MPE CI Programming

for 7.5

... and other tidbits

presented by

Jeff Vance, HP-CSY
jeff_vance@hp.com

PPPPP

3/4/03

M outline

(read the notes too!)

» “recent” Cl enhancements

« redo features

¢« UDCs and scripts
variables

* i/o redirection and file I/70

« error handling

e script cleanup techniques
debugging and good practices

« lots of examples

¢ appendix

March 4, 2003

Page 2

*Thisversion of my “Cl Programming” talk focuses on comparisons of command files vs. UDCs, |/O redirection for

reading files, and examples. Thereis much information in the appendix, including longer examples.
*The notes are an integral part of these dides. Please read the notes, as they contain many more details than are

presented in the dlides alone.

3/4/03

“recent” Cl enhancements

hp e3000

extended POSIX filename characters

new Cl functions: anyparm,basename, dirname, fqualify,
fsyntax, jobcnt, jinfo, pinfo,wordcnt, xword

new Cl variables: hpdatetime, hpdoy, hphhmmssmmm,
hpleapyear, hpmaxpin ,hpyyyymmdd

new Cl commands: abortproc,newci,newjobqg, purgejobq,
shutdown

enhanced commands:INPUT from console, FOS store-to-
disk, :showvar to see another job/sessions’ variables, copy
to= a directory, :altjob HIPRI and jobqg=, :limit +-N

:HELP shows all Cl variables, functions, ONLINEINFO, NEW

March 4, 2003 Page 3

*Above enhancements begin with MPE/i X release 6.0 and span up to release 7.5.
«Extended POSIX filename charactersare: “ \$% " *+|{}:” in additionto “_-.” that were originally supported.

*Enter HEL P on each of these commands to ensure you are current on their usage. For example, did you know the
system manager can display the user variables from another job or session? Are you aware that you can wait until one
or more jobs terminate via the enhanced PAUSE command? Did you remember that the OPTION command is not just
inaUDC/script header, but can dso be used asa Cl command? Have you tried using the INPUT command to send a
prompt to the system console and wait for an operator reply? Did you know you can abort a single process without
killing an entire job or session? If you ever run low on processes, did you know the NEWCI command will save you
one process per logon? Do you know an easy way to determine the maximum number of processes supported on one of
your systems (answer: HPMAXPIN variable). In 7.0 Express 1, you can use the PINFO CI function to retrieve
detailed information on an individual process (PIN) or thread.

* HELP NEW - shows all features of the Cl that are (relatively) new.
* HELP ONLINEINFO - shows current URLs where information on the €3000 is available online.

* Also, HELP VARIABLES, HELP EXPRESSIONS, HELP OPERATORS, and HELP FUNCTIONS dl provide
useful information.

3/4/03

3/4/03

redo

hp e3000

+ delete a word
« dw, >dw, dwddw, dwiXYZ
« delete up to a special character
« d., d/, d*, d/iXYz, d.d
« delete to end-of-line
o d>
+« delete two or more non-adjacent characters
« d d
¢ upshift/downshifta character or word
o N AW, Y, VW, SN, SY, A v
« append to end-of-line
« >XYZ
replace starting at end of line
¢ >rXYZzZ
« change one string to another
+ Cc/ABCD/XYZ, c:123::
undo last or all edits
e uorutwicein arow

« available in CI, VOLUTIL, STAGEMAN, DEBUG others...

----- March 4, 2003 Page 4

*REDO was enhanced in late 5.5 to operate on “words’. A word is defined as any set of characters delimited by a:
space, comma, semicolon, equal sign, left or right parentheses, left or right brackets, single quote or double quote. A
“word” in redo is the same as the default word definition used by the DELIMPOS, WORD and XWORD ClI
functions.

*REDO deals with words as it does with characters. Words can be deleted (dw), upshifted (*w) and downshifted
(vw).

*Words can be operated on from the end of the line: >dw - deletes the last word, >*w - upshifts the last word, >vw -
downshifts the last word.

*Upshifting and downshifting can be useful when editing POSIX file names, or entering procedure namesin the
debugger -- times when character case matters.

UDCs

hp e3000

« user defined command files (UDCs) - a single file that contains 1 or
more command definitions, separated by a row of asterisks (***)

- features:
« simple way to execute several commands via one command
« allow built-in MPE commands to be overridden
e« can be invoked each time the user logs on
* require lock and (read or eXecute) access to the file

* cataloged (defined to the system) for easy viewing and prevention of
accidental deletion -- see SETCATALOG and SHOWCATALOG
commands

¢« can be defined for each user or account or at the system level

« more difficult to modify since file is usually opened by users

----- March 4, 2003 Pages

UDCs were the only way to group commands together and execute them as a single command on classic
MPE V systems and earlier. Today, we can till use UDCs, and we can use command files (or “scripts)
for the same basic purpose. However, there are important differences between UDCs and scripts that
users should consider. The similarities and differences of UDC compared to scripts are discussed in the
next few dides.

Similarities
*UDCs and scriptsreside in standard MPE ASCI| files
sthey both support parameters with optional default values
«they both require read or execute access

«they both support the options: HELP, NOHELP, LIST, NOLIST, BREAK, NOBREAK, PROGRAM,
NOPROGRAM

Differences
1. Cataloging:

One or more UDCs are collected into asinglefile. Thisfile can be assigned (or cataloged) to a particular
user, an account or the entire system. Multiple UDC files can be catal oged to the same or to different
users and/or accounts simultaneously. The SHOWCATALOG and SETCATALOG commands provide
this cataloging service. Once a UDC fileis cataloged it is opened by the user process and cannot be
deleted or modified until after the file has been un-cataloged (and closed). However, the POSIX shell’s
“mv” command does allow an open UDC file to be replaced. The changes are immediate to users just
logging on, but are not seen by current users unless the re-logon, or re-setcatal og.

The benefits of UDC cataloging are:
*many UDCs can reside in the same physical file,
the UDC file cannot be accidentally purged or modified, since thefileis open,
svisibility as to which UDCs are avail able to which users on the system.
The disadvantages of this catal oging approach are:
ecumbersome to modify individual UDCs defined in the UDC file,
eoverhead to catalog the UDC file at logon time.

3/4/03

command files (scripts)

hp e3000

. command file - afile that contains a single command definition

« features:
< similar usage as UDCs
« searched for after UDCs and built-in commands using HPPATH
- default HPPATH is: logon-group, PUB.logon-acct, PUB.SYS, ARPA.SYS
* require read or eXecute access
« easy to modify since file is only in use while it is being executed

« very similar to unix scripts or DOS bat files

----- March 4, 2003 Page 6

Command files (scripts) are single files that contain the commands to be executed. These files can reside
anywhere on a system; however, typically they are located in groups or directories referenced in the
HPPATH variable. Like UDCs, scripts are invoked viatheir name, however, since ascript isafile, it can
be entered as a qualified filename or as an unqualified filename. Most commonly, script names are
entered as unqualified names (just the base name), and thus the HPPATH variable is used to complete
(“qualify”) the name based on successive group/directory names defined in HPPATH. UDC names can
be up to 16 characters long, and thus are longer than standard M PE filenames; however, POSIX script
names can be longer than UDC names.

2. Command override mechanism:
A UDC name can be the same name as a built-in MPE command. The CI resolves a user entered
command name by checking for aUDC prior to searching for abuilt-in CI command. Thus, aUDC can

hide a built-in CI command. For example, aUDC can be named RUN, hence overriding the :RUN
command.

A script cannot override a built-in CI command. For example, if acommand file named RUN.PUB.SY S
exists and the user enters“:run", the built-in :RUN command will be executed, not the script.
Typicaly, command file names are different from UDC and built-in command names. The :XEQ
command is provided to execute scripts with the same name as built-in commands or UDCs.

Note: after auser haslogged on, UDCs are searched for in the following order:
suser level UDCs, starting at the first user file shown by :SHOWCATALOG
saccount level UDCs,. starting at the first account file listed by :SHOWCATALOG
esystem level UDCs, starting at the first system file displayed by :SHOWCATALOG.

Multiplefiles at the same level (user, account, system) are searched for (and executed, if found) based
upon the order the files are cataloged.

Note: OPTION RECURSION causes the UDC commands within the option recursion UDC to be
searched for starting at the first file cataloged at the user level, regardless of the level of the executing
uDC.

Note: the UDC search order is different at logon time.

3/4/03

UDC / script comparisons

hp e3000

« similarities:
« ASCII, NOCCTL, numbered or unnumbered, max 511 record width
« optional parameter line ok - max of 255 arguments
« optional options, e.g. HELP, NOBREAK, RECURSION
« optional body (actual commands)
- noinline data, unlike Unix ‘here’ files :(

« can protect file contents by allowing eXecute access-only security, i.e.,

denying read access

----- March 4, 2003 Page 7

3. Logon execution:

UDCs support the OPTION LOGON option. A single UDC at each level (user, account and system) can
be executed at logon. Even if there are several UDCs at a given level with OPTION LOGON defined,
only one UDC (thefirst) per level will be executed at logon time -- the remaining OPTION LOGON
UDCs at that level areignored at logon. The order that UDCs are executed during logon is the opposite
of the execution order after logon. Namely, system level UDC are invoked first, followed by account
UDC:s, followed last by user level logon UDCs. This order allows system managers to control access to
their system and to administer other security related policies viaa system level logon UDC. Users cannot
override asystem level logon UDC, at logon time nor during norma command usage.

Scripts do not support OPTION LOGON. However, it is not uncommon for an OPTION LOGON UDC
to simply invoke a script to do the real work. For example:

MYLOGONUDC file LOGIN

OPTION LOGON # my logon script

invoke login script setvar hppath hppath+” ,scripts.sys,hpbin.sys”
xeq login setvar hpredosize 100
*xx if hpinteractive then ...

4. Command name:
A UDC name can be from 1 to 16 character long and consist solely of aphanumeric characters, with the
first character being aletter.
Note: A UDC filename can be an MPE syntax symbolic link pointing to a POSIX named UDC file, if for
some reason the actual UDC file needed to reside in the HFS. For example,

:newlink udclk, /usr/local/udcs/system.udc

:setcatalog udclk ; append

3/4/03

W UDC / script comparisons (cont)

« differences:
« scripts can be variable record width files
« UDCs require lock access, scripts don’t

« script names can be in POSIX syntax, UDC filenames must be in MPE
syntax

« UDC name cannot exceed 16 chars, script name length follows rules for
MPE and POSIX named files

« EOF for a script is the real eof, end of a UDC command is one or more

asterisks, starting in column one

----- March 4, 2003 Page s

A script name follows the same rules as al filenames. These rules differ depending on the syntax
specified. MPE syntax filenames must be from 1 to 8 alphanumeric characters, with the first character
being aletter. If the MPE nameis qualified it can contain alockword, group and account names, each
having the same restrictions. POSIX syntax script names follow the rules for any POSIX-named file: 1 to
255 characters long, beginning with any valid character except a dash (-), case sensitive and several
specia characters are supported. Like MPE names, POSIX names can be qualified or unqualified.
Unqualified (base) names are completed by pre-pending POSIX elements from the HPPATH variable to
the base name.

