invent

Performance of Migrated HP e3000 Applications

Kevin Cooper Hewlett-Packard kevin.cooper@hp.com

Can Anybody Answer This Question???

What size system(s) will you need to run your migrated HP e3000 applications on a new platform?

What size system(s) will you need to run your migrated HP e3000 applications on a new platform?

It Depends!!!

Overview

- "Migrating" Applications
- Hardware Considerations
- Software Considerations
- Other Performance Considerations
- Sizing Your New System

"Migrating" Applications

- Move an MPE/iX application to a new platform by:
 - Replacing it
 - Rewriting it
 - Migrating it
- "Migrating" means modifying an existing application to run on hardware and software other than the HP e3000 and MPE/iX.
- There are two methods for migration:
 - Emulate
 - Transform

Overview

- "Migrating" Applications
- Hardware Considerations
- Software Considerations
- Other Performance Considerations
- Sizing Your New System

Hardware Options

- Architecture
- Processor speed
- Number of processors
- Memory
- Disk storage

Architecture

- HP recommends three options:
 - PA-RISC running HP-UX
 - IA-32 running Windows or Linux
 - Itanium running HP-UX, Linux, or Windows

What About Itanium?

- "The HP Server rx5670 has produced the world's best TPC-C score for a 4-way system, by a margin of over 40% compared to the next best 4-way system..." http://www.hp.com/products1/itanium/performance/commercial/tpcc.html
- Itanium 2 is well-suited for large relational database servers and applications which access lots of data.

- While typical MPE/iX applications may not show much performance improvement just from running on 64-bit processors...
- "The Intel Itanium 2 processor is not only 64-bit, it is designed for parallel performance. It has a number of enhancements like data speculation, advanced prefetch and predication, and a very powerful floating point architecture to ensure it performs extremely well." <u>http://www.hp.com/products1/itanium/performance/index.html</u>
- These other enhancements in Itanium 2 may help improve performance of migrated MPE/iX applications.

- You should base this decision more on your future direction than on the processing requirements of your current HP e3000 applications.
- The free conversion kits for HP e3000 N-class and A-class systems may be a factor for some in choosing to continue on PA-RISC with HP-UX.

- High-end N4000 servers operate at the same CPU speeds after being converted to HP-UX (N4000-440, 550, and 750MHz).
- These three processors provide about the same level of performance before and after conversion from MPE/iX to HP-UX.
- Keep in mind that processor speed is only one of many factors in looking at the performance of migrated applications.

- Converted A-class systems will operate at full speed:
 - A400-110 and A500-140 convert to 440MHz
 - A400-150 and A500-200 convert to 650MHz
- Mid-range N4000 systems will operate at full speed:
 - N4000-220 and -330 convert to 440MHz
 - N4000-380 and -500 convert to 750MHz
- These systems will provide extra CPU cycles when converted to HP-UX, from 33% more (N4000-330) to over four times as many (A400-150).

Processor Speed

- To compare older HP e3000s with PA-RISC HP-UX servers, multiply the "MPE/iX Relative Performance Units" of the HP e3000 server by 25.
- This gives you a very rough estimate of the processing speed equivalent for the HP e3000 system.
- For example, a 979-300 is rated at 19.5 MPE/iX units.
 You can approximate it as 500MHz (19.5 times 25).
- If you migrated this system to a 750MHz HP-UX server, you should gain roughly 50% in raw processing speed.

Processor Speed

- It is more difficult to compare HP e3000 server speeds to platforms that are not PA-RISC based (such as Intel), because the machine instruction sets are not the same.
- In the absence of any actual benchmarks, start by comparing the estimated HP e3000 speed (using the previous slide) with some HP-UX PA-RISC servers.
- You should then make adjustments based on published performance benchmarks between HP-UX servers and the processors you are comparing with the HP e3000.

Number of Processors

- In general, each processor added to a server provides a little less additional processing power than the processor added before it.
- Here are some examples, with HP e3000 systems:
 An N4000 2-way system performs at about 1.85 times the N4000 1-way system.
 - An N4000 4-way system performs at about:
 1.75 times the N4000 2-way system, and
 3.25 times the N4000 1-way system.

Number of Processors

- The amount of diminished returns from adding processors may vary by operating system.
- An HP-UX rp7400 8-way server offers 5.44 times the OLTP performance of a 1-way server. See http://www.hp.com/products1/servers/rackoptimized/ rp7400/specifications/index.html#perform
- This is about what we would have expected to see if HP had offered an 8-way N4000 HP e3000 system.
- So the scaling on HP-UX PA-RISC is similar to MPE/iX.

- You will require more memory on your new platform than you had on your HP e3000.
- Early benchmark results suggest you will want about four times as much memory:
 - One application using 1GB on an HP e3000 ran best with 4GB on HP-UX with an Eloquence DB.

