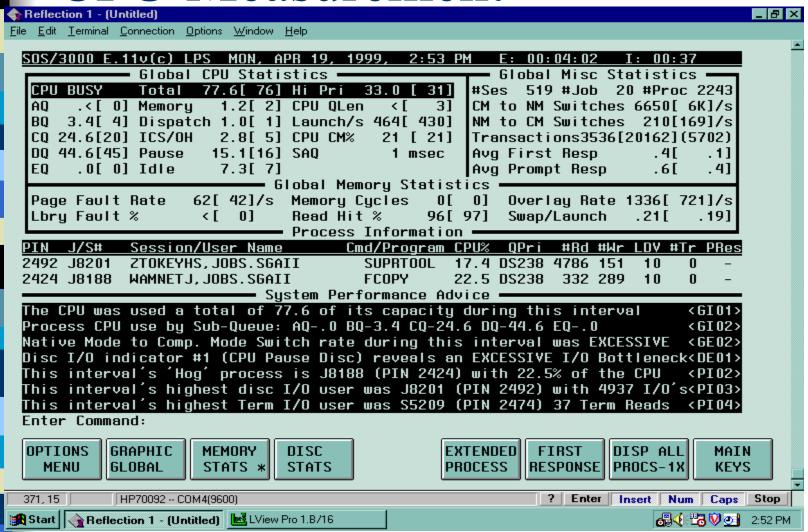
MPE/iX Ecometry Performance Training

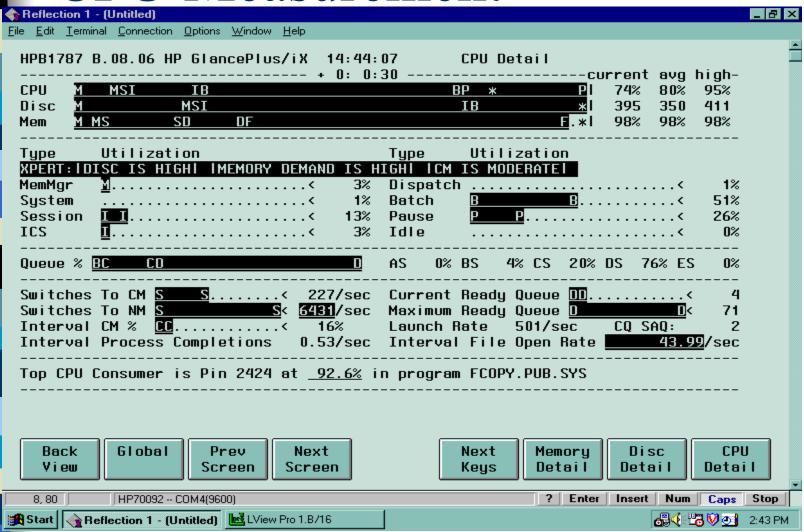
By: Jeff Kubler Kubler Consulting
Jeff@kublerconsulting.com
www.kublerconsulting.com

- The execution of an action, something accomplished, the fulfillment of a request,
- Good performance -- when requested actions complete within expectations. Bad is when they don't!
- Performance is important because users have expectations!

- Four basic macro areas: CPU, Memory, disk, network. Several micro areas: database, application
- Performance Management: keeping resources adequate
- Resource restrictions are often called "bottlenecks"
- Bottlenecks are first encountered at the "Knee in the Resource"

Macro Area: CPU


- CPU Activity
- CPU Activity States
 - Busy
 - Useful Work
 - Idle
 - CPU in the "Bank"
 - Paused for I/O
 - Wait for Disk
- CPU Run/Ready Queue

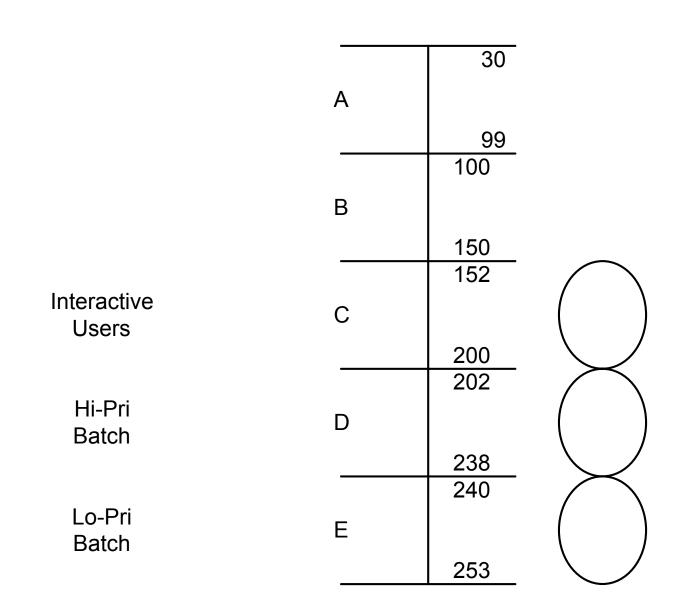

CPU:

- Total Busy: the resource as 0 to 100 percent utilized.
- Run Queue: the number of processes awaiting the CPU.
- Total Busy makeup: AQ, BQ, CQ, DQ, EQ, Memory, ICS activity, Overhead, and Dispatch.

