
Perl Programming

 Perl Programming Fast

Presented by:

Fred Mallett frederm@famece.com

FAME Computer Education

250 Beach Blvd

Laguna Vista, TX 78578

956-943-4040

Perl Programming

Seminar Outline

Perl Syntax

Common constructions

A look at some programs from the web (or elsewhere)

Perl Programming

 What is(n’t) Perl like?

Perl is like UNIX Shell scripting
text file read at execution time (Command
interpretive language)
Can be easily read (can be impossible to read)
Comments from a ” # ” to end of line
Command line capabilities
 #!/bin/ksh
 print ” hello world ”; exit

 #!/usr/local/bin/perl
 print ” hello world \n” ; exit;

Perl is not like UNIX Shell scripting
Program is read completely and compiled at
execution time
Programs are written in blocks
foreach (<STDIN>) {
 print ”$_ is readable\n ” if -r;
 }

Perl is like awk
 Anything you can do in awk, you can do in Perl
 There is an a2p utility

Perl is not like awk
syntax has many differences (NR is $.)
Perl has many more capabilities:
 file, dir, process, network
There are no string limits

Perl Programming

What is(n’t) Perl like?

Perl is like C Coding
Free-format language, whitespace mostly arbitrary
 (blanks, tabs, newlines, returns, and formfeeds)
Nearly all statements must be terminated by a
” ; ”
 if ($x == $y) {
 print ” values are equal\n” ;
 } else {
 for ($i=1;$i<=5;$i+=2) {
 $x *= $i;
 print ”values are: $i $x\n ” ;
 }
 }

Perl is not like C Coding
No Main routine required (it is implied)
No compile necessary
No libraries or include files required
No platform dependent binaries
Many “ syntactical shortcuts”
open(WORDS, ”$ENV{’list’}”);
if (-M WORDS < 7) {
 while (<WORDS>) {
 chomp;
 print;
 } }

Perl Programming

Perl program invocation methods:

As a perl script (on UNIX boxes):
Put #!/usr/local/bin/perl as the first
characters of script
Make the file executable
Execute as a command (located via search path):
filename

As a perl script (on Win32 boxes):
1) Use associated file types, then execute as a
command:
filename.pl
If you also set pathext to include .pl,
you could run the file with just
filename.

2) You can also convert a perl script to a Win32
batch file
 with the pl2bat program included in the Perl
for Win32
 release. (c:> pl2bat filename.pl)
These methods do not allow I/O redirection on the
command line (filename < textfile.txt).

As a perl program file (on any OS with a command
line):

Don’t need the #! declaration, or execute rights
Execute the program this way:
perl filename.pl

As an interactive program (good for syntax
checking):

perl
print “Bye cruel world\n” ;
<ctrl>d (<ctrl>z on Win32)

As a command:
perl -e ’print 2+2;’
perl -i.bak -p -e ’s/^\s+//;s/\s+$//;’
somefile

Perl Programming

In all methods, Perl parses entire perl file, if
there are no syntax errors, it enters the
compilation phase

Perl Programming

Scalar data numbers:

integers and floating point (real)
accepts the complete set available to C programmers

examples of integer constants:

17
-1234
0154 #an octal number representing
decimal 108
0xfffe # hexadecimal of decimal 65534

examples of reals:

1.25
6.7e38
-3.5e-13

Perl Programming

Scalar data strings:
Any 8-bit character (256 different characters)
This means that Perl can work with binary data
There is no arbitrary string length

Non-interpreted strings, no special meanings (except
\’ and \\)

’abc’ q(abc) #the letters
a,b,c
’world\n’ q=world\n= #the letters
w,o,r,l,d,\,n
’and
now’ #a,n,d,newline,n,o,w

Interpreted strings, special meanings must be
prefixed by a “\”

$ #expand scalar variable data
@ #expand list variable data
\\ #backslash
\ ” #double quote
\n #newline
\r #return
\t #tab
\f #formfeed
\b #backspace
\v #vertical tab
\a #bell
\e #escape
\007 #octal characters, max 077
\x1d #hex characters, max xff
\cD #any control character (here, control
D)
\l #lowercase next letter
\L #lowercase following letters until \E
or end of string
\u #uppercase next letter
\U #uppercase following letters until \E or end
of string
\E #terminate \L or \U (the case-shift
operators are

Perl Programming

 typically used to alter variable values)

” abc\n ” q(abc\n) q=abc\n= quorsu

Perl Programming

Operators for Working with Scalar Values

numeric operators

+ - * / #normal arithmetic operators
** #exponentiation
% #modulo (10%3 = 1). Both operands
 #reduced to integers prior to
performing
 # So, (11.1 % 2.9) same as (11 % 2 =
1)

string operators
. #concatenation. ” aaa” . ” bbb” =
” aaabbb ”
x #repetition. Uses two operands: string and
integer
 # ”abc ” x 2 = ” abcabc ”
 #second operand is truncated to an integer
 # ”abc ” x 2.5 = ”abcabc ”
 #numbers less than 1 result in an empty
string

logical operators for numbers
used to compare two numbers
same availability as in C
 < <= == >= > != <=>

logical operators for strings
used to compare two strings (similar to FORTRAN
operators)
 lt le eq ge gt ne cmp

Separate logical operators needed to resolve: is
5 less than 10?

 if (5 lt 10) # if comparing as strings
 if (5 < 10) # if comparing by numeric
magnitude
Comparison as numbers is different than comparison
as strings

Perl Programming

Note that string and integer logical operators are
approximately opposite of those used by the UNIX
test command.

Perl Programming

Operator Precedence and Associativity
Associativity: Operator: (highest to lowest)

() Grouping
none ++ -- (auto-increment and
decrement)
right ! ~ - (logical not, bitwise
not, numeric negate)
right **
left =~ !~ (binding operators)
left * / % x
left . + - (subtraction)
left << >> (bit shift)
none -r and others (file test operators)
none the named unary operators
none < <= >= > lt le ge gt
(”not-equal ” operators)
none == != <=> eq ne cmp
(”equal ” operators)
left & (bitwise and)
left | ^ (bitwise or, bitwise
exclusive or)
left && (logical and)
left || (logical or)
none .. (range operator, list
constructor)
right ?: (ternary if/then/else operator)
right = += *= etc... (all assignment
operators)
left , (comma)
none the ” list ” operators
right not (logical negate)
left and (logical and)
left or xor (logical or, logical
xor)

Perl Programming

Conversions Between Numbers and Strings

Perl attempts to convert operands to the type
required
 by an operator

Converting strings to numbers:

leading whitespace and trailing non-numeric
characters are ignored:

10 + ” 123section99” == 133;

Non-numeric strings convert to 0

Converting numbers to strings results in what would
be printed:

(4+2) x 2.3 == 66;

the ” x ” operator forced (4+2) to be converted to
a string after the addition

Converting real numbers to integers:

The int() operator can be used to extract the
integer part of any number:
 print int(7.2); # prints 7

Note that all numbers are stored as double-precision
floating point (atof() is used to convert strings).

