
© Copyright LegacyJ Corporation 2002

Putting IT All Together
HP 3000 applications

It’s not Dead, Just Moved

© Copyright LegacyJ Corporation 2002

Agenda

• LegacyJ Overview
• PERCobol 3.0 IDE
• HP e3000 Migration
• Propagating the Application Server (EJBs)
• Case Studies
• Summary

© Copyright LegacyJ Corporation 2002

LegacyJ

• Solutions enable legacy modernization and
mobilization
EJB directly from COBOL source
XML in COBOL files
Graphical Interfaces with COBOL

• COBOL anywhere . . . To Java technology
everywhere!
Platform independence

• “Because the applications are the business”

COBOL

SQL

Unix

VPlus

MPE/iX

© Copyright LegacyJ Corporation 2002

Putting it All Together

LinuxMPE/iX

SQL
App. Svrs

COBOL

EJBs

VPlus
Unix

CHALLENGE: leverage legacy
applications for platform
independence and data to populate
modern Application Servers

• COBOL to EJBs (PERCobol)
• J2EE Compliance
• Access legacy data
• Platform independence
• Reduce costs
• Remove proprietary restrictions
• XML, Java and other web enabling

technologies

© Copyright LegacyJ Corporation 2002

PERCobol 3.0 IDE

© Copyright LegacyJ Corporation 2002

SQL

App Svr.

COBOL

LegacyJ PERCobol

• PERCobol compiles HP COBOL syntax
and most other variants.

• Generates J2EE compliant EJBs
(PERCobol runtimes are Java based)

• Access to SQL data sources (JDBC2
compliant)

• PERCobol read XML as COBOL Data

© Copyright LegacyJ Corporation 2002

HP 3000 Migration

VPlus

COBOL
Application

IMAGE

Macros

Intrinsics
(Selected)

KSAM

ViewJ Graphical Screens

PERCobol Platform Independent
COBOL

Platform Independent
Intrinsics

Platform Independent
Macros

Image Intrinsics
PERCobol

KSAM Intrinsics
PERCobol

SQL Database*

Indexed Files
(C-ISAM)

Component Solution Target Result
D

at
a

B
us

in
es

s
Lo

gi
c

U
I

VPlus Intrinsics Platform Independent
IntrinsicsPERCobol

PERCobol

PERCobol

COBOL

Database

UI

© Copyright LegacyJ Corporation 2002

COBOL

Assessment

Planning

Migration

Data Business
Logic

Validation

Promotion

Certification

Migration Flow

Database
UI

User
Interface

Deploy
Environment

© Copyright LegacyJ Corporation 2002

Intrinsics

• General Intrinsics
– Date/Time
– Data Conversion
– Message Catalog
– Local locking
– JCW

• Image Intrinsics
• VPlus Intrinsics

VPlus

Database

UI

© Copyright LegacyJ Corporation 2002

General Intrinsics

•ALMANAC
•ASCII
•BINARY
•CALENDAR
•CATCLOSE
•CATOPEN
•CATREAD
•CLOCK
•CTRANSLATE
•DASCII
•DATELINE
•DBINARY
•FINDJCW
•FMTCALENDAR
•FMTCLOCK
•FMTDATE

•GETJCW
•GETLOCRIN
•LOCKLOCRIN
•PAUSE
•PRINT
•PRINTOP
•PRINTOPREPLY
•PUTJCW
•SETJCW
•STACKDUMP
•TIMER
•UNLOCKLOCRIN

COBOL
VPlus Database

© Copyright LegacyJ Corporation 2002

VPlus Intrinsics Supported

VCHANGEFIELD
VCLOSEFORMF
VCLOSETERM
VERRMSG
VFIELDEDITS
VFINISHFORM
VGETBUFFER
VGETDINT
VGETFIELD
VGETFIELDINFO
VGETFILEINFO
VGETFORMINFO
VGETINT
VGETKEYLABELS
VGETLANG
VGETLONG
VGETNEXTFORM
VGETPACKED

VGETREAL
VGETYYMMDD
VGETZONED
VINITFORM
VLOADFORMS
VOPENFORMF
VOPENTERM
VPLACECURSOR
VPRINTFORM
VPRINTSCREEN
VPUTBUFFER
VPUTDINT
VPUTFIELD
VPUTINT
VPUTLONG
VPUTPACKED
VPUTREAL