Note: a POSIX named script cannot be qualified via HPPATH unless HPPATH contains directory names
in POSIX syntax.

3/4/03

UDC search order

hp e3000

File: UDCUSER.udc.finance

1. Invoke UDCC, which calls UDCA with UD_CA pl =abc' —
the argument “ghi” option NOrecursion
)) udcC Ipl
2. UDCA is found, starting after the UDCC ook
definition (option NOrecursion default) UDCB pl = def
3. The line “p1=ghi” is echoed Option recursion
udcA Ipl
*kk

4. Invoke UDCB, which calls UDCA passing
the arg “def”. The recursion option causes UDCC p1 = ghi

the first UDCA to be found. This calls udcA pl
UDCC and follows the path at step 1 bl
above UDCA pl = xyz
=l
5. The line “p1=def” is echoed fﬁho p1=lpl

----- March 4, 2003 Page 9

«In the example above, :HELP UDCA, only finds the first definition of the UDC.

*OPTION RECURSION is necessary in UDCs that support multiple entry points, otherwise a UDC would not be able to
invoke itself recursively - as required by entry points (which are discussed elsewhere).

*OPTION RECURSION causes the UDC search to start completely over -- dl the way back to the first user level UDC
cataloged. From thispoint all user, account and system level UDCs are checked in order to resolve the command name.

*OPTION NORECURSION isthe UDC default and causes resolution of the next command to commence just after the
current UDC. Thus, in the example above, when udcC is processing the command “udcA”, it tries to resolve that command
name by first checking if it it aUDC defined somewhere “below” the definition of udcC. However, when udcB callsudcA
with OPTION RECURSION set, the search goes back to the first UDC catalogued. In this example, that isthe udcA, at the
beginning of the file. The RECURSION scopeislocd to the current UDC and is not inherited by successive UDCs. So,
when thefirstudcA calls udcC which cals udcA, thisinvocation of udcA isnot recursive, and thus executes the last udcA
defined in thefile.

*OPTION RECURSION and NORECURSION are dso Cl built-in commands and can appear anywhere in the UDC body.
«Scripts are recursive by definition and OPTION NORECURSION has no meaning.

Like OPTION RECURSION, none of the UDC/script options are inherited when one UDC invokes another UDC in a
nested fashion, except for OPTION NOBREAK. OnceaUDC or script is encountered with OPTION NOBREAK
specified,. al other UDCg/scripts that are called by the NOBREAK UDC/script are treated as if OPTION NOBREAK were
specified -- regardless of how BREAK is defined in the called UDC/scripts. OPTION NOBREAK is somewhat common in
conjunction with OPTION LOGON UDCs.

*OPTION NOPROGRAM isnew to MPE/iX (MPE XL). Thisoption indicates that the UDC or script isnot dlowed to be
executed from within a program (via calling the HFCICOMMAND intrinsic). Once an OPTION NOPROGRAM UDC is
encountered al UDC searching stops. The command in question may still be resolved to be a built-in command, or a script
or program file, but further UDC searching ceases. For example, define a UDC named LISTF, with OPTION
NOPROGRAM, which simply does ECHO LISTF!. If :LISTF isexecuted from the Cl it will executethe LISTF UDC. If
:LISTF isexecuted from VOLUTIL (which callsthe HPFCICOMMAND intrinsic to execute all non-VOLUTIL commands),
the UDC isfound, but, sinceitis OPTION NOPROGRAM, the UDC is not executed and no other UDCs are processed.
:LISTF isfound to be aknown Cl command, and the real :LISTF command is executed. In the dide example above,
assume the first UDCA haa OPTION NOPROGRAM defined. If UDCB isexecuted from VOLUTIL, the first UDCA
would be located, and sinceit is OPTION NOPROGRAM, it would not be executed. Also, the second UDCA in thefile
would not be executed either, because al UDC processing stops when the NOPROGRAM UDCA was found.

3/4/03

3/4/03

script search order

hp e3000

* scripts and programs are searched for after the command is known
not to be a UDC or built-in command

« same order for scripts and for program files
« fully or partially qualified names are executed without qualification

¢« unqualified names are combined with HPPATH elements to form
qualified filenames:

« first match is executed - could be a script, could be a program
file

« filecode = 1029, 1030 for program files

« EOF > 0 and filecode in 0..1023 for script files

* to execute POSIX named scripts with HPPATH qualification, a
POSIX named directory must be present in HPPATH

rrami March 4, 2003 Page 10

*HPPATH can contain POSIX names, e.g.. “/bin, /usr/bin/loca” etc., mixed with or not mixed with traditional MPE
group and group.account names.

*Typically script names should be chosen to not collide with UDC names nor with built-in command names.

*Qualifying a script namethat is also a UDC or built-in command name doesnot work. For example, suppose you
have a script named ABORTIO, which is also the name of aCl command,and this script residesin the XEQ.SYS
group. If you enter:

:abortio.xeq.sys17,20
you will seethis Cl error:

ABORTIO has exactly one parameter, the device number. (CIERR 3027)

Why? The Cl isreally executing the built-in ABORTIO command and passing the arguments: “.xeg.sys’, “177, “20".
The Cl has“strange” name parsing rules for reasons of MPE V compatibility, and decides the command name ends on
thefirst non-alpha character -- “.” in thiscase. Thus, the command nameis“ABORTIO” and the first parameter is
“.xeg.sys’. The ABORTIO command only expectsasingle LDEV number and thus reports the above error.
The remedy is to use the XEQ command which expectsits first parameter to be the name of a script or program file.
:xeq abortio 17, 20 or
:xeq abortio.xeq.sys 17, 20 works fine.

10

3/4/03

variable scoping

hp e3000

« all Cl variables are job/session global, except the following:
HPAUTOCONT, HPCMDTRACE, HPERRDUMP, HPERRSTOLIST,
HPMSGFENCE, which are local to an instance of the CI

« thus it is easy to set “persistent” variables via a logon UDC

« need care in name of UDC and script “local” variables to not collide with
existing job/session variables

« _scriptName_varname -- for all script variable names. Use:deletevar
scriptName@ at end of script

« Can create unique variable names by using 'HPPIN, |HPCIDEPTH,
IHPUSERCMDEPTH as part of the name, e.g.
:setvar _script_xyz_'hppin , value

* save original value of some “environment” variables

+« :setvar _script_savemsgfence hpmsgfence
:setvar hpmsgfence 2

----- March 4, 2003 Page 11

*The variables that are not job/session global residein alocal Cl data structure, and thus are unique to each ClI. If you run achild Cl
program it can have a different value for these variables, and any settings you do in that Cl are not reflected when you exit back to
the root CI.

*Since (amost) al Cl variables are scoped global to the job or session environment, you can set/create variablesin logon UDC,
scripts etc. and these variables are available to the job or session. User variables are not automatically deleted when a script or UDC
exits.

*Since (amost) al Cl variables are scoped global to the job or session environment, you may need care in choosing aunique
varigble name. If you have avariable named XY Z defined from the Cl, and you execute a script that sets XY Z and then deletes it
before exiting, your Cl set XYZ variableis gone. For thisreason, it is generally important to use script variable namesthat have a
decent chance of being unique to that script. A convention | useisto prefix al script variable names with the name of the script. For
example, if my scriptisnamed CH and | need a counter variable named “j”, | will nameit _CH_Jin my script.

11

hp e3000

variable referencing

two ways to reference a variable:
« explicit -- lvarName
* implicit -- varName

some Cl commands expect variables (and expressions) as their
arguments, e.g.

« :CALC, :IF, :ELSEIF, :SETVAR, :WHILE

« use implicit referencing here, e.g.
(if (HPUSER = “MANAGER”) then

most Cl commands don’t expect variable names (e.g. BUILD, ECHO,
LISTF)

« use explicit referencing here, e.g.
:echo You are logged on as: 'HPUSER.!HPACCOUNT

« note: all UDC/script parameters must be explicitly referenced
all Cl functions accept variable names, thus implicit referencing works

« :while JINFO (HPLASTJOB, “exists”) do... better than ...
:while JINFO (“!'HPLASTJOB”, “exists”) do

mraes March 4, 2003

Page 12

*| see many people confused on when to put an exclamation mark in front of a variable name and when you don't need to. Sinceit
almost always works to code as !varname or “!varname” this becomes the standard practice. Some usersfind therulesto be
ambiguous so they opt to use lvarname. Although, | think thisis unnecessary and less “attractive’, it works finemost of the time.
There are, however, situations when using !varname results in difficult-to-diagnose programming bugs, which are shown in the next

dide.

3/4/03

12

3/4/03

Wl explicit referencing
lvarname
« processed by the Cl early, before command name is known
*« can cause hard-to-detect bugs in scripts - array example
*« loose variable type -- strings need to be quoted, e.g..
“lvarName”
o 1l (two exclamation marks) used to “escape” the meaning of “!”, multiple “I’s”
are folded 2 into 1
« even number of “!I” --> don’t reference variable’s value
« odd number of “I” --> reference the variable’s value
« useful to convert an ASCII number to an integer, e.g.
setvar int “123” or input foo, “enter a number”
if lint > 0 then .. if 1foo =321 then ...
« the only way to reference UDC or script parameters
« the only way for most Cl commands to reference variables
..... March 4, 2003 Page 13
*Bang folding: echo !!!!varname writes!varnameto $stdlist
echo !!lvarname writes! followed by varname's valueto
$stolist
*Number conversion example:
‘setvar x “123”
iif Ix>0then ...
linput X, “enter avalue’ # user enters 123
:if x =123 then #ERROR, x isadring!
:if Ix = 123 then # OK

*Here is an example when using an explicit variable reference is incorrect (assume an “array” of variables: namel, name2, name3,
etc.):
1) setvarj O
2) while setvar(j,j+1) <= limit and name!j <>“EXIT” do...
Line 2 will aways be reference the N-1th element in the “array”, and, worse, will try to reference ‘nameQ’ thefirst time.
Solution: 2) while setvar(j,j+1) <= limit and namel[j - 1] <>“EXIT” do... --or--
while setvar(j,j+1) <= limit do
if namej <> “EXIT” then ...

*The biggest issue with regards to using !varname is that varname’ stypeislost. Sometimes, thisis exactly what is desired, as shown
in the number conversion examples. Other times, the type was never intended to be lost, and therefore the user needs to surround
lvarname with quotesto preserveits string type. It isthis second usage that | am trying to reduce because, in my opinion, readability
and maintainability suffer.

