Perl Programming

Per|l Progranm ng Fast

Presented by:
Fred Mallett frederm@anece.com
FAME Conput er Educati on
250 Beach Bl vd
Laguna Vista, TX 78578
956- 943- 4040

Perl Programming
Sem nar Qutline

Per| Synt ax
Common constructions
A | ook at sone prograns fromthe web (or el sewhere)

Perl Programming

VWhat is(n't) Perl |ike?

Perl is like UNI X Shell scripting

text file read at execution tinme (Command

I nterpretive | anguage)

Can be easily read (can be inpossible to read)
Comments froma ”"#” to end of |ine
Conmmand |ine capabilities

#! [/ bi n/ ksh
print " hello world”; exit

#! [usr/ | ocal /bin/perl
print " hello world \n"; exit;

Perl is not |like UNI X Shell scripting

Programis read conpletely and conpil ed at
execution tinme

Prograns are witten in bl ocks
foreach (<STDI N>) {
print "$_ Is readable\n” if -r;
}
Perl is |ike awk
Anyt hi ng you can do in awk, you can do in Perl
There is an a2p utility
Perl is not |ike awk

syntax has many differences (NRis $.)
Per| has many nore capabilities:

file, dir, process, network
There are no string limts

Perl Programming
What is(n't) Perl like?

Perl is |ike C Coding

Free-format | anguage, whitespace nostly arbitrary
(bl anks, tabs, new ines, returns, and fornfeeds)
Nearly all statenents nust be term nated by a

1 f ($x == By) {
print " val ues are equal\n”;
} else {
for ($i=1;%i<=5;%+=2) {
$x *= $i;
print "values are: $i $x\n";

}

not |i ke C Coding

n routine required (it is inplied)
onpi | e necessary

I braries or include files required

| at f or m dependent binaries
“syntactical shortcuts”

open(WORDS, " $SENV{' list’}") ;
i f (-MWORDS < 7)
whil e (<WORDS>) {
chonp;
print;

}
S
Mai

b}

Perl Programming

Per| programinvocation nethods:

As a perl script (on UN X boxes):
Put #!/usr/Il ocal/bin/perl as the first
characters of script
Make the file executable
Execute as a conmand (|l ocated via search path):

filenane

As a perl script (on Wn32 boxes):
1) Use associated file types, then execute as a
command:
filenane. pl
| f you al so set pathext to include .pl,
you could run the file wth just
filenane.
2) You can also convert a perl script to a Wn32
batch file
with the pl2bat programincluded in the Perl
for Wn32
rel ease. (c:.> pl2bat filenane. pl)
These nethods do not allow /O redirection on the
command line (filenane < textfile.txt).

As a perl programfile (on any OS wwth a command
l'ine):
Don’'t need the #! declaration, or execute rights
Execute the programthis way:

perl filenane. pl

As an interactive program (good for syntax
checki ng) :
per |
print “Bye cruel world\n”;
<ctrl>d (<ctrl>z on Wn32)
As a command:
perl -e 'print 2+2;’
perl -i.bak -p -e ’'s/™Ms+//;s/\s+$//;’
sonefile

Perl Programming

In all nethods, Perl parses entire perl file, if
there are no syntax errors, it enters the
conpi | ati on phase

Perl Programming

Scal ar data nunbers:

I ntegers and floating point (real)
accepts the conplete set available to C programers

exanpl es of integer constants:

17

-1234

0154 +#an octal nunber representing
deci mal 108

Oxfffe # hexadeci mal of decimal 65534
exanpl es of reals:

1.25
6. 7e38
- 3. 5e-13

Perl Programming

Scal ar data strings:
Any 8-bit character (256 different characters)
This neans that Perl can work with binary data
There is no arbitrary string | ength

Non-interpreted strings, no special neanings (except
\" and \\)

"abc’ g(abc) #the letters
a, b, c

"wor | d\ n’ g=wor | d\ n= #the letters
w,o,r,l,d,\,n

" and

now #a,n,d,newWine, n,o,w

| nterpreted strings, special neanings nust be
prefixed by a “\”

$ #expand scal ar vari abl e data

@ #expand |ist variable data

\ #backsl| ash

#doubl e quot e

#new i ne

#return

#t ab

#f or nf eed

#backspace

#vertical tab

#bel |

#escape

#octal characters, max 077
#hex characters, nax Xxff
#any control character (here, control

— o T T T T

O
UQ_\I

#l ower case next letter

#l owercase followng letters until \E
end of string

#uppercase next letter
\U #uppercase followng letters until \E or end
of string
\E #termnate \L or \U (the case-shift
operators are

O//

—
c

Perl Programming

typically used to alter variabl e val ues)

abc\n” g(abc\ n) g=abc\ n= guor su

Perl Programming

perators for Wirking with Scal ar Val ues
numeri c oper ators

+ - * [#normal arithnetic operators
** #exponenti ati on
% #nmodul o (1098 = 1). Both operands

#reduced to integers prior to
perform ng

S0, (11.1 %2.9) sane as (11 %2 =
1)

string operators

: #concatenation. " aaa” . " bbb’ =
" aaabbb”
X #repetition. Uses two operands: string and
I nt eger
"abc” x 2 = " abcabc”
#second operand is truncated to an integer
"abc” x 2.5 = "abcabc”

#nunbers less than 1 result in an enpty
string

| ogi cal operators for nunbers
used to conpare two nunbers
sane availability as in C
< <= == >= > | = <=>
| ogi cal operators for strings

used to conpare two strings (simlar to FORTRAN
operators)

It e eq ge gt ne cnp

Separate | ogi cal operators needed to resol ve: S
5 |l ess than 107?

if (51t 10) # if conparing as strings
If (5 <10) # if conparing by nuneric
magni t ude

Conpari son as nunbers is different than conparison
as strings

Perl Programming

Note that string and integer |ogical operators are
approxi mately opposite of those used by the UN X
t est conmand.

Perl Programming

Operator Precedence and Associativity
Associativity: Qperator: (highest to | owest)
() G oupi ng
none ++ - - (auto-i ncrenment and
decrenent)
right Il ~ - (logical not, bitw se
not, nuneric negate)
right *x
| eft =~ I~ (bi ndi ng operators)
| eft * % X
| ef t .+ - (subtraction)
| eft << >> (bit shift)
none -r and others (file test operators)
none t he naned unary operators
none < <= >= > |t l|le ge gt
(" not-equal " operators)
none == |= <=> eqg ne cnp
(" equal ” operators)
| ef t & (bitw se and)
| eft | " (bitwise or, bitwse

excl usi ve or)
| eft

| ef t

none
constructor)
right

right
oper at or s)

| ef t

none

right not
| ef t

| eft

Xor)

&% (1 ogical and)
|| (logical or)
(range operator, |ist

?. (ternary if/then/el se operator)

= += *= etc... (all assignnent
: (comma)

the "list” operators

(1 ogi cal negate)

and (1 ogical and)

or xor (logical or, |ogical

Perl Programming

Conver si ons Between Nunmbers and Strings

Perl attenpts to convert operands to the type
required
by an oper at or

Converting strings to nunbers:

| eadi ng whitespace and trailing non-nuneric
characters are ignored:

10 + * 123section99” == 133;

Non- nuneric strings convert to O

Converting nunbers to strings results in what would
be printed:

(4+2) x 2.3 == 66;

the " x” operator forced (4+2) to be converted to
a string after the addition

Converting real nunbers to integers:
The int() operator can be used to extract the
I nteger part of any nunber:
print int(7.2); # prints 7

Note that all nunbers are stored as doubl e-precision
floating point (atof() is used to convert strings).