CPU Measurement

CPU Measurement

- Process activity handled by the dispatcher
- Dispatcher allots to processes a dynamically calculated amount of time to process before being reduced in priority (the SAQ)
- This process is called Queuing!


- Where requests for service wait.
- How multiple requests are handled.
- Rules that are used to dictate how requests are handled.
- Termed Execution Queues.

- Entity that determines how processes are handled.
- Assigns priority.
- Allows process time on the CPU.
- Adjusts priority.

- 5 basic queues.
- Queues assigned numeric values.
- Highest priority process that is ready is serviced first.
- Lower priority processes can be "preempted" for those of a higher priority.

QUANTUM											
QUEUE	BASE	LIMIT	MIN	MAX	ACTUAL	BOOST	TIMESLICE				
CQ	152	200	1	2000	114	DECAY	200				
DQ	202	238	2000	2000	2000	DECAY	200				
ΕQ	2 4 0	253	2000	2000	2000	DECAY	200				

Showq output

CDII E			4	_			
						iX Version:	
						IF Version:	
User Mode	: MULT	'I I	Logical Cons	ole : 20	MI Al	IF Version:	A.02.00
			Job and Sess	ion Infor	mation		
'						Next Job	
Outfence	: 7	Sess I	Limit: 99	Sess	Count: 74	Next Sess	#: 106
Jobsecurit	cy: HIGH	Stream	ns Dev: 10				
Max # J/S	: 2500	Max #	Procs: 5460	Max #	Open Files	/Process:	1024
			Scheduling	Informat	ion		
Queue	Base	Limit	Quantum	Maximum	Minimum	Time Slice	Boost
AS	30	99					I
BS	100	150					I
l CS	152	200	49	2000	1	200	DECAY
l DS	202	238	2000			2000	DECAY
l ES	240	253	2000			2000	DECAY I