Perl Programming

The scalar undef value

Referencing scalar variables that have not been
assigned a value is allowed, though it causes a
warning.
These variables are considered undefined.
 The value is zero if used as a number
 The value is ” ” (empty string) if used as a
string
” undef ” is also returned by some functions

Perl Programming

Literal List data

Lists of values are composed of literals and/or
variables and/or expressions separated by commas,
typically in parentheses.
Each value is called an element

Examples of lists of scalar constants:

(1,2,3)# a 3 element list with the values 1, 2, 3
(”aaa” ,7)# a 2 element list with the values ” aaa ”
and 7
() # a list with no elements
print 2, ’a’, 4, ”\n” ; # Print expects a list, so no
()’s needed

The range operator returns element values which
increment by one:

(1..5) # a 5 element list: 1,2,3,4,5
(1..3,10)# a 4 element list: 1,2,3,10
(1.2..4) # a 3 element list: 1.2, 2.2, 3.2
(’a’..’z’) # a 26-element list: the lower-case alphabet

Assignments involving list data

($a, $b)=(17, 22); #a becomes 17; b becomes 22
($a, $b)=($b, $a); #swaps the values of a and b
($a, $b)=(6,7,8,9,10);
($a, $b)=(6);

Rule: Excess values on the right of = are not
involved, while excess variables on the left are
given the value undef.

Perl Programming

Context

Expressions are of only two types: scalar and list.
There are two major contexts: scalar and array
(scalar is further divided into string, numeric, and
don’t care).
Many operations are sensitive to context and
evaluate differently. Some operations supply a
particular context, treating their operands as
scalar or array values.
If specified in an array context, Perl will promote
a scalar value to a single-element array.
If specified in a scalar context, Perl will treat an
array value in a manner determined by the operation.

Perl Programming

Variable notation

Perl has scalar, list array, and associative array
variables.

Variables in Perl use a prefix for both assigning
and expanding.
The prefix determines the data type to be returned.
The prefix does not determine the variable type.

Variables in Perl use suffixes when addressing
elements in a list.
The suffix determines which variable type is being
addressed.
Only when there is no suffix does the prefix
determine variable type.

Variables can contain scalar data, references, or
lists of either.

Variable names or references can be enclosed in
braces.

Perl Prefixes: $ scalar data
 @ list data
 % hash (associative array) data
(pairs)

Perl suffixes: [] elements by index from a
list array
 { } elements by keys from a hash

$x=4 @x=(’a’,’b’,’c’) %x=(’a’,1,’b’,2)
$x[2] @x[1,2] @x[0..3] @x[2,1] @x[1-3]

Perl Programming

$x{a} @x{a,b} %x
$#x scalar(@x) print @x . ”\n”

Some very common functions (operators)

<FH>

The diamond operator accepts a Filehandle (contined)
argument.
Used in a scalar context it reads up till (and
including) the next record separator, used in list
context it reads and returns all records till EOF.
The default input record separator is the newline
charactor.

$string=<STDIN>;
$string=<FH_I_Opened>;
$string=<>; Reads from command
line filename
@list=<>;
($infile,$outfile)=<STDIN>; #expect two
lines, EOF

If <> is the only thing specified in a while()
condition (no variable name referenced), the default
variable $_ is used.
The while() condition is the only significant
construct where <> is treated this way.
while (<STDIN>){
 print “ $_\n” ; #double space output (2 new
lines)
}

Note that in the Win32 ports of Perl input and
output text file translations are automatic:
 When reading, \r\n is changed to \n so you treat
data as ”UNIX ”.
 When printing, \n is changed to \r\n, so again,
handle as ” UNIX ” .

Perl Programming

chomp()

Chomp removes a single newline from the end of a
scalar string:

$str=” hi\n ”;
chomp $str;
print $str; # Prints hi without a
newline

Chomp will accept a list, and act on each element:
 @x = (” abc\n ”, 17, ” def\n ”, ”ghi ”);
 $y = chomp(@x);

Gives @x the values ”abc ”, 17, ”def ”, ” ghi” ,
and $y gets ” 2 ”

Perl Programming

List-type Array Operators

push() pop()

The push() and pop() operators manipulate the
highest numbered element of an array

push(@x,$y);
adds a new element at the top of array @x, the
value equal to $y this accomplishes the same as:
@x = (@x,$y)

push() can push an array of values onto an array:
push(@x,7,8,9);#adds 3 new elements to array @x

$y = pop(@x);

Removes highest element of array @x and places it in
$y
pop() on an empty array will return the value undef

shift() unshift()

The shift() and unshift() operators manipulate the
lowest numbered element of an array

$y = shift(@x);
Removes the lowest element of array @x and places
it in $y. This accomplishes the same as: ($y,@x)
= @x

shift() on an empty array will return the value
undef.

unshift(@x,$y); # same as: @x = ($y,@x)
Adds a new element to the bottom of @x.

unshift() can unshift an array of values onto an
array:

unshift(@x,7,8,9); # Same as @x = (7,8,9,@x)

shift and push can be used together to perform a
circular shift:

push(@array,shift(@array));

Perl Programming

List-type Array Operators

reverse()

The reverse() operator returns the elements in the
argument list in reverse order

@x = (7,8,9);
@y = reverse(@x); # @y gets values 9,8,7

If used in a scalar context it concatenates all
elements, then reverses the characters. This can
also be used to reverse the characters in a scalar:

$y= ”cat ”;
$y=reverse($y); # $y is now tac

@y=(” kit ”,” cat”);
$x=reverse(@y); # $x is now tactik
 # Note that this joined a list
 # into a scalar, then reversed
the
 # scalar, it is not often used

sort()

The sort() operator returns its arguments in
alphabetic sorted order

@x = (50,10,4,2,30);
@x = sort(@x);