Perl Programming

The scal ar undef val ue

Ref erenci ng scal ar vari abl es that have not been
assigned a value is allowed, though it causes a
war ni ng.
These vari abl es are consi dered undefi ned.

The value is zero if used as a nunber

The value is 7" (enpty string) if used as a
string
“undef ” is also returned by sone functions

Perl Programming

Literal List data

Lists of values are conposed of literals and/or
vari abl es and/ or expressions separated by commas,
typically in parentheses.

Each value is call ed an el enent

Exanpl es of |ists of scalar constants:
(1,2,3)# a 3 elenent |ist with the values 1, 2, 3
("aaa” ,7)# a 2 elenent list with the values " aaa”
and 7
() # alist with no el ements
print 2, 'a, 4, "\n” ; # Print expects a list, so no
()’ s needed

The range operator returns el enent val ues which
I ncrenent by one:

(1..5) # a 5 element list: 1,2,3,4,5
(1..3,10)# a 4 elenent |ist: 1,2,3,10

(1.2..4) # a3 elenent list: 1.2, 2.2, 3.2
(a’..’z') # a 26-elenent list: the | ower-case al phabet

Assignnents involving list data
($a, $b)=(17, 22); #a becones 17; b becones 22
($a, $b)=($b, %a); #swaps the values of a and b
($a, $b)=(6,7,8,9,10);
($a, $b)=(6);

Rul e Excess values on the right of = are not
I nvol ved, while excess variables on the left are
gi ven the val ue undef.

Perl Programming

Cont ext

Expressions are of only two types: scalar and |ist.

There are two maj or contexts: scalar and array
(scalar is further divided into string, nuneric, and
don’t care).

Many operations are sensitive to context and
eval uate differently. Sonme operations supply a
particul ar context, treating their operands as
scal ar or array val ues.

| f specified in an array context, Perl w || pronote
a scalar value to a single-elenent array.

| f specified in a scalar context, Perl wll treat an
array value in a manner determ ned by the operati on.

Perl Programming

Vari abl e notati on

Per| has scalar, list array, and associative array
vari abl es.

Variables in Perl use a prefix for both assigning
and expandi ng.

The prefix determ nes the data type to be returned.
The prefix does not determ ne the variable type.

Variables in Perl use suffixes when addressing
el ements in a |ist.

The suffix determ nes which variable type is being
addr essed.

Only when there is no suffix does the prefix
determ ne vari abl e type.

Vari abl es can contain scal ar data, references, or
|1 sts of either.

Vari abl e nanes or references can be encl osed in
br aces.

Perl Prefixes: $ scal ar data

@ | i st data

% hash (associative array) data
(pairs)
Perl suffixes: [] el enents by index froma
list array

{ } el ements by keys from a hash

$x=4 @=("a,’'b,’ c) w=("a ,1,’b,2)
$X[2] @[1, 2] @[0. . 3] @[2, 1] @[1- 3]

Perl Programming
$x{ a} @{a, b} U
$#x scal ar (@) print @& . "\n”

Sonme very common functions (operators)
<FH>

The di anond operator accepts a Filehandl e (conti ned)
ar gunent .

Used in a scalar context it reads up till (and
I ncl udi ng) the next record separator, used in |ist
context it reads and returns all records till EOF.

The default input record separator is the newine
charactor.

$stri ng=<STDI N>;
$string=<FH | Opened>;

$stri ng=<>; Reads from command
|1 ne filenane

@i st =<>;

($infile, $outfil e)=<STDI N>; #expect two
| i nes, EOF

If <> is the only thing specified in a while()
condition (no variable nane referenced), the default
variable $_ is used.

The while() condition is the only significant
construct where <> is treated this way.
whil e (<STDI N>) {
print “$ \n”; #double space output (2 new
| 1 nes)

}

Note that in the Wn32 ports of Perl input and
output text file translations are autonati C:

When reading, \r\n is changed to \n so you treat
data as " UNI X" .

When printing, \n is changed to \r\n, so again,
handl e as 7 UNI X" .

Perl Programming

chonp()

Chonp renpves a single newline fromthe end of a
scal ar string:

$str="hi\n";
chonp $str;
print $str; # Prints hi without a
new i ne
Chonp wll accept a list, and act on each elenent:
@& = (” abc\n”, 17, " def\n”, ”ghi ”);
| $y = chonp(@) ; .
Gves @& the values "abc”, 17, "def”, " ghi”,

and $y gets 7 2"

Perl Programming
Li st-type Array Qperators
push() pop()

The push() and pop() operators nmani pul ate the
hi ghest nunbered el enent of an array

push(@, $y);
adds a new elenent at the top of array @, the
val ue equal to $y this acconplishes the sane as:

@& = (@&, $y)
push() can push an array of values onto an array:
push(@, 7, 8, 9); #adds 3 new el enents to array @

$y = pop(@);
Renoves hi ghest elenent of array @ and places it in
By
pop() on an enpty array wll return the val ue undef

shift() unshift()

The shift() and unshift() operators nanipul ate the
| owest nunbered el enent of an array

$y = shift(@);

Renoves the | owest el enent of array @ and pl aces
it in $y. This acconplishes the sane as: ($y, &)
= @

shift() on an enpty array wll return the val ue
undef .

unshift (@, $y); # sane as: @& = ($y, &)
Adds a new el enent to the bottom of @©X.

unshift() can unshift an array of values onto an
array:

unshift(@,7,8,9); # Sane as @& = (7,8,9, &)

shift and push can be used together to performa
circular shift:

push(@rray, shift(@rray));

Perl Programming

Li st-type Array Qperators
reverse()

The reverse() operator returns the elenents in the
argunent |ist in reverse order

@& = (7,8,9);
@ = reverse(@) ; # @ gets values 9,8,7

|f used in a scalar context it concatenates all

el enents, then reverses the characters. This can

al so be used to reverse the characters in a scal ar:
$y:n Cat ” ’
$y=reverse($y); # $y is now tac

@:(" ki t ” ’ 7 Cat 7) ;
$x=reverse(@); # $x is nowtactik
Note that this joined a |ist

into a scalar, then reversed
t he

scalar, it is not often used
sort ()

The sort() operator returns its argunents in
al phabetic sorted order

@& = (50, 10,4, 2, 30);
@& = sort(@);
G ves @& the values 10, 2, 30, 4,50

This is an ascending ASCII sort.