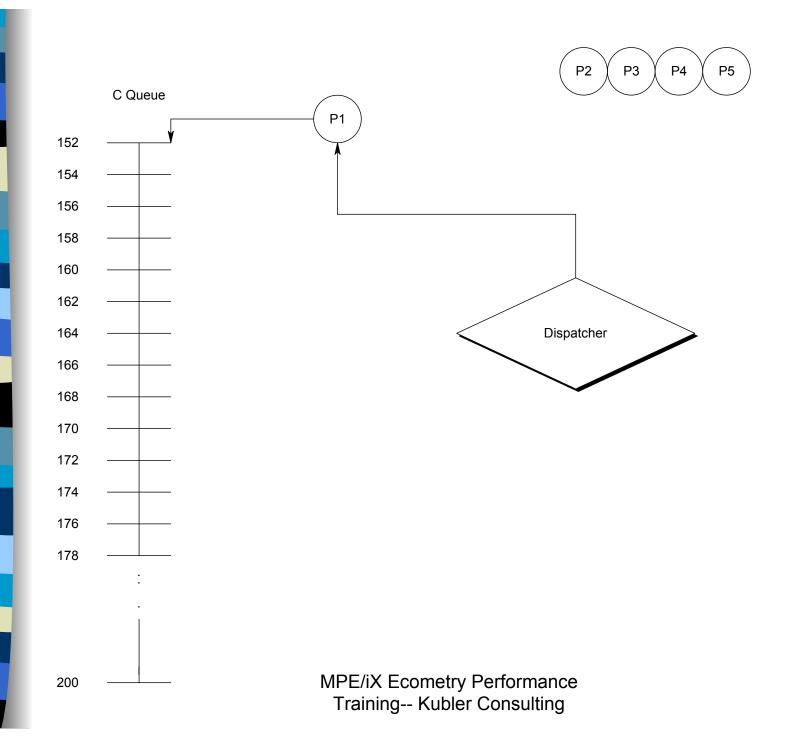
Sos/3000 System Configuration Screen

Dispatcher Terms

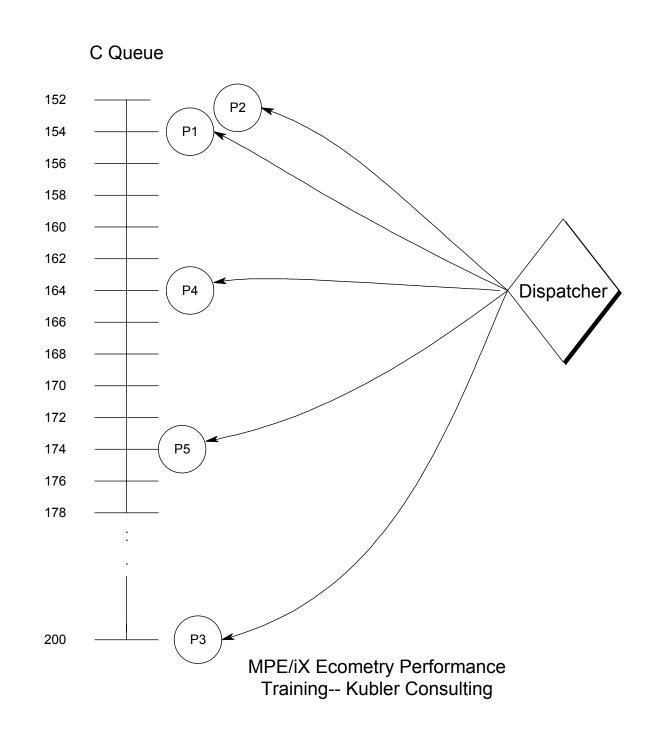
- Queue a range of priorities.
- Base high value of the queue.
- Limit bottom of the queue.
- Quantum The amount of time a process consumes before it's priority is adjusted.
- Actual The calculated Quantum.
- Max/Min Boundaries for the Quantum.

Dispatcher Terms

- Time Slice a dispatcher heartbeat intended to keep a process from taking up the CPU.
- Boost what happens to the process priority when it reaches the bottom.
- Decay Vs. Oscillate Priorities decay and stay at the bottom or jump to the base.
- Linear Vs. Circular Linear priorities do not change circular are adjusted.


PIN	J/S#	Session/User Name	Cmd/Program	CPU%	QPri	#Rd	#Wr	LDV	#Tr	PRes
1092	\$13488	BDECKER.SGAII	ORDERMGT	.6	CS152	0	0	58	5	.1
1176	\$13523	RSPARKS.SGAII	SOS	.6	BL100	1	0	100	1	6.1
1419	\$13253	RBRADFOR.SGAII	ORDERMGT	.8	CS152	9	0	393	7	.1
1283	\$13503	SHARTWEL.SGAII	ORDERMGT	.8	CS152	21	0	48	4	.2
255	J6857	STRIMAIL, JOBS. SGAII	SUPRT00L	1.0		0	10	10	0	
1247	J7338	DAYBUSEQ, MANAGER.SYS	STORE	3.6	DS238	459	15	10	0	
92	J7367	DJPUL4,JOBS.SGAII	SUPRTOOL	7.7	DS238	827	60	10	0	

- A Queue High level system processes.
- B Queue System processes and some important user processes.
- C Queue Interactive.
- D Queue Job Queue.
- E Queue Lower Job Queue.



- Occurs after the process gets a quantum of time.
- Usually in increments of two but can be more.
- Longer lasting processes decrease in priority.

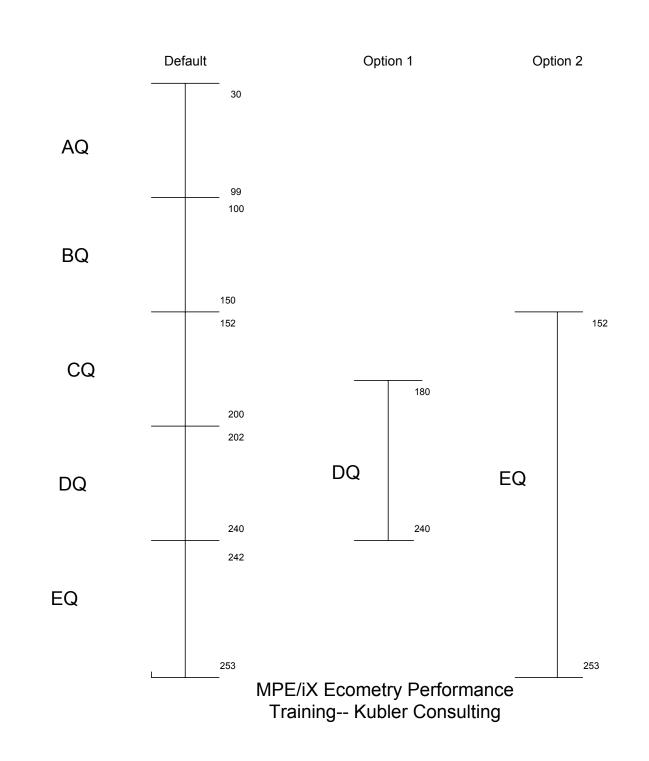
- Pre-emption is a Wait State.
- The state of a process when it is ready to execute but can't because the CPU has been given to a higher priority process.
- Based on PSPTF (Preemptive Shortest Processing Time First).

- Tune Command.
- Adjust Min/Max.
- Adjust Base and Limit.
- Change Decay to Oscillate.