13

hp e3000

implicit referencing -

just varname

« evaluated during the execution of the command -- later than explicit
referencing

< makes for more readable scripts
« variable type is preserved -- no need for quotes, like: “!varname”

« only 5 commands accept implicit referencing: CALC, ELSEIF, IF,
SETVAR, WHILE -- all others require explicit referencing

« all Cl function parameters accept implicit referencing

- variables inside ![expression] may be implicitly referenced

« performance differences:

« “IHPUSER.IHPACCOUNT” = “OP.SYS” 4340 msec
« HPUSER + “.” + HPACCOUNT = “OP.SYS” 4370 msec
¢« HPUSER = “OP” and HPACCOUNT = “SYS” 4455 msec*

(*with user match true)

| prefer the last choice since many times :IF will not need to evaluate the
expression after the AND

mraes March 4, 2003

Page 14

«| prefer to use implicit referencing whenever possible. 1t makes scripts easier to read (closer to conventiona programming), avoids

3/4/03

problems of early explicit referencing shown on the previous page, and preservesthe variable' stype. So my recommendation is that

in the five commands listed above, and for all function arguments, and inside ![expressions] use implicit referencing as your first

choice.

14

Cli/o redirection

hp e3000

« >name -redirect output from $STDLIST to “name”
« “name” will be overwritten if it already exists

« file will be saved as “name”:rec=-256..v.ascii:disc=10000:TEMP

« file name can be MPE or POSIX syntax
« >>name - redirect, append output from $STDLIST to “name”
« same file attributes for “name” if it is created
e < name -redirectinput from $STDIN to “name”
« “name” must exist (TEMP files looked for before PERM files)

e« 1/0 redirection has no meaning if the command does not do 1/0 to $STDIN
or $STDLIST

« available on all commands, except:

« IF, ELSEIF, SETVAR, CALC, WHILE, COMMENT, SETJCW, TELL,
TELLOP, WARN.

----- March 4, 2003 Page 15

*1/O redirection in the Cl works similarly to the same feature in DOS and Unix systems. Of course, there are some exceptions:
on MPE the file created by output redirection isa TEMP, variable record width file. The motivation for these choices is that we
didn’t want to mistakenly overwrite a permanent fileif the“>" or “>>" symbols on acommand line were not redly intended for
redirection. We decided to make the default record with be variable so that the file created and aso be read more easily by the
Cl, sincetrailing spaces (found in fixed ASCII files) would not need to be stripped. All of the I/O redirection defaults can be
overridden via afile equation.

*There are 10 CI command that do not accept 1/0 redirection. Five of these are commands that introduce an expression as one of
their parameters. Since expressions can contain “<*, “>" it was decided to disable I/O redirection on these command. The
remaining commands are excluded because we were conservative and careful when 1/0 redirection was introduced in MPE XL
Release 2.1. Wedid not want to break existing scripts, UDCs, or JCL that might have “>" or “<" in one of these commands,
causing the Cl would to remove the symbol and following name, and writeto afile.

3/4/03

15

Cli/o redirection (cont)

hp e3000

« how it works:
« Cl ensures the command is not one of the excluded commands

« Cl scans the command line looking for <, >, >> followed by a possible
filename (after explicitvariable resolution has already occurred)

- text inside quotes is excluded from this scan

— text inside square brackets is excluded from the scan
« filename is opened and “exchanged” for the $STDIN or $STDLIST
« after the command completes the redirection is undone

« examples:
« INPUT varname < filename
« ECHO The next answer is: !result >>filename
« LISTFILE ./@,6 > filename
« PURGEACCT myacct <Yesfile
« PURGE foo@ ;temp ;noconfirm >$null
« ECHO You need to include I<THIS !> too!

----- March 4, 2003 Page 16

*The Cl first replaces all explicit variable referencing by the variable’s value. Next, dl ![expression] references are evduated
and replaced by the result. Then, the Cl deals with processing any 1/O redirection it encounters on the command line. This
order alows atarget redirection filename to be contained in avariable or ![expression]. Also, by thistimein the command
processing, the Cl has determined the command name and thus can check the exclusion list to make sure I/O redirection is
permitted for the command being executed

«If an /O redirection symboal is found but the token immediately right of it isnot alegal filename, the Cl assume I/O
redirection was not intended. E.g.:

:echo abc >123 does not create afile named “ 123" but instead echo's:

abc>123

*Also, if the 1/O redirection symbol appear inside a quoted string or inside square brackets, it is not interpreted an 1/0
redirection. E.g.:

:echo abc “>xyz” does not create afile named “XYZ” but instead echo's:

abc“>xyz”
And,

:echo abc [>def] does not create a file named “DEF” but instead echo's:

abc [>def]
The reason that square brackets are excluded is to support selection eguations which are contained by square brackets and allow
relational operators, such as“<" and “>".
*Totell the Cl to ignore I/O redirection in commands that it would otherwise accept |/O redirection you need to placea“!” in
front of the 1/O redirection token. This“escapes’ the special meaning of the 1/0 redirection symbol and is consistent with the
use of multiple exclamation marksin front or potential variable names.

3/4/03

16

filei/o

hp e3000

« why not use INPUT in WHILE to read a flat file?, e.g.:

while not eof do
input varname < filename
endwhile

« answer: the Cl opens and closes “filename” each iteration, thus
you will be reading the 15'record over and over...

*+ three main alternatives:
« write to (create) and read from a MSG file via I/0 redirection
e use :PRINT and I/0 redirection to read file 1 record at a time
¢ use entry points and 1/0 redirection

* MSG file works because each read is destructive, so next INPUT
reads next record

----- March 4, 2003 Page 17

« INPUT <flat_filein the WHILE loop fails because the Cl opensthe redirected file for each iteration in theloop. Thus, an
open isdonefor each record in the file. Not only isthis expensive, it aso meansthat the file'srecord pointer (current
record) is reset to thebeginning of the file each time INPUT is executed. Therefore, INPUT from aflat fileinaWHILE
loop always reads (and re-reads!) thefirst record of thefile.

3/4/03

17

hp e3000

file i/o - MSG file

PARM fileset=./@

This script reads LISTFILE,6 output and measures CPU millisecs

using a MSG file
setvar savecpu hpcpumsecs
errclear
file msg=/tmp/LISTFILE.msg; MSG
continue
listfile !fileset,6 >*msg
if hpcierr = 0 then
read listfile names into a variable

:readmsg
259 msecs to read 22 records

:readmsg @.pub.sys
15845 msecs to read 1515

setvar cntr setvar(eof, finfo(**msg’, "eof"))

while setvar(cntr, cntr-1) >= 0 do
input rec <*msg
endwhile
endif

echo !'[hpcpumsecs - savecpu] msecs to read !eof records.

deletevar cntr, eof, rec

mraes March 4, 2003

Page 18

*Each read of aMSG fileis destructive so it works with INPUT in awhile loop.
*Example shows using POSIX names to keep temporary files.
*Shows setting two variablesin one Cl command line.
*Shows how to measure the performance of ascript or UDC.

3/4/03

18

file i/o - :print

hp e3000

< PARM fileset=.7/7@
This script reads a file produced by LISTFILE,6 and measures CPU msecs
using PRINT as an intermediate step
setvar savecpu hpcpumsecs

errclear :readprnt
continue 735 msecs to read 22 records
listfile !fileset,6 > Iftemp 3 times slower than MSG files

if hpcierr = 0 then
read listfile names into a variable :readprnt @.pub.sys
setvar cntr O 74478 msecs to read 1515 recs
setvar eof finfo('lIftemp’,"eof") over 4 times slower than MSG files!
while setvar(cntr, cntr+1) <= eof do
print Iftemp;start=!cntr;end=!cntr > Iftemp1l
input rec <lftempl
endwhile
endif
echo ![hpcpumsecs - savecpu] msecs to read !eof records.
deletevar cntr,eof,rec

mraes March 4, 2003 Page 19

*The PRINT method isthe least efficient of the three choices presented. This technique requires two opens and closes for
each record in the file: one open for PRINT, one open for the output redirection, one close for PRINT and another close to

redirect output back to $STDLIST.
*The PRINT technique is also not any easier to code than the MSG file method, so why useit?
*Perhaps the datais aready in afile and the fileis not large (or performance is unimportant).

In this case, using PRINT may be appropriate since the script isintuitive and easy to write, and may be better

(faster) than copying the existing datato a MSG filefirst.

3/4/03

19

3/4/03

file i/o - entry points

hp e3000

* PARM fileset=./@, entry="main”
This script reads a file produced by LISTFILE,6 and measures CPU
msecs
using entry points and script redirection
if "lentry" ="main" then
setvar savecpu hpcpumsecs
errclear
continue
listfile 'fileset,6 > Iftemp
if hpcierr = 0 then
xeq !hpfile !fileset entry=read <Iftemp
endif
echo ![hpcpumsecs - savecpu] msecs to read !eof records.
deletevar cntr,eof,rec
purge lftemp;temp
return
... (continued on next slide)

----- March 4, 2003 Page 20

*The choices of “entry” for the name of the entry control parameter and “main” for the default value of the entry control
parameter value are arbitrary but self-documenting.

*All initialization should be donein only the “main” entry portion of the script, rather than earlier in the script. Thisis
more efficient (and perhaps the only correct way) since the initiaization code isinvoked only once.

20

file i/o - entry points (cont)

hp e3000

else
read listfile names into a variable
setvar cntr setvar(eof, finfo(hpstdin, "eof"))
while setvar(cntr,cntr-1) >= 0 and setvar(rec, input()) <> chr(1) do
endwhile
return
endif

:readntry
90 msecs to read 24 records.
---> Almost 3 times faster than MSG files

---> 8 times faster than the PRINT method!

:readntry @.pub.sys

2400 msecs to read 1515 records.

---> Over 6 times faster than MSG files
---> 31 times faster than using PRINT!

----- March 4, 2003 Page 21

*Use the HPSTDIN variable to get the name of the redirected input file, so thereisless hard coding of the temporary file
names.

*This example doesn’t do anything with the contents of the file. Each record is placed in the variable REC, one record
overwriting the previous.

*Theinput() function is used here, rather than the INPUT command in the other examples. A motivation for doing thisis
to eliminate the body of the WHILE loop, which increases performance. Thesilly test for “<> chr(1)” is done to satisfy
the requirements for an expression and is expected to aways be true.

3/4/03

21

3/4/03

error handling

hp e3000

use HPAUTOCONT variable judiciously :

* better --
continue
command
if hpcierr > 0 then ...
if error-condition then
echo something...
return -- or -- escape
endif ...

RETURNVs. ESCAPE
e« :return goes back ONE level

« :escape goes back to the Cl level in a session, to an active
CONTINUE, or can abort a job

HPCIERRMSG - variable contains the error text for the value of

CIERROR JCW / variable

:ERRCLEAR - sets HPCIERR, CIERROR, HPFSERR, HPCIERRCOL
variables to zero

----- March 4, 2003 Page 22

*HPAUTOCONT = true is sometimes useful, but can be a dangerous practice. It dlows every command to behave asif it is
proceeded by a:CONTINUE command. Thismay be desired for some of the commandsin ajob or script, but not necessarily all of
the commands. | find it safer and more reliable to leave HPAUTOCONT set to false (default) and to use an explicit :continuein
front of each command that | want to test for success or failure. Thisallows meto control the behavior of the script, e.g., | can do
some cleanup if an error occurs, and at the same time, it permits the script to abort if an unexpected failure arises.