More conplicated sorts can be coded in Perl, and
wi Il be described in the section on ” user
functions”.

splice()

spl i ce(ARRAY, OFFSET, LENGIH, LI ST)
splice(@, 2, 3, "new', " data”)

Perl Programming

Associ ative arrays

Associ ative array elenents are built by specifying
both the key and val ue for each elenent. This can be
done all at once:

Wist = ("ted ,’123-456" , 'mary’,’ 453-1682");
in which the itens in the list are treated as
key/value pairs. Note that the entire array is

defined this way. This inplies that an associative
array can be "cleared” wth:

Wist = ();
Alternatively, an associative array can be added to,
one elenent (pair) at a tine:
$list{ sue’'} = '541-1234;
Slist{"b"} ="'xyz";
Slist{'c’'} = 17;
I n whi ch unaddressed el enents remai n unchanged.
Note the curly brackets that distinguish the type of
vari abl e:
$x[$y] # an elenent of a list-type array
$x{$y}# an el enent of an associ ative array

Single elenents can be accessed wth:
print " $list{'mary’ }\n” # prints 453-1682
Single elenents can be assigned wth:
$list{"ted"} = '451-2341"; # change the val ue
Keys can be any scal ar value, but are treated as
strings
$x{ " yy”} # el enment key is "vyy
$x{ 123} # element key is 7 123"

To add two to the value of the array el enent used
above

$x{ 123} += 2;

Ref erenci ng an el enent that has not been defined
returns the undef val ue

Perl Programming
Associ ative-array operators
keys()

The keys() operator produces a list of all the
current keys in an array

$x{"a” }=5; $x{ " b"}=6;# | oad associ ative array

@ = keys(%); # @ gets ("a”, "b”)
#—Or— (Hbﬂ’ Ha”)
Note that the order in which the keys of % are
placed into @ is determned by Perl. It is not

necessarily related to the order in which % was
bui |l t

|f used in a scalar context, keys() returns the
nunber of elenents in the array
$z = keys(%) # $z gets the nunber of elenents in %
val ues()

The val ues() operator produces a list of the val ues
of all the elenents in an array, _in the sane order
as the keys returned by keys()

$x{ " a”}=5; $x{ " b” }=6;#l oad associ ati ve
array
@ = val ues(%) ; # @ gets (5”7, "6"7)
#-Or- (”611’ 11511)
|f used in a scalar context, values() returns the
nunber of elenents in the array:
$z=val ues(%); # $z gets the nunber of elenents in
X

reverse()

reverse() can be used to invert an associative
array (change val ues to keys):
Yaa=('a ,1,’b,2,'c,1);
% nv=reverse(%a); # reverses |list equivalent of %a
print (%nv,”\n”); # prints la2b or 1c2b

Perl Programming

Note that % nv | ost an el enent since the val ue of
a” and “c” were identical, and are now being
used as keys.

Perl Programming

Associ ative-array operators
del et e

The del ete operator renoves a key-value pair from an
array, and returns the del eted val ue.

$y = delete $x{"a” };

Renoves the key/value pair of % with key " a”
and returns value into 3y

exi sts

The exists operator returns true if the specified
key exists, even if the value is undefined.

i f (exists $list{$nane})
{print " $nane:\t3$list{$nane}\n”";}

Perl Programming

Associ ative-array operators

each()

The each() operator returns the key-value pair of an
elenent in an array as a two-itemlist. Each
successive call returns another el enent.

Ww=('a,1,’b ,2);# | oad associ ative array
@=each(%); # load "first” key/value of % into @
print " @\n” ;# prints "a 1" -or- "b 2”7
@=each(%); # loads ”"second” key/value of % into @
When there are no nore elenents to be accessed,
each() returns an enpty list. |If each is called
after it has returned an enpty list, it resets
Itself, and begins working its way through the array

again. Calling keys() or values() wll also reset
t he each cal ling sequence.
=(a, 1, Db, 2); # | oad associ ative array
@=each(%) ; # load "first” key/value of % into
@
print " @\n”; # prints "a 1”7
$count =keys(W) ; # reset each calling sequence
@=each(%) ; # | oad key/value of % into @
print " @\n”; # prints sane as above print
Assigning a new value to the entire array (% to the
|l eft of the assignnent) wll also reset the each()

cal l i ng sequence.

El enrents added to the array after the first each()
may not be picked up by further each() calls.

Pre-existing elenents can be changed after the first
each() call, but you can’t be sure what order Perl
w Il pass individual elenents fromeach().

Perl Programming

St atenments and Fl ow Cont r ol

From the Quick Reference guide:

Every statenent is an expression, optionally
followed by a nodifier, and term nated by a
sem colon. The sem colon nay be omtted if
the statenent is the final one in a BLOCK

Executi on of expressions can depend on ot her
expressions using one of the nodifiers if, unless,
while or until, for exanpl e:

EXPRL i f EXPR2 ;
EXPR1 until EXPRZ2 ;

The | ogical operators ||, &% or ?: also allow
condi tional execution:

EXPRL || EXPR2 :
EXPRL ? EXPR2 : EXPR3 ;

Statenments can be conbined to forma BLOCK when
enclosed in {}. Blocks nay be used to control flow

If (EXPR) BLOCK [[elsif (EXPR) BLOCK ...]
el se BLOCK]
unl ess (EXPR) BLOCK [el se BLOCK]
[LABEL:] while (EXPR) BLOCK [continue BLOCK]
LABEL:] until (EXPR) BLOCK [continue BLOCK]
LABEL:] for (EXPR, EXPR, EXPR) BLOCK
LABEL:] foreach VARt (LIST) BLOCK
LABEL:] BLOCK [continue BLOCK]

Perl Programming

Statenents and Fl ow Contr ol
Program fl ow can be controlled wth:

got o LABEL
Conti nue execution at the specified
| abel .
| ast [LABEL]
| mredi ately exits the loop in
guestion. Skips continue bl ock.
next [LABEL]
Starts the next iteration of the | oop.
redo [LABEL]
Restarts the | oop bl ock w thout
eval uating the conditional.

Special forns are:

do BLOCK whil e EXPR ;
do BLOCK until EXPR ;

whi ch are guaranteed to perform BLOCK once before
testing EXPR, and

do BLOCK

whi ch effectively turns BLOCK i nto an expressi on.

Perl Programming

Regul ar EXxpressi ons

Perl’s regul ar expressions can be invoked as
argunents to several functions, here are three
commonl y used functions:

mrel Returns a true/fal se about the match, or
mat ched

t agged expressions in an array context.
s/rel/string/ St andard substitution operator, has
sever al

I nteresting nodifiers, as does the match
oper at or.

split(/rel/, string) Uses the RE to split the
string.