TUNE

Changes the scheduling characteristics of the scheduling queues. These characteristics include base and limit priorities, quantum bounds (min and max), boost property and timeslice. (NM)

SYNTAX


{CQ}
TUNE[minclockcycle][[;]{DQ}=[base],[[limit][,[min][,[max]
{EQ}
[,[{decay }]][,[tslice]]]]]
{oscillate}

[[;]...]

CAUTION

Misuse of this command can significantly degrade system operating efficiency.

TUNE ;EQ=152,253

- Altproc command.
- Jump queue with SOS/3000.
- Set the queue with PRI= .
- Queue management tool.

ALTPROC

Changes characteristics for the specified processes. Currently, you may change the priority, queue attribute and workgroup for a process. This command requires OP or SM capability.

SYNTAX

Queue Management Tools

- Workload Manager.
- Q-xcelerator.

Workload Manager Features

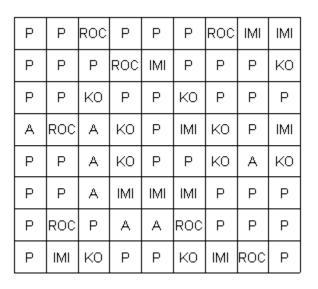
- Control over the total number of workgroups. Workgroups are user definable.
- Which processes become members of workgroups.
- Control scheduling characteristics for queues.

			QUANTUM				TIME			CPU %		
WORKGROUP	BASE	LIMIT	MIN	MAX	ACTUAL	BOOST	SLICE	PROCS	MIN	MAX		
	••••			• • • • • •				••••	• • •	• • •		
ORDPROC	175	215	1	2000	8	DECAY	200	0	0	100		
DTIJOBS	235	242	1	2000	1	DECAY	200	0	0	100		
AS_Default	30	99	N/A	N/A	N/A	N/A	1000	13	N/A	N/A		
BS_Default	100	150	N/A	N/A	N/A	N/A	1000	115	N/A	N/A		
CS_Default	152	200	100	2000	100	DECAY	400	201	N/A	N/A		
DS_Default	197	238	1000	2000	1000	DECAY	300	38	N/A	N/A		
ES_Default	240	253	2000	2000	2000	DECAY	200	0	N/A	N/A		

```
Workgroup = DB UTILITIES
;Memb Logon = 0.0
; Memb Program = QUERY@.@.@, ASKPLUS.@.@, DBUTIL.@.@, DBGEN@.@.@
;Base
             = 210
;Limit = 250
;MinQuant = 1
;MaxQuant = 2000
;Boost = DECAY
;Timeslice = 200
;MinCPUPCT = 5
; MaxCPUPCT = 15
*******
Workgroup = SALES AMISYS
;Memb Logon = SALES.AMISYS
;Memb_Program = 0.0.0
;Memb_Queue = (CS)
;Base = 152
;Limit = 198
;MinQuant = 1
; MaxQuant = 1000
;Boost = OSCILLATE
;Timeslice = 200
;MinCPUPCT = 10
;MaxCPUPCT = 0
```

Special issues

- Dealing with problem processes.
- Priority boosts -- high priority processes blocked by a resource held by a lower priority process.

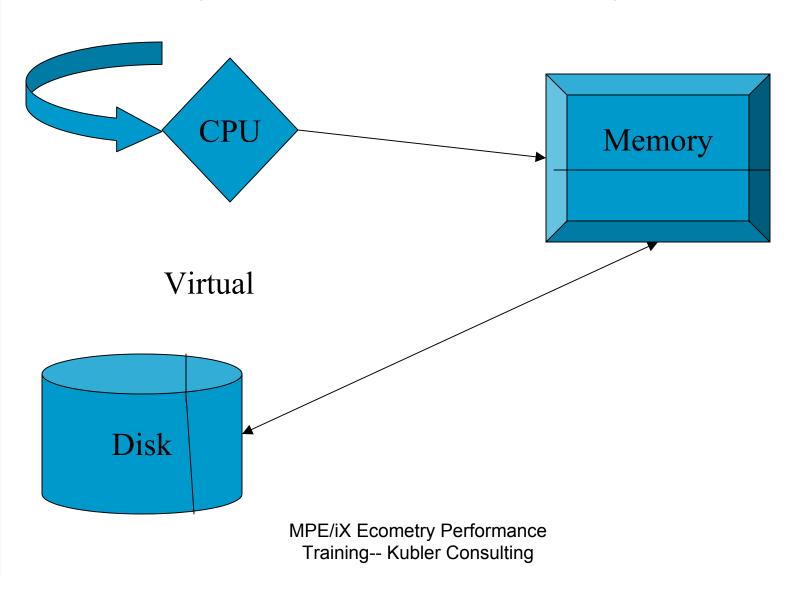

Queuing Discussion Summary

- The default queues are acceptable in most situations. Change them carefully only when needed.
- Careful changes can extend the useful life of your system.
- Use changes to help when total CPU is the bottleneck.
- Use changes to help when individual processes are the problem.