- Another application using 8GB on an HP e3000 ran best with 32GB on HP-UX with an Oracle DB.

Disk Storage

- Newer technologies such as Native FibreChannel and faster disk drives help greatly in this area.
- Disk array subsystems such as the XP128 improve processing times for both serial read access and write access through the use of their cache.
- Larger capacity disk drives may degrade performance in an OLTP environment, because many small random disk I/Os are competing for the same spindle.

Overview

- "Migrating" Applications
- Hardware Considerations
- Software Considerations
- Other Performance Considerations
- Sizing Your New System

Software Options

- Operating system
- Language
- Database
- I/O and networking
- User interface

Operating System

- Early migration results show that the operating system itself does not tend to be much of a factor in the performance of migrated applications.
- HP recommends HP-UX for large, mission-critical applications. At the operating system level, early benchmarks show that performance seems to be about the same as MPE/iX.
- Both Windows and Linux are also viable options for many applications. A few benchmarks to-date indicate little performance difference from MPE/iX.

Language

- COBOL has been the most commonly used language for HP e3000 application development.
- This again does not seem to be an area where much performance difference has been detected between the HP e3000 and other platforms.
- This should not be too surprising, as some vendors like AcuCorp offer the same COBOL compiler on the HP e3000 as they do on other platforms.

Database

An important database decision:

- Use "IMAGE wrapper" technology to access a relational database?

- Use the Eloquence database with its built-in conversions from IMAGE?

- Convert IMAGE database calls to native SQL calls?

Database

- One big area of concern is migrating the IMAGE construct DBFIND followed by a chained DBGET.
- If these calls are not migrated carefully, they can lead to unintentionally issuing SQL Select statements that read entire relational tables.
- In IMAGE terms, that would be doing a serial read instead of a chained read.

Database

- Another area requiring attention is the locking strategy.
- Many IMAGE applications use predicate-level locking, and only lock around database modifications (not reads).
- Relational databases may use page-level locking, and may also lock around read transactions.
- Both of these can have a negative performance impact on a migrated HP e3000 application.

- Early benchmarks suggest you need about twice as much processing power to run a relational database on HP-UX than to run IMAGE on MPE/iX.
- For example, if IMAGE calls are consuming 40% of the CPU cycles on your 500MHz MPE/iX system, plan on THAT PART of your processing doubling. So you need to add the equivalent of another 40% of 500MHz, or 200MHz more.
- Early adopters strongly advise customers to get a data base administrator who knows how to tune the chosen relational database environment.

- If you are moving from an older Series 900 HP e3000 system using NIO cards, you will get a big boost in I/O performance from going to PCI.
- Native Fibre Channel provides big improvements in I/O bandwidth.
- Networking code has been more highly tuned over the years on platforms like HP-UX than on MPE/iX. Programs like ftp should perform better.

User Interface

- Most applications are being migrated to a clientserver environment, with the user interface going to a different computer than the application and database.
- Migrating the "screen handling" part of your application to a PC-based front-end or Internet browser will free up CPU cycles on your servers.
- The performance impact of most user interface code is small (unless you are doing extensive edits using VPLUS processing specs or a 4GL).

Overview

- "Migrating" Applications
- Hardware Considerations
- Software Considerations
- Other Performance Considerations
- Sizing Your New System

Other Performance Considerations

- Are you changing the business logic of your transactions, so they do more (or less) work?
- Are you changing the structure of your transactions, so that work is done on multiple clients and/or servers?
- Are you changing the transaction volumes?

Other Performance Considerations

- When you cut over to the new system, have you allowed enough time to migrate your live data?
- Have you completed a thorough test of the new application on its new platform, to know what its performance will really be like?

Overview

- "Migrating" Applications
- Hardware Considerations
- Software Considerations
- Other Performance Considerations
- Sizing Your New System

Can Anybody Answer This Question???

What size system(s) will you need to run your migrated HP e3000 applications on a new platform?

Sizing Your New System

- Putting all of this together is like solving an algebra problem with many variables.
- The most heavily weighted items should be processor speed and database software.
- Make sure you equip your new system with enough memory.

Sizing Your New System

- Feedback from some early benchmarks suggests that an overall increase of 25-50% in processing power was about the right amount for those benchmarks.
- Each site needs to approximate what will be needed, based on the guidelines found here.
- Verify your approximations with performance tests before you go live!

Sizing Your New System

• As I stated at the beginning:

"It Depends!!!"

Acknowledgements

- Thanks to the following HP e3000 application software companies for contributing to this presentation:
 - Amisys, LLC
 - Ecometry
 - eXegeSys
 - Quintessential School Systems
 - Southeastern Data Cooperative
 - Summit Information Systems