Gives @x the values 10,2,30,4,50
This is an ascending ASCII sort.
More complicated sorts can be coded in Perl, and
will be described in the section on ” user
functions ”.

splice()

splice(ARRAY, OFFSET, LENGTH, LIST)
splice(@x, 2, 3, ” new” , ” data ”)

Perl Programming

Associative arrays

Associative array elements are built by specifying
both the key and value for each element. This can be
done all at once:

%list = (’ted’,’123-456’ , ’mary’,’453-1682’);
in which the items in the list are treated as
key/value pairs. Note that the entire array is
defined this way. This implies that an associative
array can be ”cleared ” with:

%list = ();
Alternatively, an associative array can be added to,
one element (pair) at a time:

$list{’sue’} = ’541-1234’;
$list{’b’} = ’xyz’;
$list{’c’} = 17;

in which unaddressed elements remain unchanged.
Note the curly brackets that distinguish the type of
variable:

$x[$y]# an element of a list-type array
$x{$y}# an element of an associative array

Single elements can be accessed with:

print ” $list{’mary’}\n” # prints 453-1682
Single elements can be assigned with:

$list{’ted’} = ’451-2341’; # change the value
Keys can be any scalar value, but are treated as
strings

$x{ ” yy ”} # element key is ” yy ”
$x{123} # element key is ” 123 ”

To add two to the value of the array element used
above

$x{123} += 2;
Referencing an element that has not been defined
returns the undef value

Perl Programming

Associative-array operators

keys()

The keys() operator produces a list of all the
current keys in an array

$x{ ”a” }=5; $x{ ” b ”}=6;# load associative array
@y = keys(%x); # @y gets (”a” , ” b ”)
 # -or- (” b ”, ” a ”)

Note that the order in which the keys of %x are
placed into @y is determined by Perl. It is not
necessarily related to the order in which %x was
built
If used in a scalar context, keys() returns the
number of elements in the array

$z = keys(%x)# $z gets the number of elements in %x
values()

The values() operator produces a list of the values
of all the elements in an array, in the same order
as the keys returned by keys()

$x{ ” a ”}=5; $x{ ”b ” }=6;#load associative
array
@v = values(%x); # @v gets (” 5 ”, ”6 ”)
 # -or- (” 6 ”, ” 5 ”)

If used in a scalar context, values() returns the
number of elements in the array:

$z=values(%x); # $z gets the number of elements in
%x

reverse()

reverse() can be used to invert an associative
array (change values to keys):

%aa=(’a’,1,’b’,2,’c’,1);
%inv=reverse(%aa); # reverses list equivalent of %aa
print (%inv,” \n ”); # prints 1a2b or 1c2b

Perl Programming

Note that %inv lost an element since the value of
” a ” and “ c ” were identical, and are now being
used as keys.

Perl Programming

Associative-array operators

delete

The delete operator removes a key-value pair from an
array, and returns the deleted value.

 $y = delete $x{ ”a” };
Removes the key/value pair of %x with key ” a ”,
and returns value into $y

exists

The exists operator returns true if the specified
key exists, even if the value is undefined.

if (exists $list{$name})
{print ”$name:\t$list{$name}\n ”;}

Perl Programming

Associative-array operators

each()

The each() operator returns the key-value pair of an
element in an array as a two-item list. Each
successive call returns another element.

%x=(’a’,1,’b’,2);# load associative array
@y=each(%x); # load ”first ” key/value of %x into @y
print ” @y\n” ;# prints ” a 1” -or- ”b 2 ”
@y=each(%x); # loads ”second ” key/value of %x into @y

When there are no more elements to be accessed,
each() returns an empty list. If each is called
after it has returned an empty list, it resets
itself, and begins working its way through the array
again. Calling keys() or values() will also reset
the each calling sequence.

%x=(a,1,b,2); # load associative array
@y=each(%x); # load ” first ” key/value of %x into
@y
print ” @y\n” ; # prints ”a 1 ”
$count=keys(%x);# reset each calling sequence
@y=each(%x); # load key/value of %x into @y
print ” @y\n” ; # prints same as above print

Assigning a new value to the entire array (%x to the
left of the assignment) will also reset the each()
calling sequence.
Elements added to the array after the first each()
may not be picked up by further each() calls.
Pre-existing elements can be changed after the first
each() call, but you can’t be sure what order Perl
will pass individual elements from each().

Perl Programming

Statements and Flow Control

From the Quick Reference guide:
Every statement is an expression, optionally
followed by a modifier, and terminated by a
semicolon. The semicolon may be omitted if
the statement is the final one in a BLOCK.
Execution of expressions can depend on other
expressions using one of the modifiers if, unless,
while or until, for example:

 EXPR1 if EXPR2 ;
 EXPR1 until EXPR2 ;
The logical operators ||, && or ?: also allow
conditional execution:
 EXPR1 || EXPR2 ;
 EXPR1 ? EXPR2 : EXPR3 ;
Statements can be combined to form a BLOCK when
enclosed in {}. Blocks may be used to control flow:
 if (EXPR) BLOCK [[elsif (EXPR) BLOCK ...]
else BLOCK]
 unless (EXPR) BLOCK [else BLOCK]
 [LABEL:] while (EXPR) BLOCK [continue BLOCK]
 [LABEL:] until (EXPR) BLOCK [continue BLOCK]
 [LABEL:] for (EXPR; EXPR; EXPR) BLOCK
 [LABEL:] foreach VAR† (LIST) BLOCK
 [LABEL:] BLOCK [continue BLOCK]

Perl Programming

Statements and Flow Control

Program flow can be controlled with:

 goto LABEL
 Continue execution at the specified
label.
 last [LABEL]
 Immediately exits the loop in
question. Skips continue block.
 next [LABEL]
 Starts the next iteration of the loop.
 redo [LABEL]
 Restarts the loop block without
evaluating the conditional.

Special forms are:

 do BLOCK while EXPR ;
 do BLOCK until EXPR ;

which are guaranteed to perform BLOCK once before
testing EXPR, and

 do BLOCK

which effectively turns BLOCK into an expression.

Perl Programming

Regular Expressions

Perl’s regular expressions can be invoked as
arguments to several functions, here are three
commonly used functions:
m/re/ Returns a true/false about the match, or
matched
 tagged expressions in an array context.
s/re/string/ Standard substitution operator, has
several
 interesting modifiers, as does the match
operator.
split(/re/, string) Uses the RE to split the
string.

