <>' @ and &
na pmatch(ups(wor d(_str_rec)), _str_jnane))) do
endwhil e

if _str_ed >=0then
#[j obname,] user. aca netch reurnjobg nane
setvar ! _str_arg2 word(_str_rec,,-1)
endf
reun

...... March 29, 2002 Page 48

*The “read_config” entry reads the config file (verified by “main” to exist) looking for a user.acct match. This entry
defines the first parameter (argl) to be the string “[jobname,Juser.acct” from the JOB record returned by the
read_jobcard entry. The second parameter (arg2) is defined to be the name of a CI string variable the will hold “”’ or the
corresponding job queue name.

*These two arguments are easily extracted via word(...,1) and word(....,2). Note that one is the default parameter
number for word().

Input has been redirected to the configuration file.

*The WHILE loop stops if the entire config file has been read or on the first match. Based on this implementation,
specific entries (specific [jobname, Juser.acct) names should proceed generic, wildcarded names.

*The WHILE loop continues for empty (blank) records and comment (#) lines.

A match is defined as: user.acct matches and if a jobname is present in the config file (and not simply “@”) the
jobnames must match too. Wildcard support is easy with pmatch()!
Line by line evaluation of this WHILE loop:

sdecrement a counter that initially contains the number of records in the config file. When this counter is
negative the file has been completely read.

sset the variable _str_rec to a record in the config file, after trimming all trailing and leading blanks, test if the
result is empty and if so continue the while loop.

«if the _str_rec record starts with “#” then skip it since it is a comment record.

«if the second-to-last word in the record (this is the user.acct token -- second-to-last is used rather than first to
handle an optional jobname which is terminated by a comma) doesn’t match the user.acct already extracted
from the JOB card then continue the loop.

«if user.acct matches and the config record has a jobname (pos comma > 0) and the jobname is not “@” and
the jobname doesn’t match the already extracted jobname from the JOB card then continue the loop.

*The loop ends when either all records have been read without a match, or there is a match. If the loop counter
(_str_eof) is >= 0 then there was a match and the corresponding job queue name (last word in the config file record) is
returned via arg2.

48

3/29/02

mesvl appendix

« redo enhancenents
« COMMAND vs. HPAQ COMMAND:I rtrinsi cs
¢ A programmng fea ures
* commands
« variades
¢ express ons
¢« UDCs and scripts
« filelayous
« fea ure conparisons
« perfa mance cons der &ions

« paraneters

...... March 29, 2002 Page 49

49

3/29/02

hp €3000 redo

« ddeeaword
¢ dw >dw dwddw dwi XYZ
* deeeuptoaspedal character
e d,d, d, diXyz dd
* ddeetoendd-line
o d>
« ddeetw o nore nonad acent characters
«d d
« upshft/downshft acharacter o word
o N AW Y VW A Sy, A v>
« appendto endd-lire
o >XYZ
¢ redace sating & end o line
« >XYZ
« change one stringto ana her
*« ¢ ABCD XYZ c123:
¢ undolast o dl edts
e U utwce
e avdladein @, VOLUTIL STAGEMAN DEBUG a hers...

...... March 29, 2002 Page 50

*Redo was enhanced in late 5.5 to operate on “words”. A word is defined as any set of characters delimited by a: space,
comma, semicolon, equal sign, left or right parentheses, left or right brackets, single quote or double quote. A “word”
in redo is the same as the default word definition used by the DELIMPOS, WORD and XWORD CI functions.

*Redo deals with words as it does with characters. Words can be deleted (dw), upshifted (“w) and downshifted (vw).

*Words can be operated on from the end of the line: >dw - deletes the last word, >*w - upshifts the last word, >vw -
downshifts the last word.

*Upshifting and downshifting can be useful when editing POSIX file names, or entering procedure names in the
debugger -- times when character case matters.

50

hp 62000 COMMAND intrinsic

¢ COMMANDI s aprogrammati c systemcdl (irtringc)
synax COMMAND (cnd nage, errar, par n)
e indenentedinnaive node (NM PA R SC node)
e use COMMAND fa systeml evd services, like
« buldng dteing copying purgng afile
* no UDC search (a UDC cannat intercept “cnd nage”)
* no command file a i ngied programfil e search

e reuns command era nunber and erra | ocai on
(fa podtive parmnun), o filesyssemerrar nunber fa negative par mum

...... March 29, 2002 Page 51

COMMAND is a user-callable system level API that executes the command passed in as the cmdimage
argument. Cmdimage can name any built-in MPE command including the XEQ command, which directly
executes scripts and program files. Cmdimage cannot name a UDC or imply a script or program filename.
Cmdimage must be terminated with an ASCII carriage return (#13) and cannot exceed 512 bytes, including
the CR.

It is recommended to call the COMMAND intrinsic to obtain a system service, such as creating a file, etc.
Other intrinsics may provide the same function, yet it is sometimes easier to call COMMAND since the
programmer is likely familiar with the interactive CI command that provides the desired service.
COMMAND is recommend over HPCICOMMAND in this case since the cmdimage passed to
COMMAND cannot be intercepted by a UDC. For example, to create a new file one could call
COMMAND passing the string: “build filename”. The built-in MPE BUILD command will be executed,
even if there exists a UDC named “BUILD” -- which may do anything, and may not actually create the file
at all.

The error argument returns zero, or a CI error number in case of a command execution error. This is the
same error number reported if cmdimage is executed interactively, and is the value of the predefined
CIERROR JCW/variable. If cmdimage executes with an error or warning there is no indication of this fact,
other than the error return value. Specifically, there is no error message reported to SSTDLIST, and the
CIERROR and HPCIERR CI variables are not modified. In fact COMMAND operates by locally setting
the HPMSGFENCE variable to 2, thus suppressing all CI error and warning messages. This is verifiable by
executing SHOWVAR programmatically via the EDITOR, e.g.:

:showvar hpmsgfence (= 0)

:editor

/:showvar hpmsgfence (=2) Note: a leading “:” causes editor to call COMMAND with the
string following the “:”. This is common for many programs.

3/29/02

51

s HPCICOMMAND intrinsic

« HPA COMMANDis anirtring c
syntax HPA COMMAND (cnd nage, erra, par m
[, msd evd])

e indenentedinnative node (N PA R SC node)
* use HPA COMMANDfa a“wndow tothe @, eg.:
e providng acommandirntefaceto a ppogam “:cmdnane”
* UDCs searched firs
« command file and i ngied programfil es searched

e reguns command erra nunber and error | ocati on or file systemerror
number.

« Msdevd cortrds @ erad warnngs -- 9 il a tothe HPMSGFENCE
vaiad e

...... March 29, 2002 Page 52

HPCICOMMAND is a user-callable system level API that executes the command passed in as the
cmdimage argument. Cmdimage is identical to that passed to the COMMAND intrinsic, except that it can
name UDCs, scripts and program filenames, in addition to most of the built-in MPE commands. Due to
implementation constraints the following built-in commands cannot be executed via COMMAND or
HPCICOMMAND:

ABORT, BYE, CHGROUP, DATA, DISMOUNT, DO, EOD, EOJ, EXIT, HELLO, IMF,

IMFMGR, JOB, LISTREDO, MOUNT, NRJE, REDO, RESUME, RIJE, SETCATALOG,

VSUSER.
However, the remaining 245 CI commands can all be executed programmatically via COMMAND or
HPCICOMMAND.

It is recommended to call the HPCICOMMAND intrinsic as a simple way for a program to provide a
“window” to the CI. It is common for MPE programs to accept a leading colon (“:””) to indicate that what
follows is a CI command to execute, and not a command recognized by the program. A nice feature of
HPCICOMMAND is that it executes UDCs, which makes the “window” to the CI more natural and
powerful for the end user.