«| think that scripts are more maintainable and easier to read if the error checking portion reports the trouble and then smply exits.
Thisis preferred to using constructs such as:
if <error>then
report problem... # Don’t handle errors thisway if possible!
ese
execute more code...

if <error>then
report error # Do handle errors thisway if possible!
return
endif
*RETURN causes execution to resumein the calling environment. RETURN is useful as amethod of exiting an alternate entry ina
script or UDC. RETURN does not set Cl error related variables and cannot directly cause the calling environment to abort.
Returning from a script closes the file; however that is the only cleanup done automatically by the system. Scratch files, file
equations, variable, etc., in generdl, should be cleaned up prior to exiting a script or UDC.
*ESCAPE causes execution to resume at the main Cl level for sessions, and at the calling environmentif a:continue proceeded the
invoking command. If the calling environment is ajob and the invoking command was not “protected” by a:continue then ESCAPE
will abort thejob. Additionally, ESCAPE can set CIERROR and HPCIERR to an error number, but the default isto not alter these
variables. ESCAPE mimics to some degree the TRY/ RECOVER / ESCAPE construct provided by Pascd, which isused by alarge
portion of the MPE/iX operating system. ESCAPE is useful when a script or UDC needs to duplicate the Cl’s error handling. This
duplication can be further improved by exploiting the HPFSERR and HPCIERRCOL predefined variables, which provide the
associated file system error (if any), and the column position of the offending command line parameter, where the Cl would locate
the caret (‘") in an error message.

*The HPCIERRM SG string variable contains the error/warning message associated to the current value of the CIERROR variable.
Note that message inserts (like the offending filename) are not, and thus, some messages will contain “!” asinsert place holders.
*The ERRCLEAR command isuseful in theinitialization part of scriptsto set all error related predefined Cl variablesto zero. Itis
over twice as fast compared to setting all four variablesindividualy. 1t isapprox 25% faster than setting only HPCIERR and
CIERROR to zero separately. It isdightly dower (7%) than setting only CIERROR to zero.

*HPCIERR is signed -- Cl warnings are negative, Cl errors are positive. CIERROR contains the absolute vaue of HPCIERR -- thus

there are no Cl warnings with the same absolute value asa Cl error. The Cl kegps HPCIERR and CIERROR in sync, but users can
change their values independent of each other.

22

cleanup

hp e3000

« delete variables “local” to the UDC / script
« :deletevar _"prefix”_@
purge scratch files
reset “local” file equations
« don’t do the above if still debugging!

better, build in a way to preserve files, variables, etc. on
the fly

< use a central cleanup “entry” routine

« use a variable to control the cleanup related

commands

----- March 4, 2003

Page 23

Some cleanup examples:
*Using acleanup “entry” routine -

elseif “lentry” =*“cleanup” then
do al script cleanup here
if finfo(_foo_file,”exists’) then
purge! foo_file

endif

if _foo_used feqthen
reset!_foo_feq

endif

echo End of ![basename(hpfile)] ...

deletevar _foo @

escape 0

endif

«Allowing variables and files to be saved or deleted on the fly -

dsaf “lentry” ="“cleanup” then
if bound(_foo_debug) then
ecape
endif
#do all script cleanup here
if finfo(_foo_file, “exists’) then ...

or

!:foo_del reset!_foo_feq
| foo_del purge!_foo_file
| foo_dd deletevar _foo @

... somewhere _foo_del isset as:
setvar _foo_del “#' --or-- setvar _foo_dd “”

«Scripts and UDCs cannot trap break or other signals (like pending process aborts) thusit is not possible to clean up correctly in al

3/4/03

23

debugging

hp e3000

some common problems:

< syntax error (unmatched parenthesis), variable name typo,

reliance on a var that has not been initialized, hitting eof,
using an HFS file for 10 redirection and then referencing
FINFO(hpstdin) -- Cl bug!, entry name typo (case sensitive!),
off-by-one on loop counters, unexpected user input, re-using
the same var in two places that are executed together (e.g., 2
eof counters), reading from terminal but $stdin is already
redirected to a file

trickier problems to find:

« echoing a literal “>” without escaping,word() by index but
index out of bounds, “array” index increment and reference in
same loop, unmatched endwhile or endif, creating files that
could contain Cl metachars, date calculations that cross day,
month, year boundaries,

----- March 4, 2003 Page 24

insert echo/showvar statements, revealing avariable' s value and/or alocation in the script.
edon’'tinitialy delete variablesand scratch files.

eturn on command tracing (HPCMDTRACE) within suspect sections of the script -- implies omitting OPTION NOHELP too.

«check OPTION RECURSION setting in UDCs with entry points.

«force an unexpected condition by hard-coding the rare value — may be the only way to test certain code paths.
esteal working fragmentsfrom other scripts.

«add your own tracing into complex scripts, viaa“hidden” command line parm or a specia variable.

*use HPLEAPYEAR, HPDATETIME for date calculations, eg. :
setvar tmp hpdatetime # reference the predefined var only once
setvar tmpdate Ift(tmp,8) #just the yyyymmdd part
setvar tmptime str(tmp,9,6) #just the hhmmss part
Don'’t do below for three reasons:
setvar tmpdate “ 20! hpyear” +” lhpmonth” +” Thpdate”
1) may need leading zerosin the string date,
2) useHPYYYY (4 digit string) instead of HPY EAR (2 digit integer),
*3) what happensif the month changes after HPMONTH is referenced?

3/4/03

24

examples

hp e3000

« some simple examples to get started
« easy way to print $STDLIST spoolfile for a job
« getting Cl variable values into a job stream
« powerfail script example
« creating columnar output
< testing remote command success or failure
« parsing HPPATH
« PRNT script

« scan history (redo) stack

o March 4, 2003

Page 25

3/4/03

25

simple examples

hp e3000

display last N records of a file (no process creation)

+ PARM file, last=12 “Tail " script
print !file; start=-!last

display Cl error text for a Cl error number
* PARM cierr= Icierror “Cierr”script
setvar save_err cierror
setvar cierror l!cierr
showvar HPCIERRMSG
setvar cierror save_err
deletevar save_err

alter priority of job just streamed -- great for online compiles ;-)

*« PARM job=!HPLASTJOB; pri=CS “Altp” script
altproc job=!job; pri=!pri

March 4, 2003

Page 26

*The tail script has no process create overhead, unlike the POSIX tail.hpbin.sys program.

*The HPCIERRM SG Cl variable contains the error text for the error defined by the current value of the CIERROR

variable (JCW). Note that message inserts values, that would normally be displayed by the Cl in processing an

error, are not inserted via HPCIERRM SG.

3/4/03

26

3/4/03

W brief file, group, user, dir listings

« PARM fileset=./@ “ Er
listfile !fileset,6

« PARM group=@ “LG
listgroup !group; format=brief

« PARM user=@ “Lu”
listuser luser; format=brief

« PARM dir=./@ “LD”
setvar _dir “!dir”
ifdelimpos(_dir, “./) <> 1 then
convert MPE name to POSIX name
setvar _dir dirname(fqualify(_dir)) + “/” + basename(_dir)
endif
listfile !_dir, 6; seleq=[object=HFSDIR]; tree

----- March 4, 2003 Page 27

«The last example (LD) showsthe BASENAME, DELIMPOS, DIRNAME and FQUALIFY functions being used.

*DELIMPOS(_dir, “ /") <> 1testsif the directory namein _dir startswith adot or dash, and thusis a POSIX
named directory. The FSYNTAX function could have been used for this purpose too.
*An MPE name can be converted to a POSI X name easily:

DIRNAME returns the directory portion, in POSIX syntax, of afilename, but does not qudify the
name.

*FQUALIFY qudlifiesthe namein _dir. Now, DIRNAME will return the absolute path of the namein
_dirl, lessthefile portion of the name.

*BASENAME returns just the base (file) portion of the namein _dir. When appended to the result of
DIRNAME(...) theresult isafully quaified, POSIX name.

*LISTFILE will search for just POSIX (HFS) named directories (seleq=[object=hfsdir]), and the TREE option tells
LISTFILE to search recursively, following all sub-directories.

27

o CE000 printing spoolfiles

PRINTSP script:

PARM job=!HPLASTJOB
Prints spoolfile for a job, default is the last job you streamed
if “ljob” = “” then
echo No job to print
return
endif
setvar hplastjob “!job”
if hplastspid = “” then
echo No $STDLIST spoolfile to print for “ljob”.
return
endif
print '[HPLASTSPID.out.hpspool
:stream scopejob
#3324
printsp
:JOB SCOPEJOB,MANAGER.SYS,SCOPE.
Priority = DS; Inpri = 8; Time = UNLIMITED seconds . . .

----- March 4, 2003 Page 28

*The default value for the parameter “JOB” is the job number of the job most recently streamed by you (HPLASTJOB
variable).

«If you have not streamed ajob (or HPLASTJOB is empty for some other reason) the script reports an error and exits.
*The HPLASTSPID variable contains the spoolfile number (Onnnn) for the $STDLIST spoolfilefor the job referenced
inthe HPLASTJOB variable. HPLASTSPID is not aqualified M PE filename, so the “.out.hpspool” suffix needsto be
appended.

«All output spoolfileslivein @.OUT.HPSPOOL.

*Could be improved by saving the value of HPLASTJOB before setting it to the JOB parameter, and then reinstating
this saved value before the script ends.

*Could check for the existence of “!hplastspid.out.hpspool” before trying to print it.

3/4/03

28

hp e3000

customize jobs using variables

PARM pl="my value", p2="something“

create a simple job passing parms and variables to the job

setvar testvarl true

setvar testvar2 46

setvar testvar3 "abc*

echo !ljob jeff.vance;outclass=,2
echo !lsetvar myP1 "!p1l”

echo !lsetvar myP2 "Ip2"

echo !lsetvar myVarl !testvarl
echo !llsetvar myVar2 !testvar2
echo !llsetvar myVar3 "ltestvar3"
echo !'showvar my@

echo !leoj

stream tmpjob

>tmpjob
>>tmpjob
>>tmpjob
>>tmpjob
>>tmpjob
>>tmpjob
>>tmpjob

>>tmpjob

]

rrami March 4, 2003

Page 29

*Simple script creates asimple job stream. To stream the job you need to execute this script.
*Easy method to pass parameters, variables, even user input to ajob stream. Need to be careful on use of quotes.

Remember al parameter references need to be explicitly referenced, thus the type (string, bool ean, integer) of the parm

islost.