The following characters can be used to make up
regular expressions:
. matches any single character, but not a
newline without ’s’
(...) groups a series of pattern elements to a
single atom
^ matches the beginning of the string. In
multiline mode ’m’
 also matches after any newline character
$ matches the end of the line. In ’m’ also
matches before
 every newline character.
[...] matches any character in class [^ ...]
negates the class.
(... | ... | ...) matches any of the
alternatives
(?# TEXT) comment
(?: REGEXP) non back-referencing group
(?= REGEXP) Zero width positive look-ahead
assertion
(?! REGEXP) Zero width negative look-ahead
assertion
(? MODIFIER) Embedded pattern-match option
 can be one or more of i, m, s, or

Perl Programming

x.

 Quantified atoms match greedily. Followed with a ?
they are non-greedy:
+ matches the preceding pattern element one or
more times.
? matches zero or one times.
* matches zero or more times.
 {N,M} match N through M times
 ({N} means exactly N times; {N,} means at
least N times,
 {,M} means up to M times.

Perl Programming

Regular Expressions

many character classes are defined in a shorthand
notation, here are a few of them:

\d is the same as [0-9]
\D is the same as [^0-9]
\w is the same as [a-zA-Z0-9_]
\W is the same as [^a-zA-Z0-9_]
\s is the same as [\r\t\n\f]
\S is the same as [^ \r\t\n\f]

There are also some short hands for anchors:
\A beginning of string
\Z end of string
\G location of previous match search

 Back-references:

 \1 ... \n refer to matched subexpressions, grouped
with ()

With modifier x, whitespace can be used in the
patterns for readability purposes.

Other notes

The function pos(string) returns the character
location of the first character matched by the
previous match operation against that string.
There are also many special variables set by the
match operator:
$& the part of the string matched by the
RE
$‘ the part of the string prior to the
match
$’ the part of the string after the match

Perl Programming

${n} The tagged portion of the match ($1 $2
...)

Perl Programming

Functions

Functions typically accept one or more arguments,
and:
 return a value (int)
 or perform an operation with lasting effect
(print)
 or both (shift, pop)

To use functions effectively, you should know a
functions:
 calling syntax:
 do commas or spaces separate arguments?
 how many arguments?
 type of arguments?
 are there default arguments? (like print
and chomp)
 return values
 if any, and for array and scalar calling
context

You can get different return values, or results
depending on the which context a function is called
in:

@list = function(); # called in array context
($var) = function(); # called in array context
$var = function(); # called in scalar context
$list[2]= function(); # called in scalar context
$t{$e} = function(); # called in scalar context
$var = (function());
$var = function(function());

The perl manpage perlfunc documents this type of
information for all functions.
Beware that you can call many functions as operators
or functions:

print 1+2+4; # prints 7
print (1+2+4); # prints 7
print (1+2)+4; # prints 3

Perl Programming

In the last example, the () immediately after the
print operator told it to act as a function, and
accept what is in the () as the arguments.

Perl Programming

String functions

split(/re/,string,limit)

join(EXPR,LIST)

length(string)

index(string, subtring, OFFSET)

rindex(string, subtring, OFFSET)

substring(string, OFFSET, LENGTH)

quotmeta(string)

uc() lc() ucfirst() lcfirst()

eval()

Perl Programming

User functions

A user function (subroutine) is written as:

sub func-name {
 Perl statement;
 Perl statement;
}

Function names are maintained in their own
namespace.
Function names are global, duplicate names in the
same program conflict
Functions are defined in the order in which they are
encountered. If a function name is used more than
once, the last one takes precedence.
The ” -w ” command-line switch warns about redefined
functions.
Functions can be used as part of any expression in a
Perl program.
Functions are called by preceding their name with an
&

&test; # calls the function named test
 # $ --> single, @ --> plural, % -->
association
 # & means do it

To write user functions, you should know how to:
 Return values
 Pass arguments

Perl Programming

Passing arguments to functions

Arguments can be passed to a function in the calling
statement:

$x = 99;
@y = (” a ”,” b ”);
&fun(17, $x, @y);

Within the function, the list of arguments is
available in the array ” @_ ” . (This follows the normal
convention for naming an array)

sub fun { # if called as above:
 print ”@_\n ”; # prints ”17 99 a b ”
 print $_[0]; # prints ”17 ”
 print $_[3]; # prints ”b”
}

Note that the $_ in the above example looks like the
variable name used for the current input line, but
the subscript [0] indicates otherwise.

Function arguments are passed “ by reference ”,
implying that the function can change the values of
arguments in the calling statement by modifying the
@_ array:

sub makeint {
 $_[0]=int($_[0]); # Assign to argument array
}
$x=12.47;
&makeint($x); # Call makeint with $x as
argument
print $x; # prints 12, as $x is now set to
12

Perl Programming

Passing arguments to functions

You can also do ” pass-by-value ” by making local
copies of arguments that are passed. (covered later)
The array @_ is local to the function:
Sequence of actions performed when a function is
called with an argument list:

save any existing value of @_
set a new @_ for this function call
process function
at function completion, restore any pre-existing
@_

This allows functions that use arguments to be
nested without losing their own calling info.

If a function is called with NO argument list, @_ is
not set, and the function sees whatever values this
array contained prior to the function call!! Call
the function with an empty argument list to prevent
this:

&sub1; #Inherits @_ if called from within a
subroutine
&sub1(); #Has its own empty @_

Perl Programming

Variables in functions

Variable names used in a function are shared with
the rest of the program

sub test {
 print ”$x” ; # same $x value from outside the
sub
 $x=42; # When sub ends, main $x is now 42
 $y=47; # $y now exists in main program
}
$x= ”original ”;
&test; # prints ” original ”
print ” $x,$y ”;# prints ”42,47 ”

The ability to access variables from outside the
subroutine, and set variables that are known after
the subroutine ends can be a good thing, it can also
be a very bad thing.

Using local variables, you can prevent
” cluttering” up the variable namespace in the main
program, as well as prevent a subroutine from
inadvertantly changing variables.