The error argument and parm arguments work the same as in COMMAND, except HPCICOMMAND will
set the CIERROR and HPCIERR CI variables to 0, or an error number if the passed in command fails.

The optional msglevel parameter is unique to HPCICOMMAND and controls the HPMSGFENCE setting
described in the COMMAND notes. By default msglevel is passed as 0, meaning that all CI errors and
warning messages are written to SSTDLIST, just as if cmdimage was executed interactively. Msglevel can
be set to any legal HPMSGFENCE value and causes HPCICOMMAND to control error, warning and some
diagnostic output identically to how the CI interprets HPMSGFENCE. Entering HELP hpmsgfence will
show the details.

3/29/02

52

el commands

« IF BESHFE HSE, ENDF
ESCAPE RETURN

« WHLE ENDWH LE
« ECHQ INPUT

« SETVAR DELETEVAR
SHOWAR

*« ERRCLEAR

+ RUN
XEQ

« PAUSE

¢« OPTI ONrecurson

common Cl “programming”

branch ng

| oop ng
te mind, consd g filel/ O

crea e nodfy dd ee/ dsday avaiad e

sets @ era vaiablesto 0

invoke a program
invoke a programor scripg

d eep; job synchroni zaion

orly way to get recurs onin UDCs

...... March 29, 2002

Page 53

3/29/02

*The CI supports commands that provide the basic requirements of a programming language: storage, branching/looping and I/O. The

CI expands on these necessities by providing a rich set of predefined variables and functions, many of which are described later.

*There are 270 CI commands as of release 7.5, but the 18 commands above are common in most scripts and UDCs that have any level

of complexity, such that they are considered a “program”.

53

3/29/02

hp €3000 Cl variables

e 113 predefined “ HP” vari al es
e user can credetheir own variall es via: SETVAR
« variad etypes are integer (4 gned 32 hits), Bod ean and string (up 1024 char acters)

¢ variad e nanes can be up 255 d phanumeric d phanuneric and “_" (cannat gart wth
numnber)

« predefined variald e cannat be dd eed sone dl ow wite access
¢ :SHOWAR @; HP -- shows dl predefined variad es
* can see user defined variald es fa ana her j o' sess on (need SN
¢ :SHOWAR @; job=#S o Jnnn
e the bound() fundionreturnstrueif the naned variald e exists
* vaialdes dd eed whenjob/ sess onter mnat es
e !HELPvaiades and :HELP VariadeNane

...... March 29, 2002 Page 54

*ClI variables can be strings (up to 1024 bytes in length), 32 bit signed integers or boolean TRUE/FALSE. There is not
support for 64 bit integers or unsigned 32 bit numbers.

*See the slides on variable arrays for a method to determine the maximum number of CI variables that can be defined.
This maximum is a function of the length of the variable’s name and the length of its value. The longer your variable
names and/or their values the fewer variables can be stored by the CI. A typical range is 8,000 to 9,000 user variables
can be defined.

*A summary of all of the predefined variables is available by entering HELP VARIABLES. The details for a specific
variable can bee seen by entering HELP varname. For example, if you have trouble remembering the new values for
the HPMSGFENCE variable, enter HELP HPMSGFENCE and see:

HPMSGFENCE A variable used by the CI that controls the output for all

CI errors, warnings and skipped commands. Skipped commands refer to commands that are not

executed by the CI because they follow a conditional expression that evaluated FALSE.

HPMSGFENCE is divided into 2 fields, 3 bits each in size.

The low order field (bits 29..31) controls the output of CI error and warning messages as:
0 = display all CI errors and warning

1 = show only errors, warning are suppressed

2 = suppress all CI errors and warning messages.

The next field (bits 26..28) controls the output of skipped commands and the

"*** EXPRESSION FALSE: ...", "*** EXPRESSION TRUE: ...", and "*** RESUME
EXECUTION OF COMMANDS" messages:

0 = show all skipped commands and the above "***...” messages

1 = show only the "***.." messages, suppress commands that are skipped. Integer value is 8.
2 = suppress the skipped commands and the "***...” messages. Integer value is 16.

Etc...

*HPMAXPIN is new to 7.0 and returns the maximum number of processes supported by your system

54

3/29/02

hp 63000 predefined variables

« HPAUTOCONT - set TRUE causes Cl to behave as if each command is protected by a
:continue.

¢ HPCMDTRACE - set TRUE causes UDC / scripts to echo each command line as long
as OPTION NOHELP not specified. Useful for debugging.

« HPCPUMSECS - tracks the number of milliseconds of CPU time used by the process.
useful for measuring script performance.

* HPCWD - current working directory in POSIX syntax.

* HPDATET ME- contains the date/time in
CenturyYearMonthDateHourMinuteSecondMicrosecond format.

e HPDOY - the day number of the year from 1..365.

*« HPHLE- the name of the executing script or UDC file.

* HPI NTERACTI VE - TRUE means $STDIN and $STDLIST do not form an interactive
pair, useful to test if it is ok to prompt the user.

* HPLASTJOB - the job ID of the job you most recently streamed, useful for a default
parm value in UDCs that alter priority, show processes, etc.

...... March 29, 2002 Page 55

o] rarely use HPAUTOCONT. I prefer to be explicit when I am anticipating that the next command may fail. Also,
there is slight extra overhead with HPAUTOCONT. Lastly, its original value should be saved and re-instated before the
script ends.

*HPCMDTRACE is often useful, despite being overly verbose . There is a simple example that toggles the
HPCMDTRACE value in the “Examples” section of this presentation.

*My CI prompt contains HPCWD, e.g.. :setvar hpprompt “!thpcwd:

]l use HPCPUMSECS to measure script performance as follows:
- save its value at script entry
- save its value near the script end
- calculate the time in the script as: end_value - start_value.

*Express 1 of 6.0 added 5 new variables related to the date and time.

- HPDATETIME - is a string that contains “YYYYMMDDHHMMSSMMM”. The value of this
variable is that the date and time are retrieved autonomously, thus you are
guaranteed that the time portion of the variable is not early the next day.

Note: currently the microseconds field has only tenths of a second resolution due to restrictions on

the CLOCK intrinsic call.

- HPDOY - an integer variable containing

- HPHHMMSSMMM - current time in hour, minutes, seconds, micro-seconds.

- HPLEAPYEAR - a boolean variable that is true when the current year is a leap year.

-HPYYYYMMDD - a string variable that contains the year, month and date as an autonomous
value.

*HPFILE reduces the need to hard-code the filename of your script, e.g.:
if user-selected-help then
echo ![hpfile] -- Syntax: ...

*HPLASTJOB can be modified which is useful when referencing the HPLASTPSID variable. E.g..
:setvar hplastjob “#J12”
:print !hplastspid.out..hpspool

55

hp €3000

predefined variables (cont)

HPLASTSP D- the $STDLIST spoolfile ID of the last job streamed, useful in
:print !hplastspid.out.hpspool

HPL OQ PADDR - IP address for your system.

HPMAXPIN - the maximum number of processes supported on your system.

HPPATH - list of group[.acct] or directory names used to search for script and program
files

HPRA N- the Process Identification Number (PIN) for the current process.

HPPROMPT - the CI's command prompt, useful to contain other info like: 'HPCWD,
IIHPCMDNUM, "HPGROUP, etc.

HPSPOOLI D- the $STDLIST spoolfile ID -- if executing in a job.

HPSTDO N- the filename for $STDIN, useful in script "subroutines” where input has been
redirected to a disk file

HPSTREAMEDBY - the “Jobname,User.Acct (jobIDnum)” of the job/session that
streamed the current job.