The foll ow ng characters can be used to nake up
regul ar expressions:

: mat ches any single character, but not a
new i ne wi thout ’'s’
(...) groups a series of pattern elenents to a
single atom
A mat ches the beginning of the string. In
multiline node ' mni

al so matches after any new i ne character
$ mat ches the end of the line. In 'n also
mat ches before

every newl i ne character.

[...] mat ches any character in class [~ ...]
negat es the cl ass.

(... | ... | ...) mat ches any of the

al ternatives

(?# TEXT) conment

(?: REGEXP) non back-referenci ng group

(?= REGEXP) Zero width positive |ook-ahead
assertion

(?! REGEXP) Zero wi dth negative | ook-ahead
assertion

(? MODI FI ER) Enbedded pattern-match option
can be one or nore of I, m s, or

Perl Programming

X.

Quantified atons match greedily. Followed with a ?
t hey are non-greedy:

+ mat ches the preceding pattern el enent one or
nore tines.

? mat ches zero or one tines.

* mat ches zero or nore tines.

{N, M match N t hrough Mtines

({N} neans exactly Ntines; {N } neans at
| east N tines,

{,M neans up to Mtines.

Perl Programming

Regul ar EXxpressi ons

many character classes are defined in a shorthand
notation, here are a few of them

\d is the sane as [0-9]
\Dis the sane as ["0-9]
\wis the sane as [a-zA-Z0-9]
\Wis the sane as ["a-zA-Z0-9]
\s is the sane as [\r\t\n\f]
\Sis the sane as [M \r\t\n\f]
There are al so sone short hands for anchors:
\A begi nning of string
\Z end of string
\G location of previous match search

Back-r ef erences:

\1 ... \'n refer to matched subexpressi ons, grouped
with ()

Wth nodifier x, whitespace can be used in the
patterns for readability purposes.

O her notes

The function pos(string) returns the character
| ocation of the first character matched by the
previ ous match operation against that string.

There are al so many special variables set by the
mat ch operator:
$& the part of the string matched by the
RE
$ the part of the string prior to the
mat ch
$’ the part of the string after the match

Perl Programming

${n§ The tagged portion of the match ($1 $2

Perl Programming

Functi ons

Functions typically accept one or nore argunents,
and:

return a value (int)

or performan operation with [asting effect
(print)

or both (shift, pop)

To use functions effectively, you should know a
functi ons:
cal l i ng synt ax:
do commas or spaces separate argunents?
how many ar gunents?
type of argunents?
are there default argunents? (like print
and chonp)
return val ues
I f any, and for array and scal ar calling
cont ext

You can get different return values, or results
dependi ng on the which context a function is called
I n:

@i st = function(); # called in array context
($var) = function(); # called in array context
$var = function(); # called in scalar context
$list[2]= function(); # called in scalar context
$t{$e} = function(); # called in scalar context
$var = (function());

Svar = function(function());

The perl manpage perlfunc docunents this type of
I nformation for all functions.

Beware that you can call many functions as operators
or functions:

print 1+2+4; # prints 7

print (1+2+4); # prints 7

print (1+2)+4; # prints 3

Perl Programming

In the |ast exanple, the () immedi ately after the
print operator told it to act as a function, and
accept what is in the () as the argunents.

Perl Programming

String functions
split(/re/,string,limt)

j oi n(EXPR, LI ST)

| engt h(string)

I ndex(string, subtring, OFFSET)
rindex(string, subtring, OFFSET)
substring(string, OFFSET, LENGTH)
quot net a(string)

uc() lc() wucfirst() lcfirst()

eval ()

Perl Programming

User functions
A user function (subroutine) is witten as:

sub func-nanme {
Per| statenent;
Per| statenent:

}

Function nanes are naintained in their own
namespace.

Function nanes are gl obal, duplicate nanes in the
sanme program conflict

Functions are defined in the order in which they are

encount er ed. If a function nane is used nore than
once, the | ast one takes precedence.

The " -w” conmmand-1ine swtch warns about redefi ned
functi ons.

Functions can be used as part of any expression in a
Per|l program

Functions are called by preceding their nane wth an
&

&t est ; # calls the function named test
$ -->single, @--> plural, %-->
associ ati on
& neans do it

To wite user functions, you should know how t o:
Ret urn val ues
Pass ar gunents

Perl Programming

Passi ng argunents to functions

Argunents can be passed to a function in the calling
st at enent :
$x = 99;
=("a”,”’b");
& un(17, $x, @);

Wthin the function, the |ist of argunents is

available in the array " @ ” . (This follows the norna
convention for nam ng an array)

sub fun { # if called as above:
print "@\n”; # prints 717 99 a b”
print # prints 717"
print # prints "b”
}
Note that the $ in the above exanple | ooks |ike the
vari abl e nane used for the current input |ine, but
t he subscript [0] indicates otherw se.

$_[0];
$_[3];

Function argunents are passed “ by reference”,
I nplying that the function can change the val ues of
argunents in the calling statenent by nodifying the
@ array:
sub nmakei nt
$[0]=int($ [0]); # Assign to argunent array

$x=12. 47;

&makei nt ($x) ; # Call nmakeint with $x as
ar gunent

print $x; # prints 12, as $x is now set to
12

Perl Programming

Passi ng argunents to functions

You can al so do ” pass-by-value” by naking | ocal
copies of argunents that are passed. (covered | ater)

The array @ is local to the function:

Sequence of actions perfornmed when a function is
called wth an argunent |ist:

save any existing val ue of

set a new @ for this function call

process function

at function conpletion, restore any pre-existing

@)

This allows functions that use argunents to be
nested wthout losing their own calling info.

If a function is called with NO argunent list, @ is
not set, and the function sees whatever values this
array contained prior to the function call!! Call
the function with an enpty argunent list to prevent
t his:

&subl; #lnherits @ if called fromwthin a

subrouti ne

&ubl(); #Has its own enpty @

Perl Programming

Vari ables in functions

Vari able nanes used in a function are shared with
the rest of the program

sub test {
print "$x”; # sanme $x value from outside the
sub
$x=42; # When sub ends, main $x is now 42
Sy=47; # $y now exists in main program
}
$x="original ”;
&t est ; # prints " original”

print " $x,8y";# prints "42,47"

The ability to access variables from outside the
subroutine, and set variables that are known after

t he subroutine ends can be a good thing, it can al so
be a very bad thing.

Usi ng | ocal variables, you can prevent

"cluttering” up the variable nanespace in the main
program as well as prevent a subroutine from

I nadvertantly changi ng vari abl es.