3/4/03

29

powerfail script

hp e3000

UPS configuration file, UPSCNFIG.PUB.SYS):

Contents:

powerfail_message_routing = all_terminals
powerfail_low_battery = keep_running
powerfail_command_file = prodshut.opsys.sys
powerfail_grace_period = 300

PRODSHUT.OPSYS.SYS script example:

warn @; Powerfail detected by UPS. Orderly shutdown BEGIN...
warn @; ***** Please logoff immediately! *****
ifjobcnt(“prod1J.usr.acct”, joblD) > O then
stream hipriJ
pause 60; job=!hplastjob
abortjob ljobID
endif
errclear
pause 180; job=@s
if cierror = 9032 then
warn @;System going down in 2 minutes!
pause 120
endif
shutdown

----- March 4, 2003 Page 30

UPSMON accepts adefault configuration file named UPSCNFIG.PUB.SY S. Thisfile can be overridden via
UPSUTIL’s NEWCONFIG command, which prompts for a simple configuration file (flat ASCII, 32 - 128 byteswide,
numbered or unnumbered). The UPS config file consists of the following (each occupying its own unique record): the
fully quaified MPE file name (it's own name) must be the first record. The remaining contents (records) are optional
and in the form: config_keyword = value. Below isthe configuration file syntax:

Config_file_name

powerfail_message routing = <all_terminals | console_only>

powerfail_command_file =<MPE filename> [;parm1 parm2 ... pamN]*

powerfail_grace period = <number of seconds, O .. 1800> *

powerfail_low_battery = <system_abort | kegp_running (provides ~120 extra sec)> *
* mainline for 7.5 and patch for 7.0

The powerfail_grace period specifies the number of seconds to wait, after detecting apowerfail, prior to invoking the
script named in the powerfail_command file setting. After “powerfail_grace period” seconds expiresthe script is
executed. This script can perform needed system cleanup, but caution is necessary since the system is running on
batteries at this point. The most important consideration isto ensure that al disk writes are consistent.

If the power remains off a some point the battery will run out. The power_fal_low_battery setting alows you to
sgueeze approx 2 more minutes from your shutdown script before the system belliesup. The default is not to play
Russian Roulette with your data, thus the system is aborted at the 2 minute warning. However, aknowledgesble, risk
adverse system manager may specify “keep_running” to gain more time for their cleanup script to complete. The risk
isthat if the script fails to complete in the remaining ~2 minutes the system will fail and disk states may be corrupted.

Note the new SHUTDOWN CI command, which also supportsa RESTART option to allow the system to be restarted
after the shut down is complete. OP capability is required to issue SHUTDOWN from the Cl.

3/4/03

30

columnar output

hp e3000

before:

setvar j O

while setvar(j,j+1) < 4 do
setvar a rpt(“a”, j)
setvar b rpt(*b”, (4-j)*2)
echo 'a xx !'b xx

endwhile

« after:

while ...
setvar a ; setvar b... same way..
echo la ![rpt(* “, 3-len(a))]xx &
[rpt(“ “, 6-len(b))] !'b xx
endwhile

output:

a xx bbbbbb xx
aa xx bbbb >xx
aaa xx bb xx

a xx bbbbbb xx
aa xx bbbb >xx
aaa xx bb xx

March 4, 2003

Page 31

*The“dign” script demonstrates using therpt() function to pad output with a variable number of spaces, based on the

length of the datafitting in afield.

Variable A issetfrom1to3“a’s. Variable B isset from 6to 2 “b”s, in thisexample.
*Thebefore script shows staggered columns —the “ xx” s should form a column.
*When ![rpt(“ “...)] isused just after echoing avaue, the proceeding value becomes lft justified.
When ![rpt(“...)] isused just before echoing a value, the proceeding value becomesright justified.
*Theafter script shows aleft judtified variable followed by aright justified variable.

3/4/03

31

sl testing remote command execution

ANYPARM cmd

Script that executes a command in a remote session and returns the
CIERROR and HPCIERR values for that command back to the local
environment.

purge rmstatus >$null

build rmstatus;rec=-80,,f,ascii

remote file rmstatus=rmstatus:$back,old

continue

remote !cmd

remote echo setvar cierror!lcierror >*rmstatus

remote echo setvar hpcierr !thpcierr >>*rmstatus

xeqg rmstatus

echo remote CIERROR=!cierror, remote HPCIERR=!hpcierr

:;rem listfile 4abc,2
First character in file name not alphabetic. (CIERR 530)
remote CIERROR=530, remote HPCIERR=530

rrami March 4, 2003 Page 32

Available on Jazz at: http://jazz.external .hp.com/src/scripts/index.html
*Thanks to Craig Fairchild for this method.

*Creates a“status’ file which isfilled in on the remote system, using remote variable values, but the file lives on the
local system.

*The contents of this“status’ file are two commands which get executed on the loca system. These commands set the
CIERROR and HPCIERR variables to their respective values on the remote system.

*The double bangs (!!) prevent the local values of CIERROR and HPCIERR from being referenced. Instead,
“ICIERROR" and “!HPCIERR" are executed (and thus referenced) on the remote system.

*Once the “status’ file/script is executed on the local system (where it lives—no dscopy needed) the local CIERROR
and HPCIERR are set to the corresponding values from the remote Cl.

3/4/03

32

el parsing HPPATH

setvar x O
while setvar(token, &
word(“thppath”,”; “setvar(x, x+1))) <> ”” do
if delimpos(token,”/.”) = 1 then
we have a POSIX path element

else
we have an MPE path element

endif
endwhile

« Why did | explicitly reference HPPATH?

----- March 4, 2003 Page 33

*HPPATH defaultsto “'!HPGROUP, PUB, PUB.SY S, ARPA.SY S’. Users can add their own path elements, which
can be contained in one or more Cl variables. HPPATH elements can name an MPE group, an MPE group.account, an
absolute POSIX named directory, or arelative POSIX named directory. HPPATH elements are separated by a comma,
semicolon or a space.

*The 2™ argument to word() isthe delimiter list, which is passed as the same delimiters used in HPPATH.

*The 3 argument to word() is the token number to extract. In this case, the token number isincremented by 1, starting
at 0. Thus the 1%t token is parsed out, then the 2m, then the 34, etc.

*The loops stops once the “next” token in HPPATH is empty, which usually means you reached the end of HPPATH.
Using an index inword(), which is the 53" argument, istrickier since thisindex value cannot be incremented beyond the
end of the string being parsed. If that occurs thenword() reports an error and stops. So usualy isis easier to extract the
Nth word rather than aword starting a position N.

*The most important aspect in this otherwise smpleloop isto explicitly reference HPPATH, which resolves variables
that are contained in the HPPATH value, like '[HPGROUP, for instance. Failure to do this will cause thedelimpos)
statement to test the variable name (actually the “!1”) rather than its value.

*Thedelimpog) function returns the string index where the first of the supplied delimiters charactersisfound in the
passed string. If the extracted token beginswith a“.” or a“/” then a1 isreturned and we know this path element isa
POSIX directory name. Otherwise we assume and M PE group[.acct] name.

*Being able to parse HPPATH correctly alows you to create scripts that locate unquaified commands(files), or scripts
that act upon afile you find by applying HPPATH elements to a base filename. One possible action would be to print
thefile, and this exampleis shown next.

3/4/03

33

ol PRNT - print file based on HPPATH

PARM filename
This command file prints the first MPE filename found in HPPATH.
setvar _prnti O
setvar _prnt match false
while not (_prnt_match) and &
setvar(_ prnt_tok,word(“'hppath ”,",; ‘,setvar(_prnti,_prnt_i+1)))<>""do
if delimpos(_prnt_tok,'./") <> 1 then
skip HFS path elements, we have an MPE syntax element
setvar _prnt_match (finfo("!filename.!_prnt_tok", 'exists'))
endif
endwhile
if _prnt_match then
setvar _prnt_f fqualify ("!filename.!_ prnt_tok")
echo !_prnt_f
continue
print !_prnt_f,!out ;page=22
else
echo ![ups("!filename")] was not found in your HPPATH.
endif

rrami March 4, 2003 Page 34

Available on Jazz at: http://jazz.external .hp.com/src/scripts/index.html
*The WHILE loops parse HPPATH, appends each MPE group[.acct] € ement to the filename parameter, and tests to
see of theresulting filename exists.
«If thefile exists the WHILE loop stops, the qualified filename is displayed, and the file is printed to $STDLIST with
22 lines per “page’. Otherwise, an error is reported.
*Could be enhanced to work with POSIX named “filename” arguments and POSIX path elements.
ol usethisscript al thetime!
*Example:
:echo lhppath
UDCS,PUB,PUB.SYS,ARPA.SYS, scripts.sys,hpbin.sys
prnt rem
REM.UDCS . VANCE
ANYPARM cmd
Script that executes a command In a remote session and
returns the CIERROR
and HPCIERR values for that command back to the local
environment.
#
purge rmstatus >$null

3/4/03

el scan history (redo) stack

PARM cmdstr entry=main
Script scans the redo stack, from top-of-stack (TOS), backwards towards the
begining, searching for the 1stcmd line that contains "cmdstr* anywhere.
if ‘lentry' = 'main’ then

listredo ;unn >Irtmp

create variables for each command line in the redo stack

xeq 'hpfile "lemdstr” entry="listredo’ <Irtmp

scan above variables for first match on "cmdstr*

xeq !hpfile "lcmdstr" entry="match*

match or not?

if _rdo_line = "" then

echo "lcmdstr not found in history stack.

else
do an interactive command redo feature
echo Edit command line for REDO:
echo !_rdo_line
setvar _rdo_edit inpu()
while _rdo_edit <> "" do
setvar _rdo_line edit(_rdo_line,_rdo_edit)
echo !_rdo_line
setvar _rdo_edit input()
endwhile
execute the command
continue
!_rdo_line
endif
deletevar _rdo_@
return

----- March 4, 2003 Page 35

Available on Jazz at: http://jazz.external .hp.com/src/scripts/index.html

*The REDO and DO commands | et you re-execute (and edit) acommand from the CI’s history (redo) stack. The size of
this stack is defined by the HPREDOSIZE variable, and the default is 20, meaning the most recent 20 commands are
kept in this area. Commandsissued in jobs or from UDCs or scripts are not posted to the history stack. The REDO,
DO, and ERRCLEAR commands are also not posted.

*The LISTREDO command displays the contents of the history stack, starting at the least recent command and ending
at the most recent command. However, when you REDO/DO using a string, the CI searches the history stack
beginning a the most recent command (top-of-stack), looking backwards towards the beginning of the stack. The first
entry found anchored in column 1 with the string parameter supplied to DO/REDO is processed. Thus, if you want to
re-execute the most recent command which ends with “foo”, the CI’s DO/REDO mechanism falls short. But, the RDO
script hereworks!

*Thanksto Ray Shahan, who provided me a script that scans the history stack and got me interested in this script.
*The“RDO" script uses two aternate entry points (“listredo” and “match”) and a“main” entry.
*The UNN option to the LISTREDO command suppresses command line numbers and thus eliminates some parsing.
*There isasubtle but very important difference in the use of the INPUT command vs. the input() function:
*The INPUT command does not modify the named variable (if it dready exists) when the user provides no
input, such asjust hitting <return>
*Theinput() function always returns what the user inputs, and thus, in this usage, causes the variable to
awaysbe s, even if set to anull (empty) value.