HPUSERCAPF - formatted user capabilities, useful to test if user has desired capability,
e.g. if pos(“SM”,hpusercapf) > 0 then

...... March 29, 2002 Page 56

*My HPPATH contains “HPBIN.SYS” so I can run the POSIX programs more easily.
*HPREMIPADDR and HPREMPORT are useful for determining how a user is connecting to your system.
*HPSTREAMEDBY shows the same information as seen at the beginning of the SSTDLIST output of a job

*A common way to see if the user has sufficient capabilities is:

:if pos(“SM”, hpusercapf) > 0 then # has SM cap

or

setvar has SM (pos(“SM”,hpusercapf) > 0)

3/29/02

56

3/29/02

W Vvariable scoping

e dl @ vaiales arejolysess on dobd, except the fdl owng
HPAUT OCONT, HPCMDTRACE HPERRDUMP, HPERRSTOLI ST,
HPMSGFENCE

» easytose “persigent” varial es vialogon UDC

* need careinname o UDC and script “locd” variald esto na cdlide wth
ex gtingj ol sesson vari ad es

e scripName_varnane -- fa dl script variad e names. Use dd & evar
scripName @a end d soip

e Can creae un que variald e names by us ng! HPA N ! HPA DEPTH
IHPUSERCMDEPTH as part d the nane, eg
:setvar _script_xyz_!hppn, value

» save aignd vdue o sone “environnment” vaiades

e :sdva _scrig_savensgfence hpnsgfence
:setvar hpnsgfence 2

...... March 29, 2002 Page 57

*The variables that are not job/session global reside in a local CI data structure, and thus are unique to each CI. If you
run a child CI program it can have a different value for these variables, and any settings you do in that CI are not
reflected when you exit back to the root CI.

*Since (almost) all CI variables are scoped global to the job or session environment, you can set/create variables in
logon UDC, scripts etc. and these variables are available to the job or session. User variables are not automatically
deleted when a script or UDC ends.

+Since (almost) all CI variables are scoped global to the job or session environment, you may need care in choosing a
unique variable name. If you have a variable named XYZ defined from the CI, and you execute a script that sets XYZ
and then deletes it before exiting, your CI set XYZ variable is gone. For this reason, it is generally important to use
script variable names that have a decent chance of being unique to that script. A convention I use is to prefix all script
variable names with the name of the script. For example, if my script is named CH and I need a counter variable named
“”, I will named it _CH_J in my script.

57

3/29/02

W Vvariable referencing

e two waystordeence avaiad e
e exgidt -- var Name
e indidt-- va Name
* some @ commands expect variad es asthdr agunents, eg
« :CALGC :IF :ESHF :SETVAR, : WHLE
e useinplidtrderendng here eg.
if (HPUSER =“MANAGER’) then

« most @ commands dorit expect varial e nanes (e.g BULD ECHQ
U sthH

* use explidt referendng here eg.
:echo You arelogged on as: ! HFUSER ! HFACCOUNT
e note dl UDJscripg paranmeters nust be exdidtly ref erenced
e dl @ functions accept vari ad e names, thusi ngidt referend ng works

e :whle INFO(HPLASTJOB “exsts’) do ... better than ...
:whle J NFO(“'HPLASTJ OB, “exi&ts’) do

...... March 29, 2002 Page 58

*] see many people confused on when to put an exclamation mark in front of a variable name and when you don’t need
to. Since it almost always works to code as !varname or “!varname” this becomes the standard practice. Some users
find the rules to be ambiguous so they opt to use !varname. Although, I think this is unnecessary and less “attractive”, it
works fine most of the time. There are, however, situations when using !varname results in difficult-to-diagnose
programming bugs, which are shown in the next slide.

58

3/29/02

mpwwss explicit referencing -

lvarname

e processed bythe G early, bef ore command nameis known
¢ can cause hardto-detect bugsinscripgs- aray exanp e
» loose variad etype -- grings needto be quated, e.g.
“lvar Nanme”
« Il (two exd anetion narks) usedto “escape’ the meanng o “I”, mitige“!'s’
arefdded 2intol

¢ even nunber d “" -->dort reference variald € s val ue
e odd nunber o “I” -->rederencethe variald €s vdue
e usefd toconvert an ASAl nunber to anirteger, e g
setvar int “123" or input foo, “enter a number”
if lint >0then ... if 1foo=321then ...

e theorly way toreference UDC or scripg paraneters
e theorly way fa most @ commands toref erence vari ald es

...... March 29, 2002 Page 59

*Bang folding: echo !!!!varname writes !!varname to $stdlist
echo !!!varname writes ! followed by varname’s value to $stdlist

*Number conversion example:
:setvar x “123”

:if x>0 then ...

:input X, “enter a value” # user enters 123

:if x =123 then # ERROR, x is a string!
:if 1x = 123 then # OK

*Here is an example when using explicit variable referencing is incorrect:
(assume an “array” of variables: namel, name2, name3, etc.)

1) setvarj 0
2) while setvar(j,j+1) <= limit and name!j <> “EXIT” do ...

Line 2 will always be reference the N-1th element in the “array”, and, worse, will try to reference ‘name0’ the first time.

Solution: 2) while setvar(j,j+1) <= limit and name![j - 1] <> “EXIT” do ... --or--
while setvar(j,j+1) <= limit do
if name!j <> “EXIT” then ...

*The biggest issue with regards to using !varname is that varname’s type is lost. Sometimes, this is exactly what is
desired, as shown in the number conversion examples. Other times, the type was never intended to be lost, and
therefore the user needs to surround a string !varname with quotes to preserve its type. It is this second usage that [am
trying to reduce because, in my opinion, readability and maintainability suffer.

59

3/29/02

hp €3000 imp"Cit referencing -

just varname

¢ evd ud ed during the execution o the command -- | & er than exgidt
referend ng

« makesfa norereadal e scips
« variad etypeis preserved -- no need far qua es, like “!varnanme”

« oy 5commands accept i nplidt rferendng CALG ELSHFE IR
SETVAR WH LE -- dl c¢hersrequre exdidt re erend ng

e dl @ function paraneters accept i ngidt referendng
« variad esind de![expression may bei ngidtly ref erenced

« perfa mance dfferences:

» “I'HPUSER! HPACCOUNT” ="OP. SYS’ 4340 nsec
* HPUSER +*.” +HPACCOUNT ="COP. SYS' 4370 nsec
* HPUSER =“OP’ and HPACCOUNT ="SYS’ 4455 nsec*

(*with user netchtrue)

my preferenceisthelast chd ce since many ti mes :| F wil na needto
evd ua ethe express on &te the AND

...... March 29, 2002 Page 60

o] prefer to use implicit referencing whenever possible. It makes scripts easier to read (closer to conventional
programming), avoids problems of early explicit referencing shown on the previous page, and preserves the variable’s
type. So my recommendation is that in the five commands listed above, and for all function arguments, and inside
I[expressions] use implicit referencing as your first choice.

60

3/29/02

hp 63000 Cl expressions

e operaas

e +(intsand strings), -, %/, A (), S <5 > >5 5 AND BAND BNOT,
BOR BXOR CSL, CSR LSL LSR MOD NOT, OR XOR

« precedence (hghtolow:
* 1) variad e dereferend ng
* 2 unary + o -
e 3 Lt operaars(csr, 14 .)
* 4) exponertiaion (")
* 5 */, nod
. 6) + -
* NS <5 53>=
* 8 logcd operaors (na, o .)
* |dttoright evduation except exponertidionisr-tol

...... March 29, 2002 Page 61

*HELP operators and HELP band, etc. provides additional information.