- Scratch pad for all work
- Information kept in pages, Memory Manager keeps track of pages, allocates pages to processes
- Memory Manager takes CPU. Also keeps track of busiest pages, locality list for each process....

Memory pages are marked with the following:

P - Present


IMI - In motion in

ROC - recoverable overlay candidate

A - Absent

KO - Kicked out

Memory: Virtual Memory

- Memory Analysis (scratch pad for work):
 - CPU used to manage memory
 - Page fault count (this count increases with machine size)
 - Read hit percentage

- Disk I/O (long term storage):
- Virtual Memory:allows programs with memory requirements > than memory to load.
 - Where inactive pages are moved to make room for new processes

Metrics:

- Disk I/O Queue Length requests waiting for service.
- Total I/O total reads and writes.
- Disk service time % of time a device is used.
- Read hit percentage how many I/O's eliminated due to memory

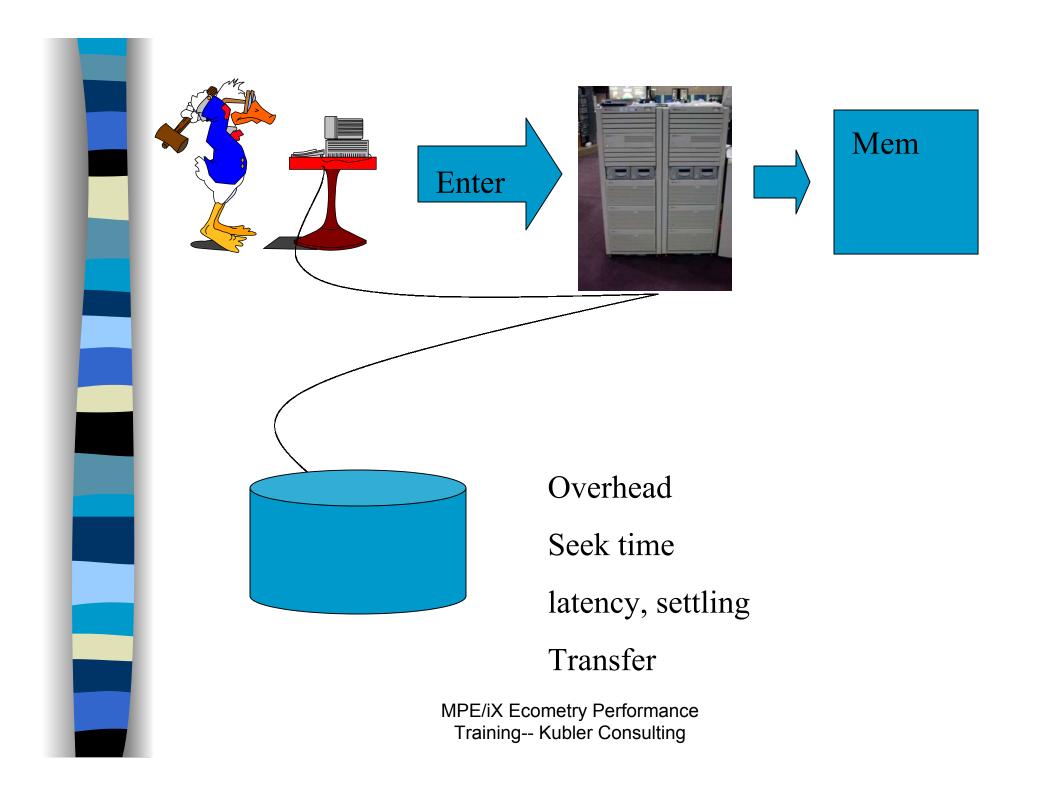
- Disk I/O Queue Length
- Pause or Wait for I/O
- Disk Service time
- Disk Utilization
- Total I/O count
- Response times

- Describes the location of data on disk (it is sometimes referred to as locality of reference)
- Data Locality encompasses both the issue of the placement of files on disk or on multiple disks and the issue of records within the files placed on disk.

Disk: What is Disk I/O?

Act of retrieving and/or updating information stored on a disk drive or in a disk environment.

Overhead - Negotiating the controller.