*These differences are important in the WHILE loop above. If the INPUT command was used instead of the
input function, when the user just pressed <return> to stop editing the command line, the _rdo_edit variable
would not be modified. Thus, _rdo_edit would contain the last vaue it had, which could have been the last
edit applied to the command image. This most likely would result in an infinite while loop. Use the input()
function or add ;DEFAULT="" to the INPUT command to solve this null user input issue.

«:help inputfn show theinput() function.

*Theedit() function accepts aredo-like edit string and applies it to the first parameter. The result, after applying the
edit, isfunctionally returned.

*The edited command is executed in this script by explicitly referencing the variable that contains the command image.

3/4/03

35

ORIl Scan history stack (cont)

elseif 'lentry’ = 'listredo’ then
Fill variable "array" so redo stack can besearced from TOS down.
Input comes from output of LISTREDO ;unncommand.
Skip TOS redo line since it invoked this script!
setvar _rdo_x O
setvar _rdo_size finfo(hpstdin,‘eof')-1
while setvar(_rdo_x,_rdo_x+1) <= _rdo_size do
setvar _rdo_!_rdo_x input()
endwhile
return

)

Iseif 'lentry’ ='match’ then
Find redo entry (now in variable "array") that matches user's string.
Search from last array element down to the first. Return _rdo_line as
" for no match, or the matching cmd.
setvar _rdo_txtdwns("lcmdstr")
setvar _rdo_x _rdo_size+1
while setvar(_rdo_x,_rdo_x-1) > 0 and &
pos(_rdo_txt,dwns (_rdo_![_rdo_x-1])) = 0 do
endwhile
if _rdo_x > 0 then
match
setvar _rdo_line _rdo_!_rdo_x
else
setvar _rdo_line "
endif
return
endif

----- March 4, 2003 Page 36

*The“listredd’ entry readsinput from the TEMP file that contains the output from the LISTREDO command. The
HPSTDIN predefined variable contains the name of the file used to capture LISTREDO' s output. The TOS command
in the history stack is omitted since this command will always be the command that invokes this script.

*Since we want to scan the history file from TOS back towards the beginning, but the order output by LISTREDO is
oldest to newest, we collect each history stack imageinto aCl variable “array”:

esetvar rdo_!_rdo xa-value createsanumbered Cl variable which can be easily indexed.

*The“match” entry scans each “array” element in reverse order from how it was created. This givesus our TOS ->
beginning scan direction, which is the same direction used by the CI’s REDO and DO commands.

*Thepos() function provides the functionality to match the desired string anywhere in the command image. Of course
we downshift the user’ s matching string and each command image before applying the pos() function. The case shift is
done temporarily so that the original image is visible for editing and re-execution.

«If the DELETEVAR in themain entry were commented out you would see the following Cl varscreated by this
script. Note the format of an “array”.

:showvar _rdo_ @

_RDO_X = 2

_RDO_SIZE = 20

_RDO_1 = If p@-udcs

_RDO_2 = cg udcs

_RDO_3 = diff prnt prnt.scripts.sys
_RDO_4 = diff "prnt prnt.scripts.sys“
_RDO_5 = hped prnt

_RDO_6 = diff "prnt prnt.scripts.sys*
_RDO_7 = copy prnt, .scripts.sys
_RDO_8 = purge prnt

RDO 9 = IFf

RDO_10 = prnt tok

RDO_11 = prnt rem

RDO_12 = shiwvar hppath

RDO_13 = showvar hppath

_RDO_14 = prnt prnt

RDO_15 = prnt rem

RDO_16 = echo 'HPPATH

RDO_17 = Ir

RDO_18 = rdo tok

_RDO_19 = hped rdo

_RDO_20 = Ir

_RDO_TXT = udcs

3/4/03

36

scan history stack (cont)

hp e3000

:listredo
1) listf,6
2) Showtime
3) run editor
4) run edit.pub.sys
5) hpedit rem
6) listredo ;unn
7) showjob
8) me
9) spme
10) showproc O
11) listredo

:rdo sys
Edit command line for REDO:
run edit.pub.sys
ihp
run hpedit.pub.sys
HP EDIT HP32656A.02.33 (c) COPYRIGHT Hewlett-Packard Co. .
FRI, FEB 28, 2003, 5:21 PM

rrami March 4, 2003

Page 37

3/4/03

37

appendix

hp e3000

+ COMMAND vs. HPCICOMMAND intrinsics
« CIl programming features:

¢« commands

« variables

e expressions
¢ UDCs and scripts

« file layouts

« feature comparisons

« performance considerations

¢ parameters

« examples

e March 4, 2003

Page 38

3/4/03

38

COMMAND intrinsic

hp e3000

« COMMAND is a programmatic system call (intrinsic)
syntax: COMMAND (cmdimage, error, parm)

« implemented in native mode (NM, PA-RISC mode)
« use COMMAND for system level services, like:
« building, altering, copying purging a file
* no UDC search (a UDC cannot intercept “cmdimage”)
« no command file or implied program file search

« returns command error number and error location

(for positive parmnum), or file system error number for negative parmnum

----- March 4, 2003 Page 39

COMMAND is auser-callable system level API that executes the command passed in as the cmdimage
argument. Cmdimage can name any built-in MPE command including the XEQ command, which
directly executes scripts and program files. Cmdimage cannot name a UDC or imply a script or program
filename. Cmdimage must be terminated with an ASCI| carriage return (#13) and cannot exceed 512
bytes, including the CR.

It is recommended to call the COMMAND intrinsic to obtain asystem service, such ascreating afile,
etc. Other intrinsics may provide the same function, yet it is sometimes easier to call COMMAND since
the programmer is likely familiar with the interactive CI command that provides the desired service.
COMMAND is recommend over HPCICOMMAND in this case since the cmdimage passed to
COMMAND cannot beintercepted by aUDC. For example, to create anew file one could call
COMMAND passing the string: “build filename”. The built-in MPE BUILD command will be executed,
even if there existsa UDC named “BUILD” -- which may do anything, and may not actually create the
fileat all.

The error argument returns zero, or a Cl error number in case of acommand execution error. Thisisthe
same error number reported if cmdimage is executed interactively, and is the value of the predefined
CIERROR JCW/variable. If cmdimage executes with an error or warning there is no indication of this
fact, other than the error return value. Specifically, there is no error message reported to $STDLIST, and
the CIERROR and HPCIERR CI variables are not modified. In fact COMMAND operates by locally
setting the HPM SGFENCE variable to 2, thus suppressing al Cl error and warning messages. Thisis
verifiable by executing SHOWV AR programmatically viathe EDITOR, e.g.:

:showvar hpmsgfence (=0)

:editor

/:showvar hpmsgfence (=2) Note: aleading “:” causes editor to call COMMAND with the

string following the “:”. Thisis common for many programs.

3/4/03

39

3/4/03

HPCICOMMAND intrinsic

hp e3000

« HPCICOMMAND is an intrinsic
syntax: HPCICOMMAND (cmdimage,error,parm
[,msglevel])

« implemented in native mode (NM, PA-RISC mode)
« use HPCICOMMAND for a “window” to the Cl, e.g.:
« providing a command interface to a program, “:cmdname”
« UDCs searched first
« command file and implied program files searched

< returns command error number and error location or file system error
number.

« Msglevelcontrols Cl errors/warnings -- similar to the HPMSGFENCE
variable

----- March 4, 2003 Page 40

HPCICOMMAND is auser-callable system level API that executes the command passed in asthe
cmdimage argument. Cmdimage isidentical to that passed to the COMMAND intrinsic, except that it
can name UDCs, scripts and program filenames, in addition to most of the built-in MPE commands. Due
to implementation constraints the following built-in commands cannot be executed via COMMAND or
HPCICOMMAND:

ABORT, BYE, CHGROUP, DATA, DISMOUNT, DO, EOD, EQJ, EXIT, HELLO, IMF,

IMFMGR, JOB, LISTREDO, MOUNT, NRJE, REDO, RESUME, RJE, SETCATALOG,

VSUSER.
However, the remaining 245 ClI commands can all be executed programmatically via COMMAND or
HPCICOMMAND.

It is recommended to call the HPCICOMMAND intrinsic as a simple way for a program to provide a
“window” totheCl. It iscommon for MPE programs to accept aleading colon (“:”) to indicate that
what followsisa Cl command to execute, and not acommand recognized by the program. A nice feature
of HPCICOMMAND isthat it executes UDCs, which makes the “window” to the Cl more natural and
powerful for the end user.

The error argument and parm arguments work the same asin COMMAND, except HPCICOMMAND
will set the CIERROR and HPCIERR CI variablesto 0, or an error number if the passed in command
fails.

The optional msglevel parameter is unique to HPCICOMMAND and controls the HPM SGFENCE setting
described in the COMMAND notes. By default msglevel is passed as 0, meaning that all Cl errors and
warning messages are written to $STDLIST, just as if cmdimage was executed interactively. Msglevel
can be set to any legal HPM SGFENCE value and causes HPCICOMMAND to control error, warning and
some diagnostic output identically to how the CI interprets HPM SGFENCE. Entering HEL P hpmsgfence
will show the details.

40

el commands

IF, ELSEIF, ELSE, ENDIF
ESCAPE, RETURN

WHILE, ENDWHILE
ECHO, INPUT

SETVAR, DELETEVAR
SHOWVAR

ERRCLEAR

RUN
XEQ

PAUSE

OPTION recursion

common Cl “programming”

branching

looping

terminal, console, file 1/0

create/modify/delete/display a variable

sets Cl error variables to O

invoke a program
invoke a program or script

sleep; job synchronization

only way to get recursion in UDCs

----- March 4, 2003

Page 41

*The Cl supports commands that provide the basic requirements of a programming language: storage, branching/looping and 1/0.

3/4/03

The Cl expands on these necessities by providing arich set of predefined variables and functions, many of which are described later.

*There are 270 CI commands as of release 7.5, but the 18 commands above are common in most scripts and UDCs that have any

level of complexity, such that they are considered a“program”.

41

3/4/03

Cl variables

hp e3000

113 predefined “HP” variables

user can create their own variables via :SETVAR

variable types are: integer (signed 32 bits), Boolean and string (up 1024 characters)
+ variable names can be up 255 alphanumeric alphanumeric and “_” (cannot start with

number)

predefined variable cannot be deleted, some allow write access

¢« :SHOWVAR @ : HP -- shows all predefined variables
can see user defined variables for another job/session (need SM)

+ :SHOWVAR @ ; job=#S or Jnnn

the bound() function returns true if the named variable exists
« variables deleted when job / session terminates

:HELP variables and :HELP VariableName

----- March 4, 2003 Page 42

*Cl variables can be strings (up to 1024 bytesin length), 32 bit signed integers or boolean TRUE/FALSE. Thereis
not support for 64 bit integers or unsigned 32 bit numbers.