61

hp 63000 Cl expressions

e what is an express on?
e any variad g constart a fundionwth a wthou an opera o, eg
MYVAR “@+b, x04y/(nod 6), fdse (x>lim o (inpu() =Yy’
e partid evd udion

iftrue or x #“X' dde nat evd uat ed
if fdse and x #“X' dde nat evd uat ed
if bound(2) and z > 10then #if “Z’ nat definedit worit beref erenced

— prod ens when MPEXrunsthe scrip
« where can express ons be used?
* 5 commands that accept i nplidt variad ereferences:
:cdg if, :dsdf, :sevar, :whle
e I[expression] can be usedin any command
buld il e rec=80; dsc=![100+var X}
‘buld Hile dsc=![firfo“dil €,"edf")*3 #file bis 3ti mes b gger

« exanp es:
e cpirt !inpu(“Rle nanme?)]
e seva redy ups(rtri nfltri nfredy)))

...... March 29, 2002 Page 62

*Expressions are expected naturally in five CI command (CALC, IF, ELSEIF, SETVAR and WHILE), but they
must be forced to be evaluated in the remaining CI commands. This forcing is done by enclosing the expression
inside square brackets with a leading “!”.

A powerful feature of CI expression evaluation is what is called “partial evaluation”. Most programming
languages support this concept, which is, performing the minimum level of evaluation needed to determine if a
boolean expression is true or false. Not only does this allow the CI to evaluate expressions more efficiently, it is
necessary for some compound expressions. For example, consider the following expression:

if FALSE and Ift(input(“OK to continue?”),1) = “y” then ...
If the CI had to evaluate the entire expression then the user would see the prompt and be required to enter input.
Clearly this is not desirable since the expression will be FALSE regardless of the user input, and the user should
not be bothered with the prompt. To my knowledge, MPEX still does not support partial evaluation with respect
to the existence or not of variables. That is, in a statement like:

if TRUE or Ift(varA, 1) =“” then ...
MPEX evaluates the expression and enforces that “varA” exists, even though the TRUE clause could halt the left-
to-right evaluation. The above expression produces no errors in the CI (regardless of varA’s existence), thus CI
scripts written to exploit partial evaluation may not work correctly in an MPEX environment.

*As will be seen in the examples at the end of this presentation, some expressions can be long and complex. The
motivation for writing expressions this way is purely performance, and sometimes hinders support of the script.

3/29/02

62

3/29/02

hp €3000 Cl functions

« functions areinvoked by ther name, accept zeroor nore par s and
reunavdueindace o thar name and argunents

« file aient edfuncti ons:
« BASENAME, DRNAME, HNFQ ESYNTAX EQUAL FY
e string pards ng functi ons:
« ALPHA ALPHANUM DEL MPOS DWNS EOT LEN LFT, LTR M
NUMER G PMATCH POS REPL, RHT, RPT, RTRM STR UPS
WORD, WORDCNT, XWORD

e converd onfunctions:
« CHR DEQ MAL, HEX OCTAL, ORD
e arithnetic funci ons
« ABS MAX MN MOD ODD
e job process functions:
« JNFQ JOBCNT, A NFO
* nisc. functions:
« ANYPARM BOUND | NPUT, SETVAR TYPEOF

...... March 29, 2002 Page 63

*The CI currently supports 56 functions, over twice as many functions as in the base release of 5.0. However, the CI
only supports predefined functions -- user written functions are unavailable.

*Help is available for all functions by entering HELP functionName. A summary of the CI functions can be seen by
entering HELP FUNCTIONS. To get function help on a function that has the same name as a CI command, enter HELP
function_nameFN, e.g.. HELP setvarFN or HELP inputFN.

*The arguments to a function can be a literal constant, the name of a variable, or another function. When a variable is
used as a function argument, its value will be used as the argument value. However, five functions accept a variable
name but do not evaluate the variable (i.e. they don’t use its value): JINFO, PINFO, SETVAR, WORD and XWORD.

*Functions can be nested, that is, function A can invoke function B to obtain the value for one of function A’s
parameters. The only nesting limit is defined by the size of the CI’s internal buffer that holds the command line --
currently 511 bytes. There is an exception to nesting -- the ANYPARM function is special. Since anyparm() ignores all
delimiters, including all but the last right parentheses, it cannot be nested inside other functions, nor can other functions
be nested within anyparm’s argument.

‘DIRNAME(*f.g.a”) “/AIG”
‘FSYNTAX(“f.g.a”) “MPE”
FSYNTAX(“/a[c-g]”) “POSIX;WILD”
*FQUALIFY(“f”) “F.GRP.ACCT” or “/CWD/F”
FQUALIFY(“./f") “/CWD/f”
*DELIMPOS(“a,b;c d”) 2 useful when delimiter is a set of two or more characters
*EDIT(“ab;cd,ef”,”dw”) “cd ef” full REDO programmatic editing
*PMATCH(“ab”,”abc”) FALSE easy way to add pattern matching
PMATCH(“ab@?”,”abc”) TRUE
*WORDCNT(“a b,c=,d”) 5 test if a variable contains the expected number tokens
(value of ‘¢’ is null, but counts as a token -- consistent with
word and xword)
*XWORD(“Hi there, Fred”) “there, Fred”

63

3/29/02

wpwss JINFO function

syntax JNFO(“[# §JInnnn”, “itent [,staus])
wherejobl Dcanbe “[#J Shnn” o “0", neaning“ ne”

e 63 uniqueitens. Bigs CPUSec, | PAddr, JobQ Command,
JobUser Acct Goup, JobS ae SreamedBy, Witing...
e staus par misavariad e nanme. If passed, G sets gaustoJd NFOerror
reun-- normd A ero handing bypassed
e can see non-sendtive daafa anyjob on system
e can see sensitive data o “you’; on aher jobs w sane
user. acct if jobsecurityis LOW on aher jobsin sanme
acct if AMcap, on anyjobif SMor OP cap

...... March 29, 2002 Page 64

* :help JINFO provides all of the items, security rules and some examples.
* if JINFO (HPLASTJOB, “EXISTS”) then ...
you know the job exists, at least right now!
« if JINFO (“S543”, “IPADDR”) <> “” then
Session 543 is connected via the network
* if JINFO (target_job, “FMTPRIORITY”) = “DQ” then
‘target_job’ is currently in the DQ dispatcher queue
« setvar state JINFO (HPLASTJOB, “STATE”, status)
while status = 0 and state = “WAIT” do ...
setvar state JINFO (HPLASTJOB, “STATE”, status)
endwhile
+ if JOBCNT(“@J”, list) > 0 then
while JINFO (word(list), “EXISTS”) do
setvar list xword(list)

« while JINFO(hplastjob, ’EXECUTING”) do ...

64

3/29/02

JOBCNT function

hp €3000

syrntax JOBCNT (“job_spec” [,jobist_var])
e “Job_Spec’ can be
* “user.accournt”
« ‘jobnang, user. accournt”
@, @, @
* “ @:[jobnamne,] user. acat” o “ @s:[j obname,] user.acct”
e wldcard ngis supported
* use enptyjobname (“,”) to sd ect jobs wthou jobnanes
« onit jobnane to mat ch any j obname

...... March 29, 2002 Page 65

The JOBCNT function returns the number of job/sessions that match the “job_spec”, regardless of the state of the
matching job/sessions. In other words, JOBCNT does not filter based on whether the job is waiting, scheduled,
executing, etc. The function return is valid only for the moment it is returned, as a system’s job/session count can
continually fluctuate.
The “job_spec” parameter allows just jobs or just session to be selected for a given “user.acct” specification. For
example, to find only the jobs logged on as MANAGER.SYS use:

JOBCNT (* @J:MANAGER.SYS”)
It is possible to retrieve the job/session IDs for the matching jobs by passing the “joblist var” parameter. This unquoted
argument names an existing or new CI string variable. It will be set to a list of matching job/session IDs of the form:
J|Snnn, followed by a space, followed by the next ID, etc. For example:

“S123 S445J9 S567 110~

Since CI string variables currently cannot exceed 1024 characters, it is possible that the “joblist_var” passed to
JOBCNT cannot contain all of the matching job IDs. This situation is only detected by comparing the number of tokens
in the “joblist_var” against the function return. For example:

setvar cnt JOBCNT(“@” jlist)
if cnt <> wordent(jlist) then ... # not all matching jobs in variable

Assuming three digit job numbers, approximately 204 matches will fit in the “joblist var” variable. Possible solutions
to this restriction are:

« use separate JOBCNT calls for jobs and sessions
« use separate JOBCNT calls for various target accounts

There are no restrictions on the use of JOBCNT. Any user, regardless of their capabilities, can specify any “job_spec”
and retrieve the matching job/session IDs.