Perl Programming

Local Variables in Functions

Any variable may be declared as local to the
function code:

sub no_int {
 local($x); # initializes a local version of
$x,
 # with value = undef
 $x=17; # set local $x to 17
}

Similar to the handling of the @_ array in a
function, Perl :

saves any existing value of $x
establishes a local $x
 (initial value = undef if not otherwise
specified)
processes the function
at function completion, restore any pre-existing
$x

local() may be used to the left of an equals sign to
provide initial values. For example:

local($x,$y);
($x,$y) = @_;# assign function arguments to $x, $y

which could be written as:

local($x,$y) = @_; # This is pass-by-value

As an example of local variables, and recursion, the
following function will compute a factorial:

sub fact {
 #print ”Passed a \$n variable with a value of
$n\n ” ;
 local($n) = @_;
 #print ”Have a local variable with a value of
$n\n ” ;
 ($n<2) ? 1 : ($n * &fact($n-1));

Perl Programming

}
$result = &fact(4);

Perl Programming

Function return values

Functions return a value equal to the last
expression evaluated in the function at run-time.

sub ab {
 $a*$b;
}

returns the product of $a and $b. This can be called
with:

$c = &ab; # $c gets the product of $a and $b
$d = 3 * &ab; # $d gets the product of $a, $b,
and 3

Flow of control in the function will determine the
last expression evaluated:

sub testif {
 if ($x == 1) {
 5;
 } else {
 10;
 } }

If $x is equal to 1, the function returns 5,
otherwise 10.
Return values can also be arrays:

sub array {
 (7,8,9+2);
}
@x = &array; # @x becomes three elements with
values 7, 8, 11
$x = &array; # $x becomes 11 (the last
expression evaluated)
($x)=&array; # $x becomes 7 (the first
expression evaluated)
$x=(&array)[1];# $x becomes 8 (the 2nd expression
evaluated)

Perl Programming

Function calling context

The wantarray() operator can be used to determine
calling context in a function.
This is useful if you want to be able to write a
subroutine that can return different values when
called in different ways:

@ret=&sub1; # Want an array returned
$ret=&sub1; # Want a scalar back

Here is an example of a subroutine that breaks words
based on ”:” , and returns different things in
array verses scalar context:

#!/usr/local/bin/perl
$line=” Grapes:1.47:100:green” ; #some sample data

$cost=&brkstr($line,1); # called in scalar, 2
arguments
print ” $cost\n ”; # prints ”1.47 ”

@item=&brkstr($line); # called in array, 1
argument
print ” @item\n ”; # prints ”Grapes
1.47 100 green ”

sub brkstr {
 # Usage of brkstr:
brkstr(string_to_split[,desired_word])
 local(@list);
 local($string,$word)=@_;# make local copies of
arguments
 @list=split(/:/,$string); # split argument 0
based on ”:”

 if (wantarray()){
 @list; # all ” words ” if called in
array context
 }else{

Perl Programming

 $list[$word]; # desired word if in scalar
context
} }

Perl Programming

Basic I/O

At EOF, <STDIN> returns undef value, so looping
through each input line can be done with:

while ($x = <STDIN>) {# will loop until EOF on
STDIN
 actions;
}

Standard input can be redirected to a script on the
command line (but not on WIN32 perl scripts, unless
invoked with perl perl.script):

Perl.script <input.file #Reads from
input.file
cat file1 file2 | Perl.script #Reads output of
cat
Perl.script #Reads keyboard input

For multiple files the command will get more
complicated
As a shortcut for reading from input file(s), Perl
provides the <> operator:

while ($x = <>) {
 actions;
}

If the above program is invoked as:

Perl.script infile1 infile2 infile3

the while loop will read through all input files in
the order specified.
If no files are specified on the command line, <>
will read from standard input

Perl Programming

Opening and Using Files

A ”filehandle ” names an I/O connection
STDIN is a filehandle that accesses UNIX standard
input
STDOUT is a filehandle that accesses standard
output
STDERR is a filehandle that accesses standard
error

You can also open your own filehandles
Filehandles are maintained in their own namespace
It is recommended that you use uppercase letters and
digits to form filehandles

User files may be for reading with:

open (FILE1, ”</a/b/infilename ”); # or
open(FH,’<infile’);

To open a file for writing, use:
open (FILE1, ”>outfilename ”);

 To open a file in append mode, use:
open (FILE1, ”>>outfilename ”);

 To use output filehandles, use:
print FILE1 ” output strings ” ; # or write or
printf

All opens return true if successful, false
otherwise.
A file that fails to open for reading will return
EOF on the first read.
A file that fails to open for writing will silently
discard any data sent to it.
Therefore a useful construction is:

open(FILE1,” /a/b/file”)||die ”can’t open file ”;

Files can be closed using:

Perl Programming

close(FILE1);

Perl Programming

Opening and Using Files

Note that the pathname argument to open is shown in
double quotes. This makes it an interpreted string,
so backslash escapes, and variables are expanded. To
prevent this, use single quotes. This is especially
important on WIN32 systems. For example:

open (FILE1, ”c:\a\b\infilename ”);
Would not work, as the \b would become a backspace
character. Both methods shown below would work fine:

open (FILE1, ”c:\\a\\b\\infilename”); # Escape
the \s
open (FILE1, ’c:\a\b\infilename’); # Use single
quotes

Note that all pathnames used in the rest of the
course need to be adjusted as above for WIN32, this
handout is UNIX-centric.

Distinct from currently opened files, there is a
” currently selected ” filehandle (default value is
STDOUT). This value is global across an entire
program. It specifies where output goes if no
filehandle is specified in an output statement. It
can be changed with:

$oldvalue = select(NEW_FILEHANDLE);

where $oldvalue gets the filehandle (as a string) in
use before the select.
Note that in Win32 systems, if the file you are
reading/writing is not a text file, you need to turn
off the \r\n to/from \n translations:

binmode(FILEHANDLE);

System functions

There are many operators that return file
information (there is also the stat function):

Perl Programming

-r -w -x -e -d -f -z -o -u -s -M -A -C

Perl Programming

System Functions

Many UNIX OS functions have been made available
directly through perl functions. They behave much
like the UNIX system calls and commands by the same
name, many work on non-UNIX:
chdir(” directory”)

The current working directory can be changed during
a Perl run
The effect of chdir goes away upon program
completion
opendir(DIRHANDLE,” directory”) &
readdir(DIRHANDLE)

The opendir() operator (optionally built into Perl)
can be used to open a directory handle so that
readdir() can read the entire contents of a
directory
rename(list)

The rename() operator is similar to the UNIX ”mv ”
command:
rename(”a ” , ”newdir/a”);# new filename must be
specified
chmod(mode,list)

The chmod() operator performs what ” chmod ” does
chown(UID,GID,list)

The chown() operator performs what ” chown ” and
” chgrp ” do
utime(ATIME,MTIME,list)

The utime() operator performs some of what ”touch ”
does, setting file access and modification times
link(file,linkname) symlink() readlink()

The link() operator performs what ” ln ” does
The symlink() and readlink() operators act on soft
links (ln -s)
unlink(list)

The unlink() operator performs similar to ” rm ”

Perl Programming

mkdir(” directory” ,mode)

The mkdir() operator performs similar to ” mkdir ”
rmdir()

The rmdir() operator performs what ” rmdir ” does

Perl Programming

Filename Globbing

Filename expansion (”globbing”) is available using
angle brackets:

@x = </etc/alia*>; # expands as /bin/sh would do
it

Or, less ambiguously, using the glob function:

@x = glob(” /etc/alia*”); # Note that ” ”
required

Used in an array context, the complete list of
matching pathnames is returned.
Note that the special characters available and their
meaning are not the same as for regular expressions.