Perl Programming

Local Variables in Functions

Any variable nmay be declared as |ocal to the
function code:
sub no_int {
| ocal ($x); # initializes a local version of

$X,
W th val ue = undef
$x=17; # set local $x to 17

}

SSmlar to the handling of the @ array in a
function, Perl

saves any existing val ue of $x

est abl i shes a | ocal $x

(initial value = undef if not otherw se

speci fi ed)

processes the function

at function conpletion, restore any pre-existing

$x

| ocal () nmay be used to the left of an equals sign to
provide initial values. For exanple:

| ocal ($x, $y);
($x, 8y) = @; # assign function argunents to $x, 3y

whi ch could be witten as:
| ocal ($x,%y) = @; # This is pass-by-val ue

As an exanple of |ocal variables, and recursion, the
followng function will conpute a factorial:

sub fact {
#print " Passed a \$n variable with a val ue of
$n\n” ;
| ocal ($n) = @;
R #print " Have a local variable wth a val ue of
n\n”;
($n<2) ?2 1 : ($n * &f act($n-1));

Perl Programming

}
$result = &f act (4);

Perl Programming

Function return val ues

Functions return a value equal to the | ast
expression evaluated in the function at run-tine.
sub ab {
$a* $b;
}
returns the product of $a and $b. This can be called
Wit h:

$c = &ab; # $c gets the product of $a and $b
$d = 3 * &ab; # $d gets the product of $a, $b,
and 3
Fl ow of control in the function will determ ne the
| ast expression eval uat ed:
sub testif
I f ($x == 1) {
S,
} else {
10;
b}

|f $x is equal to 1, the function returns 5,
ot herw se 10.

Return val ues can al so be arrays:
sub array {

(7,8, 9+2);
@ = &array, # @ becones three elenents wth
values 7, 8, 11
$x = &array; # $x becones 11 (the | ast
expr essi on eval uat ed)
($x) =&arr ay; # $x becones 7 (the first

expressi on eval uat ed)
$x=(&array)[1];# $x becones 8 (the 2nd expression
eval uat ed)

Perl Programming

Function calling context

The wantarray() operator can be used to determ ne
calling context in a function.

This is useful if you want to be able to wite a
subroutine that can return different val ues when
called in different ways:

@ et =&subl; # Want an array returned

$ret =&subl; # Want a scal ar back

Here is an exanple of a subroutine that breaks words
based on ”":”, and returns different things in
array verses scal ar context:

#!/usr/ 1 ocal / bi n/ perl
$line=" Grapes: 1.47:100: green” ; #sone sanpl e data

$cost =&brkstr($line, 1); # called in scalar, 2
argunment s

print " $cost\n”; # prints 7 1.47”
@tenc&brkstr($line); # called in array, 1
ar gunment

print "@temn”; # prints " Grapes

1.47 100 green”

sub brkstr {

Usage of brkstr:
brkstr(string to split[, desired word])

| ocal (@i st);

| ocal ($string, $word) =@ ; # nmake | ocal copies of
argunent s

@ist=split(/:/,%string); # split argunment O
based on ”:”

1T (wantarray()){
@i st # all "words” if called in
array cont ext
} el se{

Perl Programming

$list[Sword]; # desired word if in scalar
cont ext

b}

Perl Programming

Basic I/ 0O

At EOF, <STDI N> returns undef value, so | ooping
t hrough each input |ine can be done wth:

while ($x = <STDIN>) {# will |oop until EOF on
STDI N

actions;
}

Standard i nput can be redirected to a script on the
command |ine (but not on WN32 perl scripts, unless
I nvoked with perl perl.script):

Perl.script <input.file #Reads from

I nput.file

cat filel file2 | Perl.script #Reads out put of

cat

Perl . scri pt #Reads keyboard i nput
For multiple files the conmand will get nore
conpl i cat ed

As a shortcut for reading frominput file(s), Perl
provi des the <> operator:

while ($x = <>) {
actions;

}

| f the above programis invoked as:

Perl.script infilel infile2 infile3
the while [oop will read through all input files in
t he order specified.

If no files are specified on the conmand |ine, <>
wll read from standard i nput

Perl Programming

Openi ng and Using Files

A "filehandle” nanes an I/ O connecti on
STDIN is a filehandl e that accesses UN X standard
I nput
STDOUT is a filehandl e that accesses standard
out put
STDERR is a fil ehandl e that accesses standard
error

You can al so open your own filehandl es
Fil ehandl es are nmaintained in their own nanespace

It is recommended that you use uppercase |letters and
digits to formfil ehandl es

User files may be for reading wth:
open (FILEl, "</al/bl/infilename”); # or
open(FH, ' <infile');

To open a file for witing, use:

open (FILEl, ”>outfilenane”);
To open a file in append node, use:
open (FILEl, " >>outfilenanme”);

To use output filehandles, use:
print FILE1 ” output strings”; # or wite or
printf

Al opens return true if successful, false
ot her wi se.

Afile that fails to open for reading will return
EOF on the first read.
Afile that fails to open for witing wll silently

di scard any data sent to it.
Therefore a useful construction is:

open(FILEL, "/ a/b/file”)]||die "can't open file”;

Files can be cl osed using:

Perl Programming

cl ose(FI LE1) ;

Perl Programming

Openi ng and Using Files

Note that the pathnane argunent to open is shown in
doubl e quotes. This nmakes it an interpreted string,
so backsl ash escapes, and vari abl es are expanded. To
prevent this, use single quotes. This is especially
| nportant on W N32 systens. For exanpl e:

open (FILElL, "c:\a\b\infilenane”);

Wul d not work, as the \b woul d becone a backspace
character. Both nethods shown bel ow woul d work fi ne:
open (FILEL, 7c:\\a\\b\\infilenane”); # Escape

the \'s
open (FILELl, ’'c:\a\b\infilenane’); # Use single
guot es

Note that all pathnanes used in the rest of the
course need to be adjusted as above for WN32, this
handout is UNI X-centric.

Distinct fromcurrently opened files, there is a
"currently selected” filehandle (default value is
STDQUT). This value is global across an entire
program |t specifies where output goes if no
filehandle is specified in an output statenent. It
can be changed wth:

$ol dval ue = sel ect (NEW FI LEHANDLE) ;
where %ol dval ue gets the filehandle (as a string) in
use before the select.

Note that in Wn32 systens, if the file you are
reading/witing is not a text file, you need to turn
off the \r\n to/from\n transl ations:

bi nnode(FI LEHANDLE) ;

System functi ons

There are many operators that return file
Information (there is also the stat function):

Perl Programming

-r -w-x -e -d -f -z -0-u-s-M-A-C

Perl Programming

System Functi ons

Many UNI X OS functions have been nade avail abl e
directly through perl functions. They behave nuch

| i ke the UNI X system calls and conmmands by the sane
name, nmany work on non- UNI X:

chdir(” directory”)

The current working directory can be changed duri ng
a Perl run

The effect of chdir goes away upon program

conpl etion

opendi r (DI RHANDLE, ” di rectory”) &

r eaddi r (DI RHANDLE)

The opendir() operator (optionally built into Perl)
can be used to open a directory handl e so that

readdir() can read the entire contents of a
di rectory

rename(list)

The renane() operator is simlar to the UNLX "nv”
conmmand:

renane(” a
speci fi ed

chnod(node, | i st)

The chnod() operator perforns what " chnod” does
chown(U D, AD,Ilist)

The chown() operator perforns what " chown” and
"chgrp” do

uti me(ATI MVE, MIl ME, | i st)

The utine() operator perforns sone of what "touch”
does, setting file access and nodification tines

link(file,linkname) symink() readlink()
The link() operator perfornms what " In” does

The symink() and readlink() operators act on soft
links (I n -s)

unl i nk(Ilist)

The unlink() operator perforns simlar to

, "newdir/a”) ;# newfil ename nust be

rm

Perl Programming

nkdir(” di rectory” , node)
The nkdir() operator perforns simlar to ” mkdir”

rodi r()
The rndir() operator performs what " rndir” does

Perl Programming

Fi | enane d obbi ng

Fi | enane expansion (" gl obbing”) is available using
angl e brackets:

@& = </etcl/alia*> # expands as /bin/sh would do
It
O, less anbiguously, using the glob function:

@ = glob("/etc/alia*”); # Note that " ”
required
Used in an array context, the conplete |list of
mat chi ng pat hnanes i s returned.