65

wpwss PINFO function

syntax RNFO(pn “itent [,status])
where A Ncan be agring “[#A nnn[.til”, o as nd eirteger, “0’is“ me”

e 66 uriqueitens: Aive | PAddr, Parent, Gild Crildren, Roctype

reun-- nomd A era handing bypassed
e can see non-sendtive daafa any user process on system
» fdlons SHOWPROC sruesfa senstive daa

...... March 29, 2002

Wor k@G oup, SecondaryThreads, NumOpenHles, ProgramNane, etc
e staus par misavariad e nane. If passed, G sets gausto R NFO erar

Page 66

* documented in 7.0 Express 1 Communicator or on Jazz at:
http://jazz.external.hp.com/papers/Communicator/7.0/exp1l/ci_enhancements.html
«:help PINFO provides all of the items, security rules and some examples.
« if PINFO (HPPIN, “Info”) = “PRINT” then ...
info="PRINT"” was specified for your process...
+ if PINFO (547, “IPADDR”) <> *“” then
This process is connected via the network
« if PINFO (target_pin, “SchedQ”) = “DS” then
‘target_pin’ is currently in the DS dispatcher queue
swalk down process tree:
setvar p PINFO (0, “jsmainPin”)
while p <> 0 do
setvar p PINFO (p, “child”)
endwhile
swalk up process tree:
setvar p 0
while PINFO (p, “proctype”) <> “JSMAIN” do
setvar p PINFO (p, “parent”)
endwhile
+find state of each descendant process:
setvar kids PINFO (0, “children”)
setvar kids word(kids,”/”,2) # get rid of count field
setvar k 0

while setvar(p,word(kids,,setvar(k,k+1))) <> “”” and PINFO (p, ‘alive’) do

echo Pin: !p, state=![PINFO (p, “procState”)]
endwhile

3/29/02

66

hp €3000 U DCS

e user defined command fil es (UDCs) - asingle file that contains 1 or
more command definitions, separated by a row of asterisks (***)

o feadues
* s npde waytoexecue severd commands Vi a one command
« dlowbult-in MPE commands to be overri dden
¢ can beinvoked eachti ne the userlogs on
e requrelock and (read ar eXecut €) access tothefile

e catdoged (definedtothe system) fa easy viewng and prevertion o
acd dertd dd etion -- see: SETCATALOG and : SHOWCATAL OG
commands

¢ can be defined for each user a account o & the systeml evd
« more dfficdt tomodify s nce fileusudly opened by users

...... March 29, 2002 Page 67

UDCs were the only way to group commands together and execute them as a single command on classic
MPE V systems and earlier. Today, we can still use UDCs, and we can use command files (or “scripts) for
the same basic purpose. However, there are important differences between UDCs and scripts that users
should consider. The similarities and differences of UDC compared to scripts are discussed in the next few
slides.

Similarities
*UDCs and scripts reside in standard MPE ASCII files
sthey both support parameters with optional default values
sthey both require read or execute access

sthey both support the options: HELP, NOHELP, LIST, NOLIST, BREAK, NOBREAK, PROGRAM,
NOPROGRAM

Differences
1. Cataloging:

One or more UDCs are collected into a single file. This file can be assigned (or cataloged) to a particular
user, an account or the entire system. Multiple UDC files can be cataloged to the same or to different users
and/or accounts simultaneously. The SHOWCATALOG and SETCATALOG commands provide this
cataloging service. Once a UDC file is cataloged it is opened by the user process and cannot be deleted or
modified until after the file has been un-cataloged (and closed). However, the POSIX shell’s “mv”
command does allow an open UDC file to be replaced. The changes are immediate to users just logging on,
but are not seen by current users unless the re-logon, or re-setcatalog.

The benefits of UDC cataloging are:
*many UDCs can reside in the same physical file,
*the UDC file cannot be accidentally purged or modified, since the file is open,
svisibility as to which UDCs are available to which users on the system.
The disadvantages of this cataloging approach are:
ecumbersome to modify individual UDCs defined in the UDC file,
soverhead to catalog the UDC file at logon time.

3/29/02

67

s command files (scripts)

e command fil e- afile that contains a single command definition

o feaues
« sane conven ence as UDCs

* searched fa dter UDCs and bult-in commands us ngthe HPPATH
variall e-- defadt HPPATHI nd udes “l ogon g oup, PUB.| ogon accourt,
PUB SYS ARPA SYS'

e requreread a eXecut e access
« easyto nodfy sncefileisorlyin use whleitis be ng execu ed
e vaey s mlatounixsaipgs a DOS ba files

...... March 29, 2002 Page 68

Command files (scripts) are single files that contain the commands to be executed. These files can reside
anywhere on a system; however, typically they are located in groups or directories referenced in the
HPPATH variable. Like UDCs, scripts are invoked via their name, however, since a script is a file, it can
be entered as a qualified filename or as an unqualified filename. Most commonly, script names are entered
as unqualified names (just the base name), and thus the HPPATH variable is used to complete (“qualify”)
the name based on successive group/directory names defined in HPPATH. UDC names can be up to 16
characters long, and thus are longer than standard MPE filenames; however, POSIX script names can be
longer than UDC names.

2. Command override mechanism:

A UDC name can be the same name as a built-in MPE command. The CI resolves a user entered command
name by checking for a UDC prior to searching for a built-in CI command. Thus, a UDC can hide a built-
in CI command. For example, a UDC can be named RUN, hence overriding the :RUN command.

A script cannot override a built-in CI command. For example, if a command file named RUN.PUB.SYS
exists and the user enters “:run”, the built-in :RUN command will be executed, not the script. Typically,
command file names are different from UDC and built-in command names. The :XEQ command is
provided to execute scripts with the same name as built-in commands or UDCs.

Note: after a user has logged on, UDCs are searched for in the following order:
suser level UDCs, starting at the first user file shown by :SHOWCATALOG
eaccount level UDCs,. starting at the first account file listed by :SHOWCATALOG
system level UDCs, starting at the first system file displayed by :SHOWCATALOG.

Multiple files at the same level (user, account, system) are searched for (and executed, if found) based upon
the order the files are cataloged.

Note: OPTION RECURSION causes the UDC commands within the option recursion UDC to be searched
for starting at the first file cataloged at the user level, regardless of the level of the executing UDC.

Note: the UDC search order is different at logon time.

3/29/02

68

3/29/02

mpwws UDC / script comparisons

e g nil aities
e ASdl, NOCCTL, nunbered o unnunbered, max 511record wdh
e optiond paraneter line ok - max of 255 argunents
e optiond opions, e g HELP, NOBREAK RECURSI ON
e optiond body (actud commands)
— noirdinedaa urike Unix‘heré files :(
« can praed file conterts by dlowng eXecut e access-orly security, i.e,
denyi ng read access

...... March 29, 2002 Page 69

3. Logon execution:

UDC:s support the OPTION LOGON option. A single UDC at each level (user, account and system) can be
executed at logon. Even if there are several UDCs at a given level with OPTION LOGON defined, only
one UDC (the first) per level will be executed at logon time -- the remaining OPTION LOGON UDC:s at
that level are ignored at logon. The order that UDCs are executed during logon is the opposite of the
execution order after logon. Namely, system level UDC are invoked first, followed by account UDCs,
followed last by user level logon UDCs. This order allows system managers to control access to their
system and to administer other security related policies via a system level logon UDC. Users cannot
override a system level logon UDC, at logon time nor during normal command usage.