VPUTWINDOW
VPUTYYMMDD
VPUTZONED
VREADFIELDS
VSETERROR
VSETKEYLABEL
VSETKEYLABELS
VSETLANG
VSHOWFORM
VTURNOFF
VTURNON
VUNLOADFORM

VPlus COBOL

© Copyright LegacyJ Corporation 2002

ViewJ

Platform Independent VPlus screen execution
• Text
• Basic Graphic
VPlus Forms
• Slow or Fast Forms
• Process Specification
• Intrinsic Interface
Dynamic conversion (Execution Time)
• Application
• Web-enabled (Applet)

UI

© Copyright LegacyJ Corporation 2002

A Staged Approach
D

at
a

Option

Option

Option

Complete Intrinsics to HP e3000
(dbcalls, mpefile, system)
from PERCobol to HP3000

Standard Database Intrinsics
(DBOPEN, DBCLOSE, DBFIND…)
from PERCobol to HP Eloquence on
Linux, HP-UX and Windows

Standard Database Intrinsics
(DBOPEN, DBCLOSE, DBFIND…)
from PERCobol to Oracle, DB2, Sybase,
SQL Server, etc.

Availa
ble Today

Availa
ble Today

Availa
ble 2Q02

© Copyright LegacyJ Corporation 2002

E3000 Database Summary

S/390

SQL App. Svr

COBOL

EJBs

VPlus

Linux Unix

Image
DB2

Image data is
migrating to SQL

Flexibility is important
with the ability to
deploy anywhere

Oracle

Informix

Sybase

© Copyright LegacyJ Corporation 2002

Graphical COBOL

COBOL or Java GUIs

COBOL graphical
Screen Section

© Copyright LegacyJ Corporation 2002

screen section.

 01 screen-1.

* the items in a graphical screen section may have non-integer
* positions, column and line. Tthe name of the variable
* (optional, FILLER otherwise) is followed by the control-type
* (if graphical), such as label or entry-field.
* then the property [[=] value] clauses follow.

 03 label "PERCobol Graphical Sample",
 line 1.5, column 21, size 25,
 font large-font, center.
 03 frame, rimmed, font small-font
 line 4, column 4, size 32, lines 9.
 03 label, title frame-text, font small-font,
 line 5, column 5, size 30, lines 7.

 03 label "&Entry Field", line 14, column 5.

 03 entry-field, using entry-data-1
 column + 2, 3-d.

 03 label "&Multi-line Entry Field",
 line + 3, column 5, cline + 2.

 03 entry-field, using multiple entry-table
 line + 1.5, cline + 1, column 8, size 50, lines 5,
 max-lines = 20, vscroll-bar, 3-d,
 no-autosel, use-return.

 03 check-box "&Check-box",
 using check-box-data, line 5, column 38.

 03 frame, lowered,
 line + 1.5, column 37,
 lines 3, csize 28, size 26.

* radio-button-data is assigned the group-value of the
* selected radio-button.

 03 radio-button, "&Left"
 using radio-button-data,
 line + 1, column 38, group-value = 1.

 03 radio-button, "&Right"
 using radio-button-data,
 column + 3, group-value = 2.
 03 label "&Combo-Box" line + 2.5, column 38.

 03 combo-1, combo-box using combo-data
 line + 1.5, column 39, lines 5, size 16, 3-d.

 03 push-button, "E&xit Program",
 ok-button, line 25, cline 23, column 27, size 13.

Graphical Cobol

© Copyright LegacyJ Corporation 2002

Object Oriented COBOL

CLASS-ID. name INHERITS "class" IMPLEMENTS "class"
METHOD-ID. name.

DATA ...
PROCEDURE...

END METHOD.
METHOD-ID. name.
END METHOD.
METHOD-ID. name.
END METHOD.
...

END CLASS.