In a scalar context, the glob construct returns the
next item in the list:

while ($next = glob(”~/c* ”) {
 program statements using $next...
}

The above will go though the loop for each value in
the filename list, with $next set to the successive
values.

What is returned from a filename expansion is what
the UNIX command ” echo” would return (directories
are not expanded)
Filenames beginning with a ”.” are not returned
unless specified in the request (even for root)
Multiple patterns are permitted in angle brackets:

</etc/bin/* /usr/bin/X11/*>
To do this with glob, put multiple wildcards in a
single string:

glob(’/etc/bin/* /usr/bin/X11/*’)
Variables are interpolated before filename
expansion:

Perl Programming

<$x/rpc*> # $x is replaced by its value before
expansion

Perl Programming

Managing arbitrary child processes

Perl provides multiple ways to launch child
processes:

system()

‘ ‘ or qx()

via Perl filehandles

fork()

Summary of process launching

Launch
Method

STDIN of
Process

STDOUT
of
Process

STDERR
of
Process

Wait for
complete?

system() Perl’s Perl’s Perl’s Yes

‘ ‘
qx()

Perl’s returned
as string

Perl’s Yes

open(FH,’c|

’)
(for
reading)

Perl’s connected

to

filehandle

Perl’s only by
close()

open(FH,’|c

’)
(for
writing)

connected

to

filehandle

Perl’s Perl’s only by
close()

fork,exec
,

User

User

User

User

Perl Programming

wait selected selected selected selected

Perl Programming

Some Terms

Package

A package is a named ”namespace ” (Symbol
table). You can have an associative array
(hash) called ” mystuff” in every package.
Managed with the package declaration. You
could access the scalar variable xs in the
package Mookie, with $Mookie::xs

Library

A set of routines grouped by purpose. Can be
stored in a *.pl file, and brought into a
program with the require directive. Mostly
superceded by modules (though many have been
changed to modules, some still exist).

Module

A reusable package defined in a library file
that conforms to some rules (suggestions?),
named <package-name>.pm, that allows the
file to be ”included ” in a program with the
use directive.

Pragma

A Module that changes the behavior of the
compiler.

Reference

A variable can contain ” data ”, or, it can
be a reference, which means it contains the
address where something is stored in memory.
To resolve data from a variable that
contains a reference, we ” dereference ” it.
This is very similar to a pointer (used in
many languages), except that you cannot
perform ” math” on the memory address (thus
references are considered ”safe ” pointers).

Perl Programming

Packages

By default, all identifier names in a perl program
are managed by perl using a single symbol table.
Perl refers to such a symbol table with a
” package ” name, the default package name being
” main” .
You can access names in a package by prefixing
<package>:: to it:

$z= ”hi ”; print $z; # prints hi
print $main::z; # prints hi

You can create alternative symbol tables as desired,
and switch symbol tables via the package command.
Names and associated variables known in each package
are kept independently from the same name in any
other package:

$x=7;
package test;
$x=9;
print ” $x\n” ; # prints 9
package main;
print ” $x\n” ; # prints 7

The symbol table chosen via a package command
persists until the end of the block it is part of,
but the symbol table in use may be switched as often
as desired:

$x=7; $y=8;
{ package test;
 $x=9; $y=10;
}
print ” $x $y\n ”; # out of package ” test”
prints 7 8
package test; # back to the ”test ” symbol
table

Perl Programming

print ” $x $y\n ”; # prints 9 10
package main; # out of ”test ”
print ” $test::x $test::y\n $main::x ”;

Any name can be qualified to indicate the package
where that name is to be found (arrays, hashes,
subroutines).

Perl Programming

References

References are similar in functionality to the
pointers of C.
The syntax for declaring a reference is to precede
the target name with a \ (this is like C’s &).
For example:

$x = \$y; # $x is now a reference to $y

References can be to any Perl string, variable,
function or other reference. For example:

$ref1 = \ ”abc ”;
$ref2 = \@array; #
$ref = \&fun;

Once a reference has been created, it may be used as
any other variable name:

$$ref1 # is a scalar
@$ref2 # is a list-type array

Anything that represents a reference may be used
this way:

${$array[2]}
@array is an array of references to scalars

Note that perl will complain, and terminate the
program if you try to dereference a reference (like
those described above) as anything other than what
it is a reference to.
Trying to do pointer ”arithmetic ”:

$x = $ref + 2;
will run, but doesn’t do anything useful, as $x
ceases to be a reference. Even saying:

$x = $x - 2;
will not make $x act like $ref.

Perl Programming

References (continued)

References can be created in flexible ways:

($a,$b) = \($x,$y);# two references

Some examples of usage:
@y=qw(d e f g h); # construct array y
$ref=\@y; # $ref refers to @y
print @$ref; # prints defgh
print $$ref[1]; # prints e
print $#$ref; # prints 4
$$ref2{$name}; # dereference value from a
 # reference to an associative
array

Getting at individual elements of an array pointed
to by a reference can be accomplished another way.
The second method below is most commonly used
(especially in Perl documentation):

$$ref[2] # prints ’f’ (from above code)
$ref->[2] # so does this

This method doesn’t work for array slices. For
slices:

@$ref[0..2]

References provide a solution for passing multiple
arrays to a function and having the function know
the size of each array passed:

sub fun {
local($a,$b)=@_;
print ” $#$a $#$b \n ”; # prints ”2 4 ”
print @$a; # prints ” abc”
}
@x=qw(a b c);@y=qw(d e f g h);

&fun(\@x, \@y); # call fun with a two-

Perl Programming

element
 # list (of two references)