Scripts do not support OPTION LOGON. However, it is not uncommon for an OPTION LOGON UDC to
simply invoke a script to do the real work. For example:

MYLOGONUDC file: LOGIN

OPTION LOGON # my logon script

invoke login script setvar hppath hppath+”,scripts.sys,hpbin.sys”
xeq login setvar hpredosize 100

Hak if hpinteractive then ...

4. Command name:

A UDC name can be from 1 to 16 character long and consist solely of alphanumeric characters, with the
first character being a letter.

Note: UDC filename can be an MPE syntax symbolic link pointing to a POSIX named UDC file, if for
some reason the actual UDC file needed to reside in the HFS. For example,

:newlink udclk, /usr/local/udcs/system.udc
:setcatalog udclk ; append

69

wowsss UDC / script comparisons (cont)

o dfferences:

scripgs can be variald erecord wdthfiles

UDCs requrel ock access, scrips dorit

scrip nanes can bein POS X syt ax, UDCfil enames nust bein MPE
syt ax

UDC name cannat exceed 16 chars, scripg name lenghfdlows rdes for
MPE and POS X naned fil es

EOFfa ascipisthered ed, end d a UDC commandis one o mor e
asterisks, satingincdum 1

...... March 29, 2002 Page 70

A script name follows the same rules as all filenames. These rules differ depending on the syntax specified.
MPE syntax filenames must be from 1 to 8 alphanumeric characters, with the first character being a letter.
If the MPE name is qualified it can contain a lockword, group and account names, each having the same
restrictions. POSIX syntax script names follow the rules for any POSIX-named file: 1 to 255 characters
long, beginning with any valid character except a dash (-), case sensitive and several special characters are
supported. Like MPE names, POSIX names can be qualified or unqualified. Unqualified (base) names are
completed by pre-pending POSIX elements from the HPPATH variable to the base name.

Note: a POSIX named script cannot be qualified via HPPATH unless HPPATH contains directory names in

POSIX syntax.

3/29/02

70

UDC file layout

hp 3000

flename: AUDC.PUB.SYS

. UDCcommandname [parm1] [p2 [= value]]
header: [ANYPARM parm4 [= value] |
[OPTION option_list]

any MPE command, UDC or script
body: (option list or option recursion supported in body too)

end-of-UDC | wwwwwwwnnx (end of this command definition)

header: NextUDCcommand [parm1]
[PARM P2, P3 =value]
body: [OPTION option _list]

any MPE command etc...

...... March 29, 2002 Page 71

*A UDC file contains one or more individual UDCs, separated by an asterisk in column one (characters
right of the asterisk are ignored).

*The header consists of the UDC name (required), zero or more parameters, and zero or more UDC
options.

*The parameter line may immediately follow the UDC name, or can begin on the following line
introduced with the reserved word PARM.

*If ANYPARM is specified it must be the last parameter defined.

*The OPTION line conventionally follows all parameters, though this is not required. Two
options (RECURSION and LIST) may appear in the body as well as the option line.

*The header ends at the first non-PARM, non-ANYPARM, non-OPTION command line.

*The body consists of zero or more commands, where the command can be a comment (#), a UDC, a built-
in CI command, a command file name or a program file name. The body ends when an asterisk is found in
column one. However, a UDC can exit prior to this end point in several ways:

«an error can cause the UDC to terminate

sthe :RETURN command exits the UDC

sthe :ESCAPE command exits the UDC

sthe :EOJ command in a UDC executing in a job

the :BYE command in a UDC executing in a session

3/29/02

71

hp 3000

body:

ed

body:

header:

header:

script file layout

flename: PRNT.SCRIPTS.SYS

[PARM parm1, parm2 [= value]]
[ANYPARM parm3 [= value]]
[OPTION option_list]

any MPE command, UDC or script

(:option list or :option recursion supported in body too)

flename: LG.SCRIPTS.SYS

PARM ...
OPTION nohelp ...
any MPE command etc...

March 29, 2002

Page 72

*A script has the same parts (header, body) as a UDC with a few differences:

*There is no script name in the header -- the script name is the filename, thus if there are any
parameters a PARM or ANYPARM line is required.

*An asterisk does not terminate a script. Thus a file equation can be reference the name of a
script to execute from within a script. For example:

file xy z= /bin/scripts/local-xyz

*xyz parml parm?2 ...
The above “*xyz” works only in a script -- in a UDC, the leading ‘*’ (if it was in column one)
would indicate the end of the UDC command.

3/29/02

72

Wy UDC search order

Rle UDCUSER udc.fi nance

1 Invoke UDCG wh ch cdls UDCA vith UDCA p1=abc «——

the argument “ghi” option NOrecursion

!

2. UDCAisfound, ¢arting ater the UDCC EﬂcC o

defi n.t| on (opti o.n NOecws on defaut) UDCB p1 = def
3. Theline“pl=gh”is echoed option recursion

udcA !p1

4. Invoke UDCB wh ch cdls UDCA pass ng b

the arg“def”. The recurs on opti on causes UDCC p1 = ghi

thefirea UDCAto befound Thscdls udcA !p1

UDCC andfdlows the pah a sep 1 e

above UDCAp1=xyz <—
5. Theline “pl=def” is echoed echo p1=Ip1

*kk

...... March 29, 2002 Page 73

*In the example above, :HELP UDCA, only finds the first definition of the UDC.

*OPTION RECURSION is necessary in UDCs that support multiple entry points, otherwise a UDC would not be able to
invoke itself recursively - as required by entry points (which are discussed elsewhere).

*OPTION RECURSION causes the UDC search to start completely over -- all the way back to the first user level UDC
cataloged. From this point all user, account and system level UDCs are checked in order to resolve the command name.

*OPTION NORECURSION is the UDC default and causes resolution of the next command to commence just after the
current UDC. Thus, in the example above, when udcC is processing the command “udcA”, it tries to resolve that command
name by first checking if it it a UDC defined somewhere “below” the definition of udcC. However, when udcB calls udcA
with OPTION RECURSION set, the search goes back to the first UDC catalogued. In this example, that is the udcA, at the
beginning of the file. The RECURSION scope is local to the current UDC and is not inherited by successive UDCs. So, when
the first udcA calls udcC which calls udcA, this invocation of udcA is not recursive, and thus executes the last udcA defined
in the file.

*OPTION RECURSION and NORECURSION are also CI built-in commands and can appear anywhere in the UDC body.
*Scripts are recursive by definition and OPTION NORECURSION has no meaning.

*Like OPTION RECURSION, none of the UDC/script options are inherited when one UDC invokes another UDC in a nested
fashion, except for OPTION NOBREAK. Once a UDC or script is encountered with OPTION NOBREAK specified,. all
other UDCs/scripts that are called by the NOBREAK UDC/script are treated as if OPTION NOBREAK were specified --
regardless of how BREAK is defined in the called UDC/scripts. OPTION NOBREAK is somewhat common in conjunction
with OPTION LOGON UDCs.