© Copyright LegacyJ Corporation 2002

EJB Container / Server Program
(JBOSS)

Server Machine Client Machine

EJB Component

EnterpriseBean
(InterestBean)

EJB Client
(InterestClient)

XML Deployment
Description
(EJB-JAR.XML
JBOSS.XML)

EJBHome
(InterestHome)
EJBObject
(Interest)

Interfaces
TCP/IP

Enterprise JavaBeans

© Copyright LegacyJ Corporation 2002

Home Interface

* This example is coded for the JBoss EJB Container. The naming
* provider and setup information may differ for other EJB Containers.
* The logic flow remains the same. (http://www.jboss.org)
*
* This example requires J2EE. JDK 1.2+ plus JBoss is sufficient.
*
* The CLASSPATH to compile must include \jboss\lib\ext\ejb.jar in
* addition to the percobol.jar required for any Cobol program. This
* is the javax.ejb.* package; its location may vary in other EJB
* vendors.
*
* Set the package name; this could be done from the command line
* using the '-package name' directive instead. Setting a package
* is generally not necessary for an EJB, but it's good practice.

$SET PACKAGE com.web_tomorrow.interest

*
* An INTERFACE-ID is the same as a CLASS-ID, but without any
* method definitions. No special-names, no data other than
* linkage, and nothing in the procedure division other than
* the procedure division using is allowed. This defines a
* contract which another class-id program may implement.
*

IDENTIFICATION DIVISION.
INTERFACE-ID. "InterestHome" INHERITS "javax.ejb.EJBHome".

*
* Only a create method is necessary to define for this interface,
* allowing the client to create the Enterprise JavaBean.
*

METHOD-ID. "create" THROWS "java.rmi.RemoteException",
"javax.ejb.CreateException".
DATA DIVISION.
LINKAGE SECTION.
 77 result OBJECT REFERENCE "com.web_tomorrow.interest.Interest".
PROCEDURE DIVISION GIVING result.
END-METHOD.

END-INTERFACE.

The home interface describes the creation method.

© Copyright LegacyJ Corporation 2002

EJB Class (part 1)

* This example is coded for the JBoss EJB Container. The naming
* provider and setup information may differ for other EJB Containers.
* The logic flow remains the same. (http://www.jboss.org)
*
* This example requires J2EE. JDK 1.2+ plus JBoss is sufficient.
*
* The CLASSPATH to compile must include \jboss\lib\ext\ejb.jar in
* addition to the percobol.jar required for any Cobol program. This
* is the javax.ejb.* package; its location may vary in other EJB
* vendors.
*
* Set the package name; this could be done from the command line
* using the '-package name' directive instead. Setting a package
* is generally not necessary for an EJB, but it's good practice.

$SET PACKAGE com.web_tomorrow.interest

*
* This class-id program is the main Enterprise JavaBean. It contains
* the business logic which is exposed to the outside world and enough
* hooks to allow the EJB Container to control the bean.
**
* A SessionBean is a particular type of EJB; this is the type most
* corresponding to a CICS transaction and the type most Cobol programs
* will implement.
*
* A SessionBean is a logic bean; an EntityBean is a data bean.

IDENTIFICATION DIVISION.
CLASS-ID. "InterestBean" IMPLEMENTS "javax.ejb.SessionBean".

* IDENTIFICATION DIVISION. is optional for a method-id.

METHOD-ID. "calculateCompoundInterest".

DATA DIVISION.
LINKAGE SECTION.
 01 principle COMP-2.
 01 rate COMP-2.
 01 periods COMP-2.
 01 result COMP-2.

The Bean class is the only one that does any real work in this
example.

© Copyright LegacyJ Corporation 2002

EJB Class (part 2)
PROCEDURE DIVISION USING BY VALUE principle, rate, periods GIVING result.
MAIN-PARAGRAPH.

* The DISPLAY UPON SYSOUT goes to the main log file of the EJB Container.
* This may just be printed on the EJB Container sysout. It will _not_
* be visible to the client. Only the GIVING result piece will be
* returned and made visible to the client.

 DISPLAY "Someone called 'calculateCompoundInterest' in PERCobol!"
 UPON SYSOUT
 DISPLAY " principle=" principle
 UPON SYSOUT
 DISPLAY " rate =" rate
 UPON SYSOUT
 DISPLAY " periods =" periods
 UPON SYSOUT

* There are other ways of computing this, but this example demonstrates
* the similarities between the Java and Cobol implementations of
* EJBs.