Perl Programming

References (continued)

Don’t confuse these two operators: -> =>
The first is the infix dereference operator.
The second is a synonym for a comma (called the
’corresponds to’ operator):

%a=(’a’,1,’b’,2);
Could be written:

%b=(’a’=>1,’b’=>2);

Type Globbing

Perl provides a way to allow names to be aliased to
other names:

@x=qw(a b c); $x=’hi mom’; # Set some x names
*y=*x; # make ALL x names y
names
print $y, @y; # print ’hi momabc’

This is especially useful for passing names to
subroutines:

@x=(1,2,3);
&chngar(*x); # pass a pointer to a list of names
print ” @x\n” ; # prints ”99 2 3 7 8 9 ”
sub chngar {
 local(*subnm)=@_; # assign from list of names
in @_
 print $#subnm, ” \n ”;# prints 2
 $subnm[0]=99; # changes the first element
of @x
 push(@subnm,7,8,9);
}

Note that the local() call had to be smart about how
to make the connection with what is stored in @_.
In fact, it is even smarter than it appears above.

Perl Programming

Type Globbing (continued)

The *x construct refers to all of the above names,
and is referred to as a ” type glob” of the name x.
We can use this as follows:

$x= ”abc ”;
@x=(1,2,3);
&chngs(*x); # passes *all* ” x ” names
print ” $x\n@x\n ” ;
sub chngs {
 local(*subnm) = @_;#look how smart local() must
be
 $subnm= ”def ”; # $subnm aliased to $x
 $subnm[0]=99; # @subnm aliases to @x
}

or even

@x=(1,2,3);
local(*y)=’x’; # alias ” y ” names to ”x” names
print ” @y\n” ; # prints ”1 2 3 ”

Perl Programming

Multi-Dimensional Arrays

All of the more complex data structures in perl
programs (and perl modules) are based on lists of
lists in one form or another.
This is often abbreviated as a LOL. See the perllol
man page or perldoc document for more details than
addressed here.
More correctly, a LOL is a list of references to
other lists. For example:

@a=qw(a b c d e f);
@b=qw(1 2 3 4 5 6);
@lol=(\@a,\@b);
print $lol[0][2]; # prints c
print $lol[0]->[5]; # prints f

In the example above, the simple lists (@a and @b)
were named arrays. Often we want to create lists,
but not using names. These are called anonymous
lists, and often a reference to them is created:

$list=[’a’,’b’,’c’];
print $list->[2]; # prints c, so would
$$list[2]

Note that we used [] not ().
LOL’s can be created similarly:

@lol = ([” bill ” , ”farmer ” , 19234, 0],
 [” joe ”, ”bum” , 78459, 1]
); # note the comma between anonymous
lists
print $lol[0][2]; # or $lol[0]->[2]

Or we can create a reference to an anonymous LOL:
$lol = [[” bill ” , ”farmer ” , 19234, 0],
 [” joe ”, ”bum” , 78459, 1]
]; # note the comma between anonymous
lists

in which case we access elements like this:
print $$lol[0][1]; # prints farmer
print $lol->[1]->[2]; # prints 78459
print $lol->[1][2]; # also prints 78459

Perl Programming

#print $lol[1][2]; wrong!
#print $lol[1]->[2]; wrong!

Perl Programming

Multi-Dimensional Arrays

Perl allows you to mix list-type and associative
arrays in a multi-dimensional notation:

%hash=(”ted” ,[’demop’,1265,78], ”bill ”,[’renfie’
,5685,27]);
print $hash{” bill” }->[1]; #prints 5685
print $hash{” bill” }[1]; # same thing

The above is a hash of lists. You could also have
lists of hashes, hashes of hashes, lists of hashes
of lists, etc....
In a ” real” program, values are often assigned
through loop statements.
When using modules, you must often create data
structures to pass to methods in the module, or you
might be given references, or LOL’s containing data
the module has developed.

Perl Programming

Perl Modules

A Perl Module is a reusable software component.

As such, they are written according to a set
of guidelines that make sure they don’t
pollute the programs they are designed to
aid in developing.
Many Modules are written ” Object ” like, and
define classes, and methods for accessing
the data/operations in the class. They can
” export ” thingies to your program. You can
also ” reach into ” the module to use pieces
of it, or select which pieces you want.
They are Perl code (But might ”CODE ” in
some C)

Perl modules are files named with a .pm extension.
They should be placed in Perl’s include path, or you
can modify the include path, here is how one Win32
version of Perl was setup:

$ perl -e ’$,=” \n ” ; print @INC’
C:\APPS\perl53\lib\i386-win32
C:\APPS\perl53\lib
c:\fred\perl\lib
.

There are many modules ” shipped ” with perl, called
the standard libraries, and, of course, there are
the CPAN and other modules.
Win32 ports typically include a set of Win32 related
modules.
Modules might add routines, override routines, or
overload routines. One even allows you to assign
constants, like PI.
It is also possible to autoload only the functions
you need from a module.

Perl Programming

What modules?

There is a list of standard modules in most perl
documentation, for example, Appendix B of the
Learning Perl books. You could also list the lib
directory to see what is there:

AnyDBM_File.pm Fcntl.pm Symbol.pm constant.pm newgetopt.pl
AutoLoader.pm File Sys ctime.pl open2.pl
AutoSplit.pm FileCache.pm Term diagnostics.pm open3.pl
Benchmark.pm FileHandle.pm Test dotsh.pl ops.pm
Bundle FindBin.pm Text dumpvar.pl overload.pm
CGI Getopt Tie exceptions.pl perl5db.pl
CGI.pm I18N Time fastcwd.pl perllocal.pod
CORE IO UNIVERSAL.pm find.pl pwd.pl
CPAN IO.pm User finddepth.pl shellwords.pl
CPAN.pm IPC abbrev.pl flush.pl sigtrap.pm
Carp.pm Math allmod ftp.pl site
Class Net assert.pl getcwd.pl stat.pl
Config.pm Opcode.pm auto getopt.pl strict.pm
Cwd.pm Pod autouse.pm getopts.pl subs.pm
Devel SDBM_File.pm bigfloat.pl hostname.pl syslog.pl
DirHandle.pm Safe.pm bigint.pl importenv.pl tainted.pl
DynaLoader.pm Search bigrat.pl integer.pm termcap.pl
English.pm SelectSaver.pm blib.pm less.pm timelocal.pl
Env.pm SelfLoader.pm cacheout.pl lib.pm validate.pl
Exporter.pm Shell.pm chat2.pl locale.pm vars.pm
ExtUtils Socket.pm complete.pl look.pl

This might include modules installed locally, as
well as the standard Perl modules.
To add modules from CPAN, load the module (or the
tree structure) into a location listed in @INC (or
add a new location to @INC).