*OPTION NOPROGRAM is new to MPE/iX (MPE XL). This option indicates that the UDC or script is not allowed to be
executed from within a program (via calling the HPCICOMMAND intrinsic). Once an OPTION NOPROGRAM UDC is
encountered all UDC searching stops. The command in question may still be resolved to be a built-in command, or a script or
program file, but further UDC searching ceases. For example, define a UDC named LISTF, with OPTION NOPROGRAM,
which simply does ECHO LISTF!. If:LISTF is executed from the CI it will execute the LISTF UDC. If:LISTF is executed
from VOLUTIL (which calls the HPCICOMMAND intrinsic to execute all non-VOLUTIL commands), the UDC is found,
but, since it is OPTION NOPROGRAM, the UDC is not executed and no other UDCs are processed. :LISTF is found to be a
known CI command, and the real :LISTF command is executed. In the slide example above, if the first UDCA had OPTION
NOPROGRAM defined, and :UDCC was executed from VOLUTIL, the last UDCA would be executed. However, if UDCB
was executed from VOLUTIL, the first UDCA would be located, and since it is OPTION NOPROGRAM, it would not be
executed. Also, the second UDCA in the file would not be discovered, because all UDC processing stopped when the
NOPROGRAM UDCA was found.

3/29/02

73

3/29/02

hp 62000 script search order

e scrips and prograns searched for ter command is knownto na be a
UDC andto na be a bult-in command

e sane oder fa scripgs andfar programfiles
e fuly o partidly qudified names are execu ed wthou qudificaion

¢ unqudified names are conbi ned vith HPPATH denentstofa mqudified
filenames:

 firgd netchis execued

« filecode = 1029, 1030 fa programfiles

* EOF >0 andfilecodein Q.1023 for script files

» toexecue POS X named scripgsa POS X naned drectay nust be
presert inthe HPPATH variad e

...... March 29, 2002 Page 74

*HPPATH can contain POSIX names, e.g.. “/bin, /usr/bin/local” etc., mixed with or not mixed with
traditional MPE group and group.account names.

*Typically script names should be chosen to not collide with UDC names nor with built-in command
names.

*Qualifying a script name that is also a UDC or built-in command name does not work. For example,
suppose you have a script named ABORTIO, which is also the name of a CI command,and this script
resides in the XEQ.SYS group. If you enter:

:abortio.xeq.sys 17,20
you will see this CI error:

ABORTIO has exactly one parameter, the device number. (CIERR 3027)

Why? The Cl is really executing the built-in ABORTIO command and passing the arguments: “.xeq.sys”,
“177,“20”. The CI has “strange” name parsing rules for reasons of MPE V compatibility, and decides the
command name ends on the first non-alpha character -- “.” in this case. Thus, the command name is
“ABORTIO” and the first parameter is “.xeq.sys”. The ABORTIO command only expects a single LDEV
number and thus reports the above error.
The remedy is to use the XEQ command which expects its first parameter to be the name of a script or
program file.

:xeq abortio 17, 20 or

:xeq abortio.xeq.sys 17, 20 works fine.

74

hp €3000

UDCs vs. scripts

« optionlogon
e UDCs only(ascrift can be executed froman “option| ogon” UDC)

* logon UDCs execuedinths order:

— 1 Systemlevd 2 Accourt levd 3 UWser levd
(opposite d the non-l ogon exectti on or der!)

e d command search o der:
e« A UDCs (1 Werlevd 2 Accourtlevd 3 Systemlevd)
— thus UDCs can overri de built-in commands
e B bultin MPE commands, eg L STHLE

e C scrip and programfiles. HPPATH vari ad e used to qudify
ungudifi ed fil enames

e :XEQcommand dl ows script to be same name as UDC or built-in
command, eg :xeqlidf.scrigs sys

...... March 29, 2002 Page 75

3/29/02

75

s UDCs vs. scripts (cont.)

e perfa mance
* logonti me:
9 UDCfiles, 379 UDCs, 6050liness 12 sec.

most overheadin opering and cat d og ngthe UDC fil es
— to makelogons fast er renpve unneeded UDCs

e execuionti me
iderticd (wthinl nsec) fa d nple UDGCs vs scripts

3/29/02

however:
— fadaid saip:
fac 12 157 nsec
— fadaid UDC (optionrecurs on):
:facudc 12 100 nsec

— filedoselogg ngi npacts perfor mance for scripgs mor e s ncethey
are opened d osed far eachinvocati on

...... March 29, 2002 Page 76

Script FAC:
PARM f

compute up to 12 factorial.
if typeof(!f) <> 1 or !If <= 0 or !f >= 13 then
echo Expected an integer between 1 and 12.
return
endif
if not bound(factor) then
setvar savecpu hpcpumsecs
setvar factor 1
echo !f factorial used
endif
if If > 1 then
setvar factor factor * !f
xeq !hpfile ![!f-1]
else

all done, report answer and cpu time

echo ![hpcpumsecs-savecpu] msecs to compute.

echo Answer is: !factor ![octal(factor)] ![hex(factor)]
deletevar factor
endif

UDC FACUDC:
FACUDC f
OPTION RECURSION
if typeof(!f) <> 1 or !f <0 or !f >= 13 then
echo Expected an integer between 1 and 12.
return
endif
if not(bound) factor then
setvar savecpu hpcpumsecs
setvar factor 1
echo !f factorial used ...
endif
if If > 1 then
setvar factor factor®!f
facudc ![!f-1]
else
all done, report answer and cpu time
echo ![hpcpumsecs-savecpu] msecs to...
echo Answer is : !factor ![octal(factor)] ...
deletevar factor
endif

seskokskok

76

3/29/02

UDCs vs. scripts (cont.)

hp €3000

« mai ntenance/ flex klity/ security

* SETCATALOG opens UDCfilg cannat edt vithout un-cat d og ng file,
but dfficdt to acd dertdly purge UDCfile

» UDC commands goupedtogetherinsane file ead er toviewand
organ ze

» UDCfile can belockword praected bu users don't need t o know
lockwordto execut e a UDC

» scrips opened whil e ba ng executed (no cat d og ng), can be purged
and edted nore easilythan UDCs

» scripts canlive anywhere on sysstem Convertionisto dace generd
scripgsinacommon locaionthat gartsread o eXecut e access to dl,
e g “XEQ SYS' group

o if saip pratected by lockwordthenit nust be suppied eachti me the
scriptis execut ed

...... March 29, 2002 Page 77

*SETCATALOG user needs to know the lockword, but the the user executing individual UDCs does not ever need to
specify a lockword.

*Note: the POSIX shell’s “mv” command allows a new UDC to overwrite an existing UDC file that is being accessed.
The result of this is that user that just logon see the new UDC file, while users that were cataloged to the original file
see no difference until the re-logon. Once they all re-logon, the old file is purged by the system, since the file open
count went to zero.

77

sy UDC / script exit

* EOF -- real EOF for scripts, a row of asterisks (starting in column 1) for
UDCs

¢ :BYE :EQJ, : EXT -- terminate the Cl too, to use BYE or EOJ must be the
root Cl

¢ RETURN -- useful for entry point exit, error handling, help text - jumps back
one call level

* ESCAPE -- useful to jump all the back to the ClI, or an active :CONTINUE.
In a job without a :CONTINUE, :escape terminates the job. Sessions are
not terminated by :escape. Can optionally set CIERROR and HPCIERR
variables to an error number

...... March 29, 2002 Page 78

3/29/02

78

hp €3000 parameters

e syntax ParmName [=vdue]
» supdying avdue neansthe paraneterisopiond. If novdueis
defined the paramet er i's cons dered required

w on

e max par mnane is 255 bytes, chars Az 09 “°

* max par mvdueisli mted by the Q’'s command buffer dze (curently
511 characters)

e dl par mvd ues are untyped regard ess o quaing

» Par ms are separated by a space, comma or senicd on

» defadt vd ue may be a nunber, string !varial g ![express or], an
earlier defined par m(! par m

o dl paranmeters nmust be exdidtlyreferencedinthe UDJ scripgt body, e g
I'par manme

» the scope d a par misthe body of the UDQ scri pt

...... March 29, 2002 Page 79

*A parameter and variable can have the same name but this should be avoided to improve support of UDC and scripts
*PARM pl=abc
setvar pl, “xyzzy”
echo P1=Ipl ---> Pl=abc
echo P1=![pl] ---> Pl=xyzzy

Note: explicit referencing (!x) looks for parameters first, then if no match searches for variables. Implicit referencing
(x) does not look for parameters at all, and only searches for a variable name.