*See the dides on variable arrays for a method to determine the maximum number of Cl variables that can be defined.
This maximum is a function of the length of the variable’s name and the length of its value. The longer your variable
names and/or their values the fewer variables can be stored by the Cl. A typical range is 8,000 to 9,000 user variables
can be defined.

*A summary of al of the predefined variablesis available by entering HELP VARIABLES. The details for a specific
variable can bee seen by entering HELP varname For example, if you have trouble remembering the new values for
the HPM SGFENCE variable, enter HEL P HPM SGFENCE and see:
HPMSGFENCE A variable used by the Cl that controls the output for all
Cl errors, warnings and skipped commands. Skipped commands refer
to commands that are not executed by the Cl because they follow a
conditional expression that evaluated FALSE.

HPMSGFENCE is divided into 2 fields, 3 bits each in size.
The low order field (bits 29..31) controls the output of CI error and
warning messages as:

0 = display all CI errors and warning
1 = show only errors, warning are suppressed
2 = suppress all Cl errors and warning messages.

The next field (bits 26..28) controls the output of skipped commands and the

v*xx EXPRESSION FALSE: ..., "*** EXPRESSION TRUE: ...'", and "***
RESUME

EXECUTION OF COMMANDS'™ messages:

0 = show all skipped commands and the above ''***.” messages

1 = show only the "***___ " messages, suppress commands that are
skipped. Integer value is 8.

2 = suppress the skipped commands and the "***___” messages. Integer
value is 16.

Etc..

*HPMAXPIN is new to 7.0 and returns the maximum number of processes supported by your system

42

3/4/03

predefined variables

hp e3000

HPAUTOCONT - set TRUE causes Cl to behave as if each command is protected by a
:continue.

HPCMDTRACE - set TRUE causes UDC / scripts to echo each command line as long
as OPTION NOHELP not specified. Useful for debugging.

HPCPUMSECS -tracks the number of milliseconds of CPU time used by the process.
useful for measuring script performance.

HPCWD - current working directory in POSIX syntax.

HPDATETIME - contains the date/time in
CenturyYearMonthDateHourMinuteSecondMicrosecond format.

HPDOY - the day number of the year from 1..365.

HPFILE - the name of the executing script or UDC file.

HPINTERACTIVE - TRUE means $STDIN and $STDLIST do not form an interactive
pair, useful to test if it is ok to prompt the user.

HPLASTJOB - the job ID of the job you most recently streamed, useful for a default
parm value in UDCs that alter priority, show processes, etc.

----- March 4, 2003 Page 43

ol rarely use HPAUTOCONT. | prefer to be explicit when | am anticipating that the next command may fail. Also,
thereis dight extra overhead with HPAUTOCONT. Lastly, itsoriginal value should be saved and re-instated before
the script ends.

*HPCMDTRACE is often useful, despite being overly verbose. Thereisasimple example that toggles the
HPCMDTRACE value in the “ Examples’ section of this presentation.

*My CI prompt contains HPCWD, e.g.. :setvar hpprompt “!!hpcwd: “
*| use HPCPUM SECS to measure script performance as follows:
- saveitsvalue at script entry

- saveits value near the script end
- calculate the time in the script as: end_value - start_value.

*Express 1 of 6.0 added 5 new variables related to the date and time.

- HPDATETIME - isastring that contains“YYYYMMDDHHMMSSMMM”. The value of this
variable is that the date and time are retrieved autonomously, thus you are guaranteed that the time portion of the
variable is not early thenext day. Note: currently the microseconds field has only tenths of a second resolution due to
restrictions on the CLOCK intrinsic call.

- HPDOY - an integer variable containing

- HPHHMMSSMMM - current time in hour, minutes, seconds, micro-seconds.

- HPLEAPYEAR - aboolean variable that is true when the current year isaleap year.

- HPYYYYMMDD - astring variable that contains the year, month and date as an autonomous
value.

*HPFILE reduces the need to hard-code the filename of your script, e.g.:
if user-selected-help then
echo ![hpfile] -- Syntax: ...

*HPLASTJOB can be modified which is useful when referencing the HPLASTPSID variable. E.g..
:setvar hplastjob “#J12”
:print 'hplastspid.out..hpspool

43

predefined variables (cont)

hp e3000

:print hplastspid.out.hpspool
HPLOCIPADDR - IP address for your system.

files
"HPCMDNUM, "HPGROUP, etc.

redirected to a disk file
streamed the current job.

e.g. if pos(“SM”,hpusercapf) > 0 then

HPLASTSPID - the $STDLIST spoolfile ID of the last job streamed, useful in

*« HPMAXPIN - the maximum number of processes supported on your system.
HPPATH - list of group[.acct] or directory names used to search for script and program

HPPIN - the Process Identification Number (PIN) for the current process.
HPPROMPT - the CI's command prompt, useful to contain other info like: "HPCWD,

HPsPooOLID - the $STDLIST spoolfile ID -- if executing in a job.
HPSTDIN - the filename for $STDIN, useful in script "subroutines” where input has been

HPSTREAMEDBY - the “Jobname,User.Acct (jobIDnum)” of the job/session that

HPUSERCAPF - formatted user capabilities, useful to test if user has desired capability,

March 4, 2003 Page 44

*My HPPATH contains “HPBIN.SYS” so | can run the POSIX programs more easily.
*HPREMIPADDR and HPREMPORT are useful for determining how a user is connecting to your system.
*HPSTREAMEDBY shows the same information as seen at the beginning of the $STDLIST output of ajob

*A common way to seeif the user has sufficient capabilitiesis:
:if pos(* SM” ,hpusercapf) > 0 then #has SM cap
or
:setvar has_ SM (pos(“ SM” ,hpusercapf) > 0)
*A geek way to seeif auser has SM capability is:
:if hpusercap < 0 then
since sign hit (bit 0) is set
or
:if odd(hpusercap Isr 31) then ... # more “ geeky”

has SM cap,

3/4/03

3/4/03

Cl expressions

hp e3000

* operators:

* + (ints and strings), -, *, /, ©, (), <, <=, >, >=, =, AND, BAND, BNOT,
BOR, BXOR, CSL, CSR, LSL, LSR, MOD, NOT, OR, XOR

« precedence (high to low):
« 1) variable dereferencing
* 2) unary + or -
« 3) bit operators (csr, Isl...)
* 4) exponentiation (™)
« 5)* /, mod
.« 6) +, -
e 7)<,<=,=, > >=
+« 8) logical operators (not, or...)

« left to right evaluation, except exponentiation is r-to-I

----- March 4, 2003 Page 45

«:HEL P operators and :HEL P band, etc. provides additional information.

45

Cl expressions

hp e3000

« what is an expression?

* any variable, constant or function with or without an operator, e.g:
MYVAR, “a”+”b”, x~10*y/(j mod 6), false, (x> lim) or (input() =“y”)

« partial evaluation:

if true or x # “x” side not evaluated
if false and x # “x” side not evaluated
if bound(z) and z > 10 then # if “z” not defined it won’t be referenced

- problems when MPEX runs the script
« where can expressions be used?

« 5 commands that accept implicit variable references:
:calc, :if, :elseif, :setvar, :while
« I[expression] can be used in any command:
:build afile; rec=-80; disc= ![100+varX]
:build bfile; disc= I[finfo(“afile”,”eof”)*3] # file b is 3 times bigger

« examples:
« print![input(“File name? “)]
« :setvar reply ups(rtrim(ltrim(reply)))

----- March 4, 2003 Page 46

*Expressions are expected naturally in five Cl command (CALC, IF, ELSEIF, SETVAR and WHILE), but they
must be forced to be evaluated in the remaining CI commands. Thisforcing is done by enclosing the
expression inside square brackets with aleading “!”.

A powerful feature of Cl expression evaluation iswhat is called “partial evaluation”. Most programming
languages support this concept, which is, performing the minimum level of evaluation needed to determineif a
boolean expression istrue or false. Not only does this allow the Cl to evaluate expressions more efficiently, it
is necessary for some compound expressions. For example, consider the following expression:

if FALSE and Ift(input(*OK to continue?’),1) = “y” then ...

If the CI had to evaluate the entire expression then the user would see the prompt and be required to enter input.

Clearly thisis not desirable since the expression will be FALSE regardless of the user input, and the user
should not be bothered with the prompt. To my knowledge, MPEX still does not support partial evaluation
with respect to the existence or not of variables. That is, in a statement like:

if TRUE or Ift(varA, 1) =“" then ...
MPEX evaluates the expression and enforces that “varA” exists, even though the TRUE clause could halt the
left-to-right evaluation. The above expression produces no errorsin the Cl (regardless of varA’sexistence),
thus CI scripts written to exploit partial evaluation may not work correctly in an MPEX environment.
*Aswill be seen in the examples at the end of this presentation, some expressions can be long and complex.

The motivation for writing expressions thisway is purely performance, and sometimes hinders support of the
script.

3/4/03

46

3/4/03

Cl functions

hp e3000

« functions are invoked by their name, accept zero or more parms and
return a value in place of their name and arguments

« file oriented functions:
® BASENAME, DIRNAME, FINFO,ESYNTAX, EQUALIFY
* string parsing functions:

« ALPHA, ALPHANUM, DELIMPOS, DWNS, EDIT, LEN, LFT, LTRIM,
NUMERIC, PMATCH, POS, REPL, RHT, RPT, RTRIM, STR, UPS
WORD, WORDCNT, XWORD

« conversion functions:
« CHR, DECIMAL, HEX, OCTAL, ORD
« arithmetic functions
« ABS, MAX, MIN, MOD, ODD
* job/process functions:
< JINFO, JOBCNT, PINFO
* misc. functions:
« ANYPARM, BOUND, INPUT, SETVAR, TYPEOF

----- March 4, 2003 Page 47

*The CI currently supports 56 functions, over twice as many functions as in the base release of 5.0. However, the CI
only supports predefined functions -- user written functions are unavailable.

*Help isavailable for all functions by entering HEL P functionName. A summary of the ClI functions can be seen by
entering HELP FUNCTIONS. To get function help on a function that has the same name as a Cl command, enter
HELP function_nameFN, e.g.. HELP setvarFN or HEL P inputFN.

*The arguments to a function can be aliteral constant, the name of avariable, or another function. When avariableis
used as a function argument, its value will be used as the argument value. However, five functions accept a variable

name but do not evaluate the variable (i.e. they don’t useits value): INFO, PINFO, SETVAR, WORD and XWORD.

*Functions can be nested, that is, function A can invoke function B to obtain the value for one of function A’s
parameters. The only nesting limit is defined by the size of the CI’ sinternal buffer that holds the command line --
currently 511 bytes. Thereis an exception to nesting -- the ANYPARM function is special. Since anyparm() ignores
all delimiters, including all but the last right parentheses, it cannot be nested inside other functions, nor can other
functions be nested within anyparm’s argument.