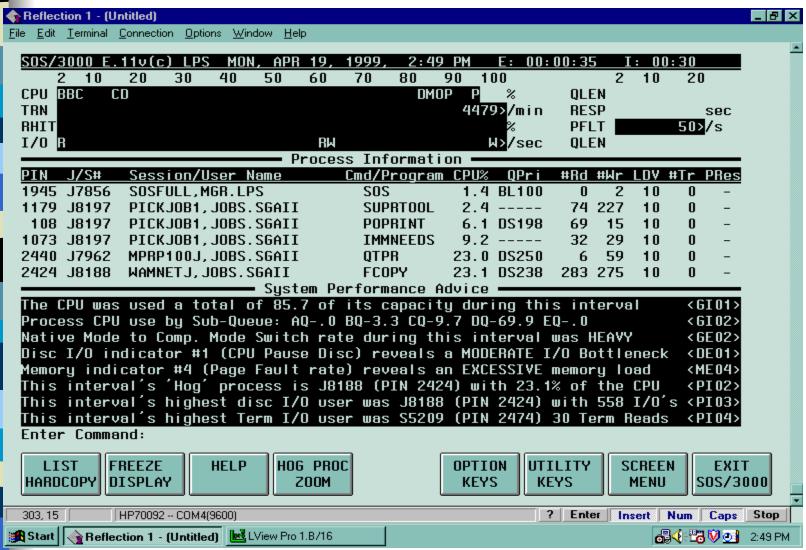

Seek Time - find data Latency - wait for data spin.

Xfr (transfer of data) - bring data over.

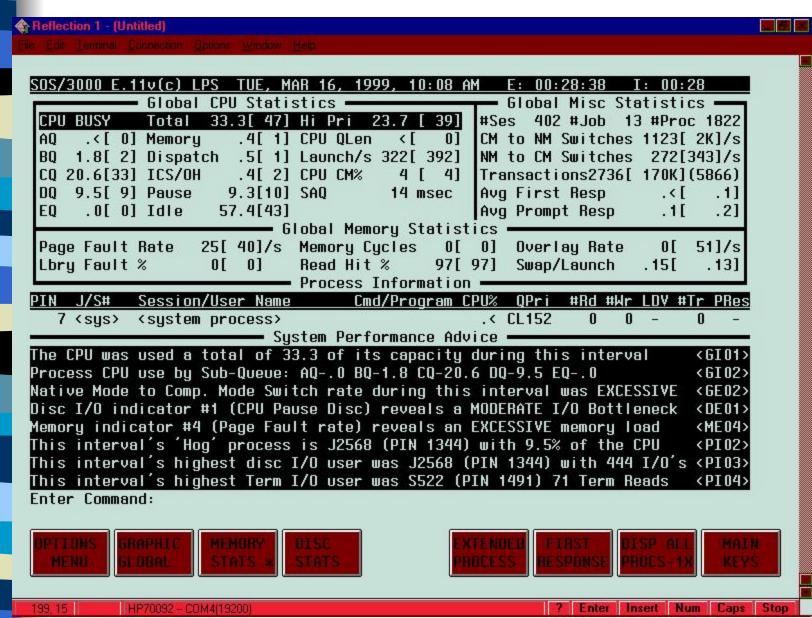
- All activity exists a process.
- Processes usually rely on data. Data in one of two places, in memory or on disk.
- If on disk then if updated it must be posted back to disk.
- Disk access is the slowest link.

- Disk I/O Imbalance
- Hardware
- Configuration issues
- Disk and File Fragmentation
- Database inefficiencies

- Network (data transfer, NF activity):
- Network traffic in packets.
- Problems:
 - Poorly planned and overtaxed networks
 - shared files on network file systems
 - inadequate hardware

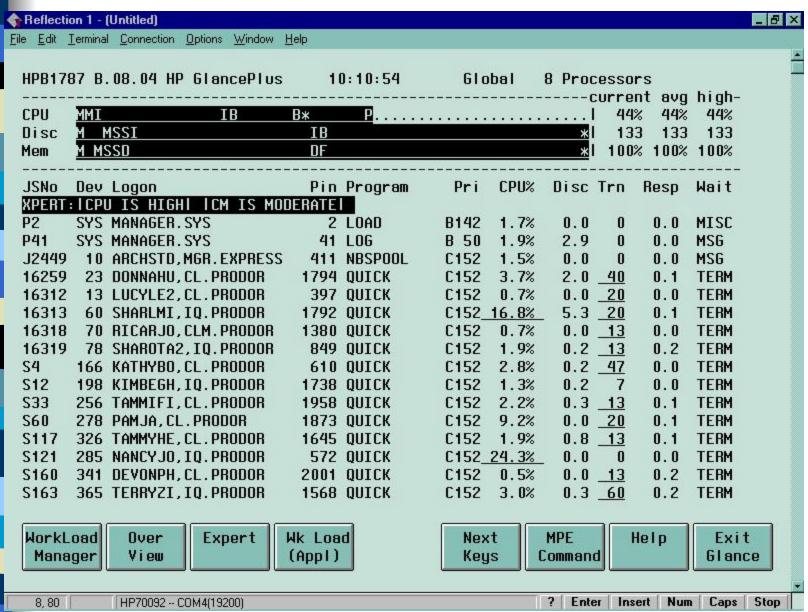


- Use workload groupings when possible.
 Glance, SOS, etc provide these.
- Look at individual processes. What files do they open? What wait states do they encounter? How much I/O do they perform?
- Micro: Database Analyze using Howmessy or Dbloadng