*PARM pl, p2=abc, p3=“def”, p4=1, p5="1”, p6=true,p7="false”, p8=!p2, p9=![tht(HPJOBNAME,-2)]

*Argument P1 is required. Argument P8 contains the value of P2. Argument P9 defaults to the value of the
HPJOBNAME variable -- less the first character.

eInternal to the CI all parameter values are stored as strings, but since parameters must be explicitly referenced
(!parmname) their string type is not preserved. Thus, to a CI programmer all parameter values are un-typed:

scalc typeof(p2) =0 # no meaning since parm p2 was not explicitly referenced (assume no
variable named P2)

scalc typeof(!p2) =0 # no meaning (assume no variable named ABC)

scalc typeof(“!p2”) =2 # string, regardless of p2’s value since value was quoted

«calc typeof(!p4) =1 # integer

scalc typeof(!p5) =1 # integer, quotes around default value don’t matter

scalc typeof(!p6) =3 #boolean

scalc typeof(“!p6”) =2 # string since I quoted it!

scalc typeof(!p7) =3 #boolean

3/29/02

79

parameters (cont)

hp €3000

+ all parameters are passed “by value”, meaning the parm value cannot be
changed within the UDC/script
+ aparm value can be the name of a Cl variable, thus it is possible for a
UDC/script to accept a variable name, via a parm, and modify that variable’s
value, e.g.
SUM a, b, result_var SUM is a UDC name

setvar !result_var !a +!b
dededdet

:SUM 10, 2010, x

:showar X X =1034

;sevar | 10

isdvar J 12

:SUM i, j, X inside SUM: setvar x, i +j
:showar x X=22

...... March 29, 2002 Page 80

*Note: inside the SUM UDC the parameters A and B cannot be changed. For example, if

:setvar a,atl
appeared inside SUM, it would try to create a CI variable named A, but would fail since a job/session global variable
named A does not exist and thus cannot be referenced. If instead,

:setvar a,lat+1
appeared inside the SUM UDC, this would create a new CI variable named A with a value equal to the value of the
parameter A+1. Neither example alters the parameter’s value.

3/29/02

80

hp €3000 ANYPARM parameter

e dl ddi ntersignored
e must belast paraneter definedin UDQ script
« only one ANYPARM dl owed
e oy waytocapure user ertered ddi nmiters, wthout requiring user to quate
everythng
e exanp e
TELLT user
ANYPARM nsg ="

prepends ti mestanp and highligts nsgtext
tel luser; a !hpti mef: ![chr(27)] &B! nsg

:TELLT opsys H, wha’s up,,, systemseens fast!
FROM S68 JEFF.U1/3:27 PM: Hi, what’s up.,,, system seems...

e anypar nf) functionis usefu vith ANYPARM par amet ers

...... March 29, 2002 Page 81

*A few examples using ANYPARM and the anyparm function are shown in other parts of this talk, with respect to
capturing an INFO= string.

[z

*The only way to get an ANYPARM parameter value to default to
ANYPARM p =1![*"] # correct
ANYPARM p = # wrong - default value is literally the two quote marks

(empty string) is as follows:

3/29/02

81

hp €3000

entry points

* s ndeconventionfa execuing sane UDd scripg gatingindfferent

“sections” (o subr outi nes)

e a UDQ script invokes itsdf recursivdy pass nginthe name o an entry

(subroutine) to execut e

* thescrip detectstha it shod d execut e an dternate ertry and sk ps dl the

code nat rd evant tothat ertry.

e most usefd when conmbined wthl/ Oredrecion but can providethe

appear ance d generi c subroui nes

* benefits are fewer script filestomai ntan dight perfor mance gansnce

MPE opens an already opened file fast er, can use vari ald es dready
definedin scrip

e UDCs need OPTI ON RECURS ONto use mitige ertry parts

...... March 29, 2002 Page 82

*There is no limit to the number of entry points, and there is no required order: all entry points can appear in the

beginning of the script, the end or both.

*An entry point is just a programming convention implemented by adding another parameter to the PARM line, and
passing the desired entry point name to the script/UDC when it is invoked. This extra parameter is never explicitly

provided by the user.

*By definition, all scripts and UDCs using alternate entries are recursive.

3/29/02

82

hp €3000

entry points (cont)

* two approaches far dterna e ertries:

define a par mtobethe ertry pd nt nane, defadtingtothe na n part
of the code (“ran”)

the UDQ script i nvokes itsdf recursvdyinthe man code, and may
use |/ Oredredion heretoo

each ertry pd it reurns when done (via: RETURN command)

a

test HPSTO N o HA NTERACTI VE varial eto det ect if scrig/ UDC
has I/ Oredrect ed.

if TRUE then assunme UDQ script invoked itsdf.

linmted orlyto entry pa rts used when $STDL ST or $STO Nare
redrected

limtedtoadnde dtenae ertrypant, nmay nat work wal injobs

...... March 29, 2002

Page 83

3/29/02

*My preference is the first approach since it is the most flexible method. In fact, I usually structure my scripts to be able

to work with multiple alternate entry points, even if I need only a single alternate entry at the time the script is being

first written.

83

3/29/02

Wpwws entry points (cont)

* generic approach:

PARM pl ... entry=mei n # defadt ertryis“mai i’
if “lentry” =" mai n” then
.intidize ec ...
xeq!HPA LE!pl, ...entry=go # run sanme scrigt, dfferent ertry
... deanup etc...
reun

dsef “lentry” =“go” then..
execuethe GO subrouine...

rgun
dsdf “lertry’ = ...
endf

...... March 29, 2002 Page 84

*This shows a script structured so that it can accept multiple alternate entry points.

*There should be little or no code before the if “!entry” = “main” line.

*Notice that RETURN is used to exit the main and all alternate entries. This is not required since the CI will drop out of
the entry block of code, reach the eof and naturally return back to where the script called itself. However, performance
is improved using RETURN in the manner shown above.

*ANYPARM scripts with entries use a slightly different structure and require more parsing:
ANYPARM pl =[]
if “Ip1” =" or pos(“entry=","p1”) = 0 then
main entry for script
xeq 'hpfile some parm value entry =do_this
return
else
parse out entry name and execute entry subroutine, entry name is last word
setvar _entry word(“!p1”,,-1)
remove “entry=name” from parm line
setvar _parm Ift(“!p1”,pos(‘entry=","!p17)-1)
case on entry name
if _entry = “do_this” then ...
return
elseif entry = ...
endif
endif

*UDCs with entries need to specify OPTION RECURSION so that the UDC can invoke itself with the alternate entry
name. OPTION RECURSION can be in the UDC header or a separate CI command.

84

Wpwws entry points (cont)

 i/oredredion spedfic approach
PARM pl ... # no “ertry’ parm defi ned
if HPSTO N=“$STO N’ then
(e entry --irntidize éc..)
xeq! HPHLE!pl, ... <sonefile
...(deanup etc .)
reun

execuethe ertrytoread “so nefil €
sevar ed ANFQ hpstdn “ed”)

rgun
endf

dse #nodsdf dnceorly 1dtenae

March 29, 2002

Page 85

*Note: the HPSTDIN = “§STDLIST” test above could be replaced with:
if HPINTERACTIVE then...

3/29/02

*This approach to alternate entry points works fine for its limited uses. It does not handle multiple alternate entries and

requires I/O redirection for the single alternate entry.

*In a job you must use the HPSTDLIST test since HPINTERACTIVE is always FALSE.
«If the script itself is run with I/O redirected then both tests (HPSTDIN and HPINTERACTIVE will be inaccurate, and

the generic approach must be used.

85