Perl Programming

Using modules

Modules can provide variables (or various data
structures) for use in your program, they might also
provide functions you can call.
Modules might provide extra capabilities, or provide
” better ” functionality. Some methods can override
” built-in ” functions.
You must tell the compiler to ” include ” the
module:

use <Module-name>; # Bring in all exports
use Module (); # Take no exports, let me call
what I
 # want with
” Module::something ”
use Module LIST; # Bring in only LIST

Depending on how the module was written, and
included, the module might ”export” stuff, or you
might have to call them with package naming:

use Cwd; # bring in all exported
stuff
print $ENV{’PWD’}; # prints nothing on early
Win32
print getcwd(); # works ok, getcwd is
exported
print Cwd::getcwd(); # Ok also, told which
package

An example of overriding (on UNIX systems):
print $ENV{PWD}; # Prints /user/fred
chdir (”/ ”); print $ENV{PWD}; # Prints
/user/fred
use Cwd(’chdir’); # Call in chdir, cause not
exported
chdir (”/ ”); print $ENV{PWD}; # prints /

Perl Programming

Using modules

Note that some modules are stored in directories
under the lib directory. These are called structured
packages. For example:

C:>cd c:\APPS\perl53\lib
C:>dir Text
Abbrev.pm ParseWords.pm Soundex.pm Tabs.pm
Wrap.pm

To use these:
use Text::Wrap;
$Text::Wrap::columns=15;
$long=” this is the text to be wrapped into a
format\n ”;
print wrap(’’, ”\t” ,$long); #
wrap(initind,ind,string)

Which prints:
this is the
 text
 to be
 wrappe
 d into
 a
 format

Another example:

use Config;
print $Config{’osname’}; # prints MSWIN32

Perl Programming

Using Objects

Many modules in Perl are written using Object
Oriented techniques.
Perls objects are created through creative use of
packages, references, and associative arrays
(hashes).
An object is a data structure that contains
variables you can either dereference or assign, and
functions (methods) that you can call.
What we care about here, is that many module methods
return a reference to an object. We need to be able
to access the properties (methods and variables) of
that object. It is done using the -> operator.
The infix dereference operator is used in two ways.
The first we have seen when using multi-dimensional
arrays:
 $ref->[3] $ref->{’$x} $ref->{$u}-
>{$x}
The second is when accessing properties of an
object. Here is an example of accessing a method
within an object:

$obj=mod1::mthd3($arg1,$arg2); # module returns
an object
print $obj->getinfo(”total ”); # call the
getinfo method
 # of the returned
object

When a module is OO, sometimes you directly access
methods within the module, which returns a reference
to an object:

use CGI;
$query=CGI->new(); # method returns ref to an
object
$query->param(’date’,scalar(localtime)); # set var
in obj

Perl Programming

Some code blurbs
 $count=$sum=0;
 while ($x = <STDIN>) {
 chomp($x);
 if ($x eq ” ”) {
 if ($count > 0){
 print ” $count non-blank lines in that block\n” ;
 $sum+=$count; $count=0;
 }
 } elsif ($x eq ” END”) {
 $sum+=$count; last;
 } else {
 $count++;
 } }
 print ” total non-blank lines= $sum\n” ;

while (<STDIN>){
 if (/[\t]$/){
 print ”line $. ends with white\n” ; # let
perl count lines
 } }

$count=0;
 while (<STDIN>) {
 $count+= s/\bin\b/$&/g;
 }
 print ” $count\n ”;

$/= ”\n\n ”;
while (<STDIN>){
 write STDOUT;
}
format STDOUT =
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~
$_
.

Perl Programming

Some code blurbs
#!/usr/local/bin/perl
while (<STDIN>){
s{ <!(.*?)(--.*?--\s*)+(.*?)>}{if ($1 || $3)
{ ”<!$1 $3>” ;}}gesx;
s{ <(?:[^>’”] *|” .*?” |’.*?’) +>}{}gsx;
s{ (&(\x23\d+|\w+);?)} {$entity{$2}||$1}gex;
print;
}
BEGIN {%entity = (
 lt => ’<’, #a less-than
 gt => ’>’, #a greater-than
 amp => ’&’, #a nampersand
 quot => ’ ”’, #a (verticle) double-
quote
 nbsp => chr 160, #no-break space
 iexcl => chr 161, #inverted exclamation
mark
 cent => chr 162, #cent sign
.
.
.
 chr 203, #capital E, dieresis or umlaut
mark
 Igrave => chr 204, #capital I, grave
accent
 .
.
.
 thorn => chr 254, #small thorn, Icelandic
 yuml => chr 255, #small y, dieresis or
umlaut mark
);

 for $chr (0 .. 255) {
 $entity{ ’#’ . $chr } = chr $chr;

Perl Programming

 }
}

Perl Programming

Recursive Subroutine to display a directory
tree:

 $x=shift;
 chdir($x) || die ”can\’t chdir to $x ” ;
 ($dev,$ino,$mode,$nlink) = stat(’.’);
 &dodir(’.’,$nlink);
 sub dodir { # process a directory.
 local($dir,$nlink) = @_;
 local($dev,$ino,$mode,$subcount);
 # Get the list of files in the current
directory.
 opendir(DIR,’.’) || die ” Can’t open $dir” ;
 local(@filenames) = sort readdir(DIR);
 closedir(DIR);
 if ($nlink == 2) {# this dir has no
subdirectories.
 for (@filenames) {
 next if $_ eq ’.’;
 next if $_ eq ’..’;
 print ”$dir/$_\n ”;
 } } else { # this dir has subdirectories.
 $subcount = $nlink - 2;
 for (@filenames) {
 next if $_ eq ’.’;
 next if $_ eq ’..’;
 $name = ” $dir/$_ ”;
 print $name, ”\n ”;
 next if $subcount == 0; # Seen all the
subdirs?
 ($dev,$ino,$mode,$nlink) = stat($_);
 next unless -d _;
 chdir $_ || die ”Can’t cd to $name ”;
 &dodir($name,$nlink);
 chdir ’..’;
 --$subcount;

Perl Programming

 } } }