 COMPUTE result = principle * ((1+rate) ** periods) - principle

 DISPLAY " result =" result
 UPON SYSOUT
 DISPLAY " formula is principle*((1+rate)**periods)-principle"
 UPON SYSOUT
 .

END-METHOD.

© Copyright LegacyJ Corporation 2002

EJB Class (part 3)
* Many EJB's can just copy the remaining code into their code.
*
* All remaining methods in this class are structural methods,
* necessary not for the business logic but rather for the EJB
* Container to be able to control this bean.
*
* Add in some DISPLAY UPON SYSOUT's to the procedure division
* of the methods in order to gain some feel over when these
* methods are called.
*
* We are given the session context, but we don't need it in this
* program so we ignore it. This method is required to fulfill
* the interface of javax.ejb.SessionBean.
*

METHOD-ID. "setSessionContext".
DATA DIVISION.
LINKAGE SECTION.
 01 sc OBJECT REFERENCE "javax.ejb.SessionContext".

PROCEDURE DIVISION USING BY VALUE sc.
END-METHOD.

* The following methods are required to fulfill the interface
* of javax.ejb.SessionBean. We don't need to do anything special,
* though, so we just create the method without a body. When
* the method has no parameters and no result, this is the barest
* possible method definition.

METHOD-ID. "ejbCreate". END-METHOD.
METHOD-ID. "ejbRemove". END-METHOD.
METHOD-ID. "ejbActivate". END-METHOD.
METHOD-ID. "ejbPassivate". END-METHOD.

END-CLASS.

© Copyright LegacyJ Corporation 2002

EJB Client (part 1)
* Enterprise JavaBean Client Sample
*
* for the JBOSS EJB Container.
*
* The original Java version of this EJB client is available at:
* http://www.jboss.org/documentation/jboss_win32_5.html
*
* This simple application tests the `Interest' Enterprise JavaBean which is
* implemented in the package `com.web_tomorrow.interest'. For this to work,
* the Bean must be deployed on an EJB server.
*
* IMPORTANT If you want to test this in a real client-server
* configuration, this class goes on the client; the URL of the naming provider
* specifed in the class must be changed from `localhost:1099' to the URL of
* the naming service on the server.
*
* Note: In Cobol, this program may also be used as a servlet if compiling
* with the -servlet flag, or using the com.legacyj.run.servlet as the
* name of the servlet with the servlet parameter 'servlet' pointing
* to interest_client. The only differences for servlets would be
* to add some additional DISPLAYs of HTML elements surrounding the
* text, such as DISPLAY "<HTML><HEAD><TITLE>EJB Client</TITLE></HEAD>"...
*
* The CLASSPATH must include ejb.jar (found in \jboss\lib\ext\ejb.jar
* and other J2EE implementations), the server-side classes (only
* the pieces actually referenced), and percobol.jar (already setup)
* for compilation.

IDENTIFICATION DIVISION.
PROGRAM-ID. interest-client.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.

* All classes are defined in either the CONFIGURATION SECTION/
* ENVIRONMENT DIVISION/REPOSITORY, or in the DATA DIVISION/CLASS-CONTROL.
* The format of either is identical.
*
 CLASS InitialContext IS "javax.naming.InitialContext"
 CLASS InterestHome IS "com.web_tomorrow.interest.InterestHome"
 CLASS InterestClass IS "com.web_tomorrow.interest.Interest"
 CLASS PortableRemoteObject IS "javax.rmi.PortableRemoteObject"
 .

An EJB Client can be any number of
types of program. It can be an
application, a server, a servlet, an
applet, a JSP page, or another EJB
Component. EJB Components
communicate with each other as if they
were clients; by loosely connecting
components in this manner, the EJB
Components are free to be fully
controlled by the EJB Container.

© Copyright LegacyJ Corporation 2002

EJB Client (part 2)
DATA DIVISION.

* In the Java original, the variable declarations are intermixed with
* the procedural code.
*

WORKING-STORAGE SECTION.

* Declare the variables actually used by the program. The COMPOUND-INTEREST
* was originally done in a different format for Java, but the INVOKE GIVING
* may reference a traditional Cobol variable, allowing a more appropriate
* display format to be chosen, such as the numeric-edited item below.

 77 compoundInterest PIC $$$$,$$$,$$$.99.