Note that the special characters available and their
neani ng are not the sane as for regul ar expressions.

In a scalar context, the gl ob construct returns the
next itemin the |ist:

while ($next = glob(”"~/c*”) {
program st at ements usi ng $next. ..
}

The above wll go though the |Ioop for each value in
the filenanme list, with $next set to the successive
val ues.

VWhat is returned froma filenane expansion i s what
the UNI X command ” echo” would return (directories
are not expanded)

Fi |l enanmes beginning with a are not returned
unl ess specified in the request (even for root)
Miultiple patterns are permtted in angle brackets:
</etc/bin/* [usr/bin/X11/*>
To do this with glob, put nultiple wildcards in a
single string:
gl ob(’/etc/bin/* [usr/bin/ X11/*")

Vari ables are interpol ated before fil enane
expansi on:

Perl Programming

<$x/rpc*> # $x is replaced by its val ue before
expansi on

Perl Programming

Managi ng arbitrary child processes

Perl provides multiple ways to launch child
processes:

system()

-t oor gx()

via Perl filehandl es

fork()

Summary of process | aunching
Launch STDI N of |STDOUT STDERR |Wait for
Vet hod Process |of of conpl et e?
Process |Process

systen() |Perl’s Perl’s Perl’s Yes
‘ ‘ Perl’s returned |Perl’s Yes
gx() as string
open(FH,'c| |Perl’s connected |Perl’s only by
") to cl ose()
(for fil ehandl e
r eadi ng)
open(FH,’ | ¢ |connected |[Perl’s Perl’s only by
') to cl ose()
(for fil ehandl e
writing)
fork, exec |User User User User

Perl Programming

wal t

sel ect ed

sel ect ed

sel ect ed

sel ect ed

Perl Programming

Sone Terns

Package

A package is a naned " nanespace” (Synbol
table). You can have an associative array
(hash) called " mystuff” 1n every package.
Managed with the package declaration. You
could access the scalar variable xs in the
package Mooki e, with $Mokie::xs

Li brary

A set of routines grouped by purpose. Can be
stored in a *.pl file, and brought into a
program wth the require directive. Mostly
super ceded by nodul es (though many have been
changed to nodul es, sonme still exist).

Modul e
A reusabl e package defined in a library file

that conforns to sone rules (suggestions?),
naned <package-nane>.pm that allows the

file to be "included” in a programwth the
use directive.
Pragnma

A Module that changes the behavior of the
conpi | er.

Ref er ence

A variable can contain ”"data”, or, it can
be a reference, which neans it contains the
address where sonething is stored in nenory.
To resolve data from a variable that
contains a reference, we " dereference” it.
This Is very simlar to a pointer (used in
many | anguages), except that you cannot
perform " math” on the nenory address (thus
references are considered ”"safe” pointers).

Perl Programming

Packages

By default, all identifier nanmes in a perl program
are managed by perl using a single synbol table.
Perl refers to such a synbol table with a
" package” nane, the default package nane bei ng
" mai n”
You can access nanes in a package by prefixing
<package>:: to it:

$z="hi "; print $z; # prints hi

print $main::z, # prints hi
You can create alternative synbol tables as desired,
and switch synbol tables via the package conmand.

Names and associ ated vari abl es known in each package
are kept independently fromthe sane nane in any
ot her package:

$x=7;

package test;

$x=9;

print " $x\n”; # prints 9
package nai n;

print " $x\n”; # prints 7

The synbol table chosen via a package conmand
persists until the end of the block it is part of,
but the synbol table in use may be switched as often
as desired:

$x=7; $y=8;
{ package test;
$x=9; $y=10;
}
print " $x $y\n”; # out of package "t est”
prints 7 8
package test; # back to the "test” synbol
t abl e

Perl Programming

print 7 $x $y\n”; # prints 9 10
package nai n; # out of 7"test”
print " $test::x $test::y\n $main::x";
Any nane can be qualified to indicate the package

where that nane is to be found (arrays, hashes,
subroutines).

Perl Programming

Ref er ences
References are simlar in functionality to the
poi nters of C.

The syntax for declaring a reference is to precede
the target nane with a \ (thisis like Cs &).

For exanpl e:

$x =\ By; # $x is now a reference to $y

Ref erences can be to any Perl string, variabl e,
function or other reference. For exanpl e:

$refl \ “abc”:
$ref2 = \@rray; #
$ref = \&Ff un;

Once a reference has been created, it nay be used as
any other variable nane:

$$refl # is a scal ar
@br ef 2 #is alist-type array

Anyt hi ng that represents a reference may be used
this way:

${$array[2]}
@rray is an array of references to scal ars

Note that perl will conplain, and termnate the
programif you try to dereference a reference (like
t hose descri bed above) as anything other than what
It is a reference to.

Trying to do pointer “arithnmetic”:
$x = Pref + 2;

will run, but doesn’'t do anything useful, as $x
ceases to be a reference. Even saying:
$x = $x - 2;

will not make $x act |ike $ref.

Perl Programming

Ref erences (conti nued)
Ref erences can be created in flexible ways:

($a, $b) = \($x,3y); # two references

Sonme exanpl es of usage:
@=gwm(d e f g h); # construct array y

Sref=\@; # Sref refers to @
print @bref; # prints defgh
print $$ref[1]; # prints e
print $#$ref; # prints 4
$$r ef 2{ $nane} ; # dereference value froma
reference to an associ ative
array

Getting at individual elenents of an array pointed
to by a reference can be acconpli shed anot her way.
The second net hod below is nost commonly used
(especially in Perl docunentation):

$$ref[2] # prints 'f' (from above code)
$ref - >[2] # so does this

This nethod doesn’t work for array slices. For
slices:

@ref[0..2]

Ref erences provide a solution for passing nultiple
arrays to a function and having the function know
the size of each array passed:

sub fun {

| ocal ($a, $b) =@ ;

print ” $#%a $#%$b \n”"; # prints "2 4"
print @ba; # prints " abc”

}

@=gma b c); @=gwud e f g h);
&un(\@&, \@); # call fun wth a two-

Perl Programming

el enment
list (of two references)

Perl Programming

Ref erences (conti nued)

Don’t confuse these two operators: -> =>
The first is the infix dereference operator.