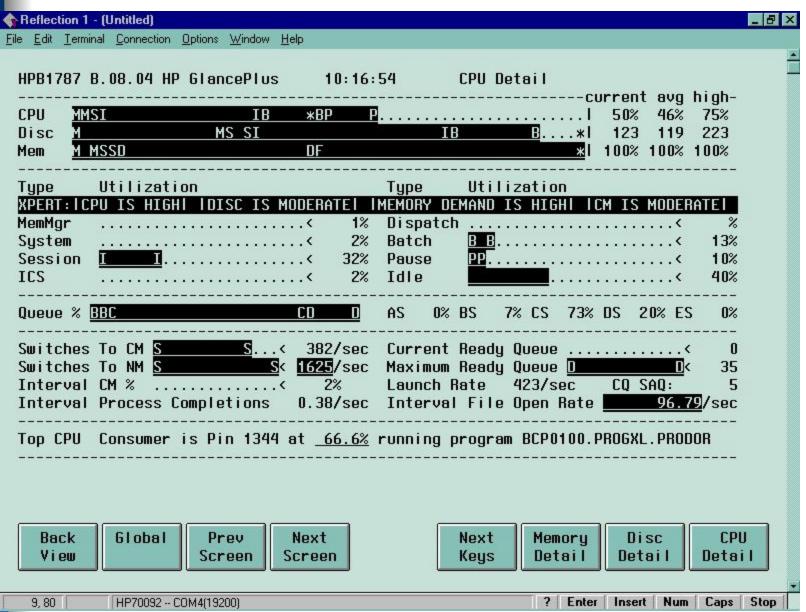

Memory - How Much is Enough?

- 40 to 60 MB's for the operating system
- 1 to 2 MB's per concurrent user
- 4 to 6 MB's per concurrent batch process

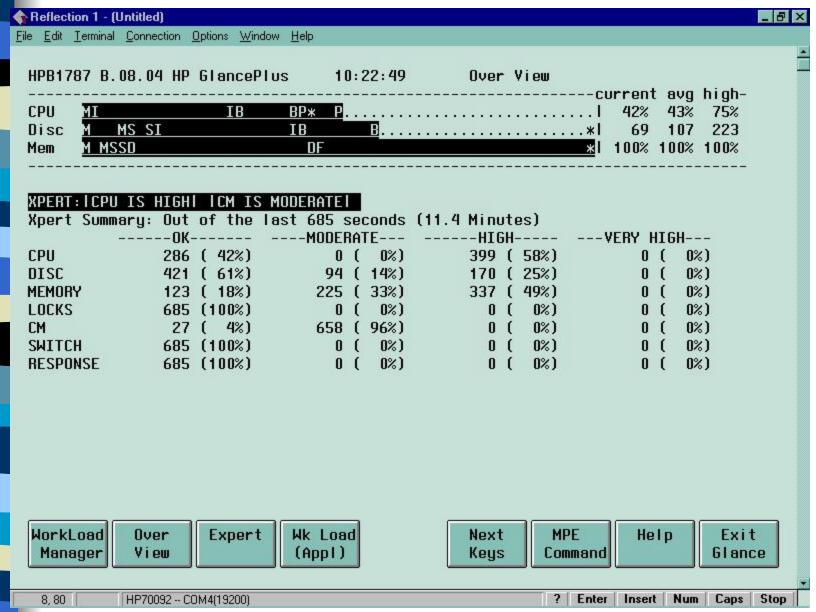
SOS Global Screen



Training-- Kubler Consulting



Glance Screen


♠ Reflection 1 - (Untitled)	_ & ×							
<u>File Edit Terminal Connection Options Window Help</u>								
HPB1787 B. 08. 06 HP GlancePlus/iX 14: 47: 31 Workload Display								
	95%							
	411							
Mem <u>M MS SD DF</u> .∗I 98% 98% 9	98%							
Application CPU current DISC current Trn Re	esp							
Press RETURN to continue, "X" for more details, or "O" for Overview summary: XPERT Status: 25% CHANCE OF MEMORY BOTTLENECK.								
Reason: MEM MGR DISC > 12.00 (15.2)								
XPERT Status: 25% CHANCE OF EXCESSIVE COMPATABILITY MODE.								
Reason: NM SWITCHES > 1000.00 (6608.6)								
XPERT: IMEMORY DEMAND IS MODERATE! ICM IS MODERATE!								
	0.0							
ORDER_MGT	0.1							
SHIPPING_MGT	4.9							
··-·	0.5							
MACS_INTERACTIVE 4 30 (0.1							
SESSION_INTERACTI 3% 1 15	0.3							
BATCH_OTHER	0.0							
Top CPU Consumer is Pin 2424 at <u>95.4%</u> in program FCOPY.PUB.SYS Top DISC Consumer is Pin 851 at <u>155.5</u> I/O's per sec. SUPRTOOL.PUB.ROBELLE								
WorkLoad Over Expert Wk Load Next MPE Help (Appl) Keys Command	Exit Glance							
8, 77 HP70092 COM4(9600) PINER Insert Num	Caps Stop							
Reflection 1 - (Untitled)	🤍 💁 2:46 PM							