 77 jndiContext OBJECT REFERENCE InitialContext.
 77 home OBJECT REFERENCE InterestHome.
 77 ref OBJECT REFERENCE.
 77 interest OBJECT REFERENCE InterestClass.

© Copyright LegacyJ Corporation 2002

EJB Client (part 3)
PROCEDURE DIVISION.

* This method does all the work. It creates an instance of the
* Interest EJB on the EJB server, and calls its
• `calculateCompoundInterest' method, then prints the result of
• the calculation.

MAIN.
 SET ENVIRONMENT "java.naming.factory.initial"
 TO "org.jnp.interfaces.NamingContextFactory"

* Set up the naming provider; this may not always be necessary,
* depending on how your Java system is configured.

 SET ENVIRONMENT "java.naming.provider.url"
 TO "localhost:1099"

* Java Note:
* Enclosing the whole process in a single `try' block is not an
* ideal way to do exception handling, but I don't want to clutter
* the program up with catch blocks

* Cobol Note:
* No TRY block is necessary for this. Rather, each INVOKE is
* automatically safe, catching its own exceptions. If you want
• notification when an invoke fails, code the individual ON
• EXCEPTION clause for the INVOKE.

* Get a naming context
 INVOKE InitialContext GIVING jndiContext
 ON EXCEPTION
 DISPLAY "Could not create InitialContext."
 GOBACK
 END-INVOKE

 DISPLAY "Got context"

* Get a reference to the Interest Bean
 INVOKE jndiContext "lookup"
 USING BY VALUE "interest/Interest" GIVING ref
 ON EXCEPTION
 DISPLAY "Could not lookup interest/Interest"
 GOBACK
 END-INVOKE

* Note that if you did not use jboss.xml to overwrite JNDI
* naming the object will be available under "Interest" its
• ejb-name INVOKE jndiContext "lookup" USING BY VALUE
• "Interest" GIVING ref

 DISPLAY "Got reference"

* Get a reference from this to the Bean's Home interface

 INVOKE PortableRemoteObject "narrow"
 USING BY VALUE ref InterestHome GIVING home
 ON EXCEPTION
 DISPLAY "Could not narrow."
 GOBACK
 END-INVOKE

* Create an Interest object from the Home interface
 INVOKE home "create" GIVING interest
 ON EXCEPTION
 DISPLAY "Could not create home."
 GOBACK
 END-INVOKE

• call the calculateCompoundInterest() method to do the
• calculation

 INVOKE interest "calculateCompoundInterest"
 USING BY VALUE 1000 0.10 2
 GIVING compoundInterest
 ON EXCEPTION
 DISPLAY "Could not calculateCompoundInterest"
 GOBACK
 END-INVOKE

 DISPLAY "Interest on 1000 units, at 10% per period, "
 & "compounded over 2 periods is:" compoundInterest
 .

© Copyright LegacyJ Corporation 2002

EJB Execution Process

• Copy EJB Component to server deploy
directory

• Start Server
• Start Client

© Copyright LegacyJ Corporation 2002

DB2
COBOL

Case Study #1

PERCobol used to deploy COBOL from HP-
UX and Oracle to S/390 Linux with DB2
connections, by a Brazilian Bank
– PERCobol only COBOL compiler supporting IBM

COBOL syntax on S/390 Linux with connectivity to
DB2.

– Result: Migrated COBOL for deployment on
Application Server.

Linux
S/390

App Srvr

© Copyright LegacyJ Corporation 2002

Case Study #2

Migrate S/390 CICS COBOL application for
platform independence, and App-Server
execution, for California Court System
– PERCobol compiles IBM COBOL syntax and

produces J2EE compliant EJBs
– Execution is platform independent, running on

Compaq Server H/W, with Oracle
– Result: Major Savings and application server

enabled
COBOL

Any OS

App SrvrSQL

© Copyright LegacyJ Corporation 2002

Case Study # 3

Mainframe CICS COBOL application migrated to
App-Server for platform independence, and
integrated with Java components, for web
enablement while maintaining DB2 connection.
– CICS replaced with J2EE compliant Application

Server.
– Result: CICS independent COBOL application with

dramatic reduction in cost.

SQL
COBOL

App Srvr