The second is a synonymfor a conma (called the
'corresponds to’ operator):

Ya=("a ,1,’ b, 2);
Could be witten:
Yb=('a =>1,’ b’ =>2);

Type dd obbi ng

Per| provides a way to allow nanes to be aliased to
ot her nanes:

@=gwm(a b c); $x="hi nom; # Set sone x nanes

*

y=*X; # make ALL x nanes y
nanmes
print $y, @; # print 'hi nmomabc’

This is especially useful for passing nanes to
subrouti nes:

@=(1, 2, 3);
&chngar (*x); # pass a pointer to a |list of nanes
print " @\n”; # prints "99 2 3 7 8 9”
sub chngar {

| ocal (*subnm=@; # assign fromlist of nanes
In @

print $#subnm "\n”;# prints 2

$subnni 0] =99; # changes the first el enent
of @

push(@ubnm 7, 8, 9) ;

}

Note that the local () call had to be smart about how
to make the connection with what is stored in @.
In fact, it is even smarter than it appears above.

Perl Programming

Type d obbi ng (conti nued)

The *x construct refers to all of the above nanes,
and is referred to as a "type glob” of the nane x.
We can use this as foll ows:

$x="abc";

@&=(1,2,3);

&chngs(*x); # passes *all* " x” nanes
print 7 $x\n@&\'n" ;

sub chngs {

| ocal (*subnm = @ #l ook how smart | ocal () nust
be

$subnne” def " ; # $subnm al i ased to $x
$subnni 0] =99; # @ubnm aliases to @
}
or even
@=(1, 2, 3);

| ocal (*y)="x"; # alias "y” nanes to ”x” nanes
print " @\n”; # prints "1 2 3"

Perl Programming

Mul ti-Di nensi onal Arrays

Al of the nore conplex data structures in perl
prograns (and perl nodul es) are based on |ists of
lists in one form or another.

This is often abbreviated as a LOL. See the perllol
man page or perldoc docunent for nore details than
addr essed here.

More correctly, a LOL is a |list of references to
other lists. For exanple:

@=gwm(a b c d e f);
@=gWm1 2 3 4 5 6);

@ol=(\@,\ @); |
print $lol[0][2]; # prints c
print $lol[0]->[5]; # prints f

I n the exanpl e above, the sinple lists (@ and @)
were naned arrays. Oten we want to create lists,
but not using nanes. These are call ed anonynous
lists, and often a reference to themis created:
$list=s["a’,’ b, ¢c'];
print $list->[2]; # prints ¢, so would
$$list]2]
Note that we used [] not ().

LOL’s can be created simlarly:
@ol = (["bill”, "farmer”, 19234, 0],
["joe”, ”bunt, 78459, 1]
); # note the comma between anonynous
lists
print $lol[0][2]; # or $lol[0]->]2]

O we can create a reference to an anonynous LOL:

$lol =[[”"bill™, "farmer”, 19234, 0],
["joe”, ”"bunt, 78459, 1]
]; # note the comma between anonynous
lists
I n which case we access elenents |ike this:
print $$lol[0][1]; # prints farner

print $lol->[1]->[2]; # prints 78459
print $lol->[1]][2]; # also prints 78459

Perl Programming
#print $lol[1][2]; wong!
#print $lol[1]->[2];

Perl Programming

Mul ti-Di nensi onal Arrays

Perl allows you to mx list-type and associ ati ve
arrays in a multi-di nensional notation:

%hash=("ted” , [’ denop’, 1265,78], "bill ", ['renfie’
, 5685, 27]) ;
print $hash{” bill”}->[1]; #prints 5685
print $hash{” bill”}[1]; # sane thing
The above is a hash of lists. You could al so have
lists of hashes, hashes of hashes, |ists of hashes
of lists, etc....
In a "real” program values are often assigned

t hrough | oop statenents.

When usi ng nodul es, you nust often create data
structures to pass to nethods in the nodule, or you
m ght be given references, or LO.'s containing data
t he nodul e has devel oped.

Perl Programming

Per| Modul es

A Perl Mdule is a reusable software conponent.

As such, they are witten according to a set
of guidelines that make sure they don’t
pollute the prograns they are designed to
aid i n devel opi ng.

Many Modul es are witten ” Object” I|ike, and
define classes, and nethods for accessing
the data/operations in the class. They can
"export” thingies to your program You can
also "reach into” the nodule to use pieces
of it, or select which pieces you want.

They are Perl code (But mght 7" CODE” in
sone Q)

Perl nodules are files naned with a . pm extension.

They should be placed in Perl’s include path, or you
can nodify the include path, here is how one W n32
version of Perl was setup:

$ perl -e "$,="\n"; print @NC
C. \APPS\ per I 53\ | i b\i 386-w n32
C.\VAPPS\ perlI 53\1liDb
c:\fred\perl\lib

There are many nodules ” shipped” wth perl, called
the standard libraries, and, of course, there are
t he CPAN and ot her nodul es.

Wn32 ports typically include a set of Wn32 rel at ed
nodul es.

Modul es m ght add routines, override routines, or
overload routines. One even allows you to assign
constants, like PI.

It is also possible to autoload only the functions
you need from a nodul e.

There
docunent ati on,
Lear ni ng Perl

directory to see what

Perl Programming

VWhat nodul es?

AnyDBM Fil e.pm Fcntl.pm

Aut oLoader . pm
AutoSplit.pm
Benchmar k. pm
Bundl e

cd

C43 . pm

CORE

CPAN

CPAN. pm

Carp. pm

C ass

Config. pm
owd. pm

Devel

Di r Handl e. pm
DynalLoader . pm
Engl i sh. pm
Env. pm
Exporter. pm
ExtUils

Thi s m ght
wel |
To add nodul es from CPAN,

tree structure)
add a new |l ocation to @NC).

is alist of standard nodul es in nost perl
for exanple, Appendix B of the
books. You could also list the lib
s there:
Synbol . pm const ant. pm newget opt . pl
File Sys ctime. pl open2. pl
Fi | eCache. pm Term di agnosti cs. pm open3. pl
Fi | eHandl e. pm Test dot sh. pl ops. pm
Fi ndBi n. pm Text dunpvar . pl over | oad. pm
CGet opt Tie exceptions. pl per | 5db. pl
| 18N Ti me fastcwd. pl perl | ocal . pod
IO UNI VERSAL. pm find. pl pwd. pl
I O pm User fi nddept h. pl shel | wor ds. pl
| PC abbrev. pl fl ush. pl sigtrap. pm
Mat h al I nod ftp.pl site
Net assert. pl get cwd. pl stat. pl
Opcode. pm aut o get opt . pl strict.pm
Pod aut ouse. pm get opt s. pl subs. pm
SDBM Fi | e. pm bi gf | oat . pl host nane. pl sysl og. pl
Saf e. pm bi gi nt. pl i mportenv. pl tai nt ed. pl
Sear ch bi grat. pl i nteger.pm terntap. pl
Sel ect Saver.pm blib. pm | ess. pm ti mel ocal . pl
Sel f Loader. pm cacheout . pl [ib.pm val i dat e. pl
Shel | . pm chat 2. pl | ocal e. pm vars. pm
] Socket . pm conpl et e. pl | ook. pl
I ncl ude nodules installed locally, as
as the standard Perl| nodul es.
| oad the nodule (or the
into a location listed in @NC (or

Perl Programming

Usi ng nodul es

Modul es can provide variables (or various data
structures) for use in your program they m ght also
provi de functions you can call.