MPE/iX Ecometry Performance Training-- Kubler Consulting

MPE/iX Ecometry Performance Training-- Kubler Consulting

MPE/iX Ecometry Performance Training-- Kubler Consulting

- Very significant area.
- Data loads and unloads, re-indexing, etc.
- Be sure you have the appropriate search keys, indexes.
- Understand your I/O.
- Look at vendor recommendations

- A database is messy if it takes more I/O than it should
- Unnecessary I/O is still a major limiting factor even on MPE/iX machines
- Databases are messy by nature
- Run HowMessy or DBLOADNG against your database
 - HowMessy is a bonus program for Robelle customers
 - DBLOADNG is a contributed library program

HowMessy sample report

HowMessy/XL (Version 2.2.1)
TurbolMAGE/3000 databases

Data Base: STORE.DATA.INVENT By Robelle Consulting Ltd.

Run on: MON, JAN 9, 1995, 11:48 AM

Casas Max

Page: 1

					Secon- Max	
	Type			Load	daries Blks	Blk
Data Set		Capacity	Entries	Factor	(Highwater)	Fact
M-Customer	Man	248113	178018	71.7%	30.5% 1496	11
A-Order-No	Ato	1266783	768556	60.7%	25.7% 1	70
D-Orders	Det	1000000	768558	76.9%	(851445)	32
D-Ord-Items	Det	4000000	3458511	86.5%	(3470097)	23

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Customer-No	32	1.92	0.32	1.00	1.90	90.5%	1.90
Order-No	10	1.35	0.62	1.00	1.00	0.0%	1.00
!Order-No	1	1.00	0	1.00	1.00	0.0%	1.00
S Customer-No	80	14.34	17.76	1.75	9.20	57.2%	5.25
S !Order-No	1604	8.06	35.75	1.36	11.32	72.5%	8.34

Summary

- TurbolMAGE databases become messy over time, especially if they are active
- HowMessy and DBLOADNG let you analyze the database's efficiency
- You should have some knowledge of the internal workings of TurbolMAGE
- Monitor your databases regularly

- Add more resource Upgrade.
- Manage the resource use nice, try Workload manager, Q-Xcelerator. Or try operational changes.
- Move workload find users to move.
- Optimize application(s).

- Add more memory.
- Optimize disk I/O
 - Repack/resize datasets
- Remove memory "Hogs"

- Reduce I/O by optimizing database access, database engine, cache levels, adding more memory.
- Seek to equalize I/O.
- Add more disk drives.
- Upgrade disk environment.
- Use cached drives (EMC, etc.)

- reload data on disk
- optimize database
 - repack details sets
 - resize masters
 - re-index
 - Make sure that indexes are the right ones
 - Make sure that you don't have too many

- Contention for resources in Back Office Jobs.
 - Pickjob
 - Use QUEUE Management or Workload Manager to control.

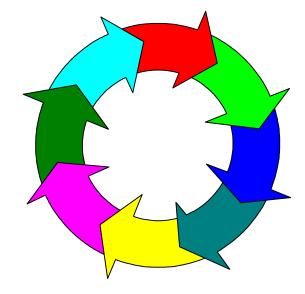
ECOMETRY ISSUES

- Multiple reports being streamed by accounting.
 - Use new JOBQ

ECOMETRY ISSUES

- Process pins that run away with the CPU.
 - Use GLANCE of SOS to see the pin and kill it.

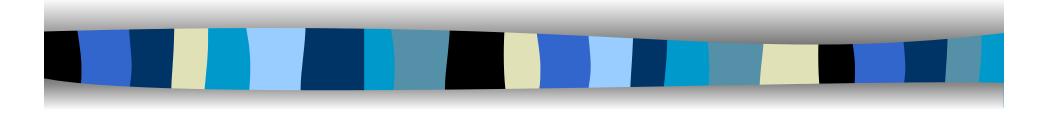
- SUPRTOOL Performance Issues
 - Adjust PREFETCH setting in SUPRTOOL
 - Move to secondary system
 - Ensure use of most efficient GET/CHAIN



- Best with long-term evaluation
- Require "Rules of Thumb"
- Move step-by-step
- Change one thing at a time to find out what is most effective

Step-by-step Analysis

Begin Macro to Micro (CPU, Memory,disk to database engine and application)


•Remember - It is not a once and you are done! It is more of a cycle.

- Examine CPU, than memory, than disk, network, program and database.
- Realize the prevalance of disk issues.
- Collect data.
- Get training, books, etc.
- Check system configuration.

The End

Thanks for coming!