Modul es m ght provide extra capabilities, or provide
" better” functionality. Sone nethods can override
"built-in” functions.

You nust tell the conpiler to

| nclude” the

nodul e:
use <Modul e-nanme>; # Bring in all exports
use Module (); # Take no exports, let ne call
what |

want wth
" Modul e: : sonet hing”
use Module LIST, # Bring in only LIST

Dependi ng on how t he nodule was witten, and
I ncl uded, the nodule mght "export” stuff, or you
m ght have to call them w th package nam ng:

use Owd; # bring in all exported
st uff

print $ENV{’' PWD }; # prints nothing on early
W n32

print getcwd(); # works ok, getcwd is
exported

print Ond::getcwd(); # Ck also, told which
package

An exanpl e of overriding (on UNI X systens):
print $ENV{ PVWD}; # Prints /user/fred
chdir (7/7); print SEN{PWD}; # Prints
[user/fred
use Gwd(’'chdir’); # Call in chdir, cause not
export ed
chdir (7/7); print $ENV{PWD}; # prints /

Perl Programming

Usi ng nodul es

Note that sonme nodul es are stored in directories
under the lib directory. These are called structured
packages. For exanpl e:

C.>cd c:\APPS\perl 53\Ilib

C >dir Text

Abbr ev. pm Par seWords. pm Soundex. pm Tabs. pm
W ap. pm

To use these:
use Text::Wap;
$Text:: Wap: : col ums=15;
$long="this is the text to be wapped into a
format\n”;
print wap('’,"\t”, $long); #
wrap(initind,ind,string)

Whi ch prints:

this is the
t ext
to be
W appe
dinto
a
f or mat

Anot her exanpl e:

use Confi g;
print $Config{ osnanme’}; # prints NSW N32

Perl Programming

Usi ng Obj ects

Many nodules in Perl are witten using (Object
Oriented techni ques.

Perls objects are created through creative use of
packages, references, and associative arrays
(hashes).

An object is a data structure that contains
vari abl es you can either dereference or assign, and
functions (nethods) that you can call.

VWhat we care about here, is that nmany nodul e net hods
return a reference to an object. W need to be able

to access the properties (nethods and vari abl es) of

that object. It is done using the -> operator.

The infix dereference operator is used in tw ways.
The first we have seen when using nulti-di nensi onal
arrays:

$ref - >[3] $ref->{" $x} $ref->{3$u}-
>{ $x}
The second i s when accessing properties of an
object. Here is an exanple of accessing a nethod
wi thin an object:

$obj =nod1: : nt hd3($ar g1, $arg2); # nodul e returns
an obj ect
print $obj->getinfo(”total ”); # call the

getinfo net hod
of the returned
obj ect
When a nodule is OO, sonetines you directly access
met hods within the nodule, which returns a reference
to an object:

use C4d;

$quer y=Cd - >new() ; # method returns ref to an
obj ect

$query->param(’ date’,scalar(localtine)); # set var
I N obj

Perl Programming

Sone code bl urbs

$count =$sune0;
while ($x = <STDI N>) {
chonmp($x) ;
if ($x eq " ") {
if ($count > 0){
print ” $count non-blank lines in that block\n";
$sum+-=$count ; $count =0;

}
} elsif ($x eq " END") {
$sum+=$count; | ast;
} else {
$count ++;
}o}

print ”"total non-blank |ines= $sunmin”;

while (<STDI N>){
if (/] \t]$/)]

print "line $. ends with white\n” ; # |let
perl count |ines
} o}
$count =0;

while (<STDIN>) {
$count += s/\ bi n\ b/ $& g;
}

print " $count\n”;

$/="\n\n";
whi | e (<STDI N>) {
wite STDOUT:

}
format STDOUT =

N <LLLLLLLL i~ =~

$

Perl Programming

Sone code bl urbs

#! [usr/ | ocal / bi n/ perl

whi l e (<STDI N>) {

s{ <I(.*?2)(--.*?2--\s*)+(.*?2)>}{if ($1 || $3)
{"<I'$1 $3>" ; }} gesx;

s{ <(?:[">"] *[".*?2"[".*?") +>}{}gsx,

s{ (& \x23\d+|\wt);?)} {S$entity{$2}]|]| $1}gex;
print;

}
BEA N {%entity = (
| t = '< #a | ess-t han
gt = > #a greater-than
anp = ' &, #a nanper sand
guot =" #a (verticle) doubl e-
quot e
nbsp => chr 160, #no-break space
I excl => chr 161, #inverted exclamation
mar k
cent => chr 162, #cent sign
chr 203, #capital E, dieresis or unl aut
mar k
| grave => chr 204, #capital |, grave
accent
thorn => chr 254, #small thorn, I|celandic
yuni => chr 255, #small y, dieresis or
um aut marKk

);

for $chr (0 .. 255) {
$entity{ '# . $chr } = chr $chr;

Perl Programming

Perl Programming

Recursive Subroutine to display a directory
tree:

$x=shift;
chdir($x) || die "can\'t chdir to $x";
($dev, $i no, $node, $nlink) = stat(’.");
&dodir(’.’,$nlink);
sub dodir { # process a directory.
| ocal ($dir, $nlink) = @;
| ocal ($dev, $i no, $node, $subcount) ;
Get the list of files in the current
di rectory.
opendir(DIR,’.") || die " Can't open $dir”;
| ocal (@il enanes) = sort readdir(DR);
cl osedir (DI R);
if ($nlink == 2) {# this dir has no
subdi rectori es.
for (@il enanes) {
next if $ eq ’'.’;
next if $_ eq ..’ ;
print "$dir/$ \n";
} } else { # this dir has subdirectories.
$subcount = $nlink - 2;
for (@il enanes) {
next if $_ eq ’'.’;
next if $_ eq ..’ ;
$nane = " $dir/$_";
print $nane, "\ n”;
next if $subcount == 0; # Seen all the
subdi rs?
($dev, $i no, $node, $nlink) = stat($_);

next unless -d _;

chdir $ || die "Can’t cd to $nane”;
&dodi r ($nane, $nl i nk) ;
chdir .. ;

- - $subcount ;

Perl Programming

ol