*DIRNAME(“f.g.a") “IAIG”

*FSYNTAX(“f.g.d") “MPE"

FSYNTAX("./d[c-g]”) “POSIX;WILD”

*FQUALIFY (“f") “F.GRP.ACCT” or “/CWD/F’

FQUALIFY (“./f") “/CWDI/f”

*DELIMPOS(*a,b;c d”) 2 useful when delimiter is a set of two or more characters
*EDIT("“ab;cd,ef”,”dw”) “;cd ef” full REDO programmatic editing
*PMATCH("ab”,”abc”) FALSE easy way to add pattern matching
PMATCH("ab@",”abc”) TRUE

*WORDCNT(“ab,c=,d") 5 test if avariable contains the expected number tokens
(valueof ‘¢’ isnull, but counts as atoken -- consistent with word and xword)

*XWORD(“Hi there, Fred”) “there, Fred”

a7

JINFO function

hp e3000

syntax: JINFO (“[#]S]Jdnnnn”, “item” [,status])
where jobID can be “[#]J]Snnn” or “0”, meaning “me”

JobUserAcctGroup, JobState, StreamedBy, Waiting ...

return -- normal Cl error handling bypassed

< can see non-sensitive data for any job on system

user.acctif jobsecurity is LOW; on other jobs insame

acctif AM cap; on any job if SM or OP cap

< can see sensitive data on: “you”; on other jobs w/ same

¢ 63 unique items: Exists, CPUSec, IPAddr, JobQ, Command,

« status parm is a variable name. If passed, Cl sets status to JINFO error

March 4, 2003

Page 48

*:help JINFO provides al of the items, security rules and some examples.

«if JINFO (HPLASTJOB, “EXISTS") then ...
you know the job exists, at least right now!
«if JINFO (“S543", “IPADDR") <> “” then
Session 543 is connected via the network
«if JINFO (target_job, “FMTPRIORITY") =“DQ" then
'target_job’ is currently in the DQ dispatcher queue
* setvar state JINFO (HPLASTJOB, “STATE", status)
whilestatus= 0 and state="“WAIT" do ...
setvar state INFO (HPLASTJOB, “STATE”, status)
endwhile
«if JOBCNT(“@J", list) >0then
while JINFO (word(list), “EXISTS’) do
setvar list xword(list)

« while JINFO(hplastjob, "EXECUTING”) do ...

3/4/03

48

JOBCNT function

hp e3000

syntax: JOBCNT (“job_spec” [,joblist_var])

“Job_Spec” can be:
* “user.account”
*« “jobname,user.account”
- "@J”, "@s”, "@”
e “@J:[jobname,]user.acct” or “@S:[jobname,]user.acct”
« wildcarding is supported
« use empty jobname (“,”) to select jobs without jobnames

« omit jobname to match any jobname

----- March 4, 2003 Page 49

The JOBCNT function returns the number of job/sessions that match the “job_spec”, regardless of the state of the
matching job/sessions. In other words, JOBCNT does not filter based on whether the job is waiting, scheduled,
executing, etc. The function returnisvalid only for the moment it is returned, as a system’ s job/session count can
continually fluctuate.

The“job_spec” parameter allows just jobs or just session to be selected for agiven “user.acct” specification. For
example, to find only the jobs logged on as MANAGER.SY S use:

JOBCNT (* @JMANAGER.SYS")
Itis possible to retrieve the job/session | Ds for the matching jobs by passing the “joblist_ var” parameter. This
unguoted argument names an existing or new CI string variable. It will be set to alist of matching job/session IDs of

the form: JiSnnn, followed by a space, followed by the next ID, etc. For example:
“S123 $445 X9 S567 J10”

Since ClI string variables currently cannot exceed 1024 characters, it is possible that the “joblist_var” passed to
JOBCNT cannot contain all of the matching job IDs. This situation is only detected by comparing the number of
tokensin the “joblist_var” against the function return. For example:

setvar cnt JOBCNT(*@" ,jlist)
if cnt <> wordent(jlist) then ... # not al matching jobsin variable

Assuming three digit job numbers, approximately 204 matches will fit in the “joblist_var” variable. Possible
solutionsto this restriction are:

* use separate JOBCNT calls for jobs and sessions
* use separate JOBCNT calls for various target accounts

There are no restrictions on the use of JOBCNT. Any user, regardless of their capabilities, can specify any
“job_spec” and retrieve the matching job/session IDs.

3/4/03

49

PINFO function

hp e3000

syntax: PINFO (pin, “item” [,status])
where PIN can be a string, “[#P]nnn[.tin]”, or a simple integer, “0” is “me”

< 66 unique items: Alive, IPAddr, Parent, Child, Children, Proctype,

WorkGroup, SecondaryThreads, NumOpenFiles, ProgramName, etc.

* status parm is a variable name. If passed, Cl sets status to PINFO error
return -- normal Cl error handling bypassed

*« can see non-sensitive data for any user process on system

« follows SHOWPROC’s rules for sensitive data

----- March 4, 2003

Page 50

* documented in 7.0 Express 1 Communicator or on Jazz at:
http://jazz.external .hp.com/papers/Communicator/7.0/expl/ci_enhancements.html

«:help PINFO provides al of the items, security rules and some examples.
*if PINFO (HPPIN, “Info”) = “PRINT” then ...
#info="PRINT” was specified for your process...
«if PINFO (547, “IPADDR") <>"" then
This processis connected via the network
«if PINFO (target_pin, “SchedQ”) = “DS’ then
‘target_pin’ iscurrently in the DS dispatcher queue
swalk down process tree:
setvar p PINFO (0, “jsmainPin”)
whilep <>0do
setvar p PINFO (p, “child”)
endwhile

swalk up process tree:
setvar p 0
while PINFO (p, “proctype”) <> “IJSMAIN" do
setvar p PINFO (p, “parent”)
endwhile

«find state of each descendant process:
setvar kids PINFO (0, “children™)
setvar kidsword(kids,”/",2) # get rid of count field
setvar k O
while setvar(p,word(kids,,setvar(k,k+1))) <>“" and PINFO (p, ‘alive’) do
echo Pin: !p, state=![PINFO (p, “procState”)]
endwhile

3/4/03

50

hp e3000

header:

body:

end-of-UDC

header:

body:

UDC file layout

filename: AUDC.PUB.SYS

UDCcommandname [parml] [p2[=value]]
[ANYPARM parm4 [=value]]
[OPTION option_list]

any MPE command, UDC or script
(option list or option recursion supported in body too)

wkkxxkikk - (end of this command definition)
NextUDCcommand [parml]
[PARM P2, P3=value]

[OPTION option _list]
any MPE command etc...

----- March 4, 2003

Page 51

*A UDC file contains one or more individual UDCs, separated by an asterisk in column one (characters

right of the asterisk are ignored).

*The header consists of the UDC name (required), zero or more parameters, and zero or more UDC

options.

*The parameter line may immediately follow the UDC name, or can begin on the following line
introduced with the reserved word PARM.

If ANYPARM is specified it must be the last parameter defined.
*The OPTION line conventionally follows all parameters, though thisis not required. Two

options (RECURSION and LIST) may appear in the body as well as the option line.

*The header ends at the first non-PARM, non-ANY PARM, non-OPTION command line.

*The body consists of zero or more commands, where the command can be acomment (#), aUDC, a
built-in CI command, acommand file name or a program file name. The body ends when an asterisk is
found in column one. However, aUDC can exit prior to this end point in several ways:

ean error can cause the UDC to terminate

sthe :RETURN command exits the UDC

the :ESCAPE command exits the UDC

the :EOJ command in a UDC executing in ajob
the :BY E command in aUDC executing in a session

3/4/03

51

hp e3000

body:

eof

body:

header:

header:

script file layout

filename: PRNT.SCRIPTS.SYS

[PARM parml, parm2 [=value]]
[ANYPARM parm3 [= value]]
[OPTION option_list]

any MPE command, UDC or script
(:option list or :option recursion supported in body too)

flename: LG.SCRIPTS.SYS

PARM ...
OPTION nohelp ...
any MPE command etc...

----- March 4, 2003

Page 52

*A script has the same parts (header, body) as a UDC with a few differences:
*Thereis no script name in the header -- the script name is the filename, thus if there are any
parameters a PARM or ANYPARM lineisrequired.
*An asterisk does not terminate ascript. Thus afile equation can be reference the name of a
script to execute from within ascript. For example:

file xy z= /bin/scripts/local-xyz

*Xyz parml parm?2 ...
The above “*xyz" works only in ascript -- in aUDC, the leading **’ (if it wasin column one)
would indicate the end of the UDC command.

3/4/03

52

UDCs vs. scripts

hp e3000

« option logon
« UDCs only (a script can be executed from an “option logon” UDC)

* logon UDCs executed in this order:

- 1. System level 2. Account level 3. User level
(opposite of the non-logon execution order!)

« Clcommand search order:
« A.UDCs (1. User level 2. Account level 3. System level)
- thus UDCs can override built-in commands
¢« B. built-in MPE commands, e.g. LISTFILE

¢« C. script and program files. HPPATH variable used to qualify
unqualified filenames

« :XEQ command allows script to be same name as UDC or built-in

command, e.g. :xeq listf.scripts.sys

o March 4, 2003 Page 53

3/4/03

53

W UDCs vs. scripts (cont.)

« performance
* logon time:
9 UDC files, 379 UDCs, 6050 lines: 1/2 sec.

most overhead in opening and cataloging the UDC files

- to make logons faster remove unneeded UDCs

e execution time:
identical (within 1 msec) for simple UDCs vs scripts,
however:
- factorial script:
:fac 12 157 msec
- factorial UDC (option recursion):
:facudc 12 100 msec
— file close logging impacts performance for scripts more since they
are opened/closed for each invocation

----- March 4, 2003 Page 54

Script FAC:
PARM f

compute up to 12 factorial.
if typeof(!f) <> 1or !f <=0or !f >= 13 then

echo Expected an integer between 1 and 12.

return
endif
if not bound(factor) then
setvar savecpu hpcpumsecs
setvar factor 1
echo If factorial used
endif
if If > 1 then
setvar factor factor * !f
xeq 'hpfile![!f-1]
else
al done, report answer and cpu time

echo I[hpcpumsecs-savecpu] msecs to compute.
echo Answer is: Ifactor ![octal(factor)] ![hex(factor)]

deletevar factor
endif

UDC FACUDC:
FACUDC f
OPTION RECURSION
if typeof(!f) <> 1 or !f <0 or !f >= 13 then

echo Expected an integer between 1 and 12.

return
endif
if not(bound) factor then
setvar savecpu hpcpumsecs
setvar factor 1
echo !f factorial used ...
endif
if If > 1then
setvar factor factor*!f
facudc![!f-1]
else
al done, report answer and cpu time

3/4/03

echo I[hpcpumsecs-savecpu] msecsto...
echo Answer is: !factor ![octal(factor)] ...
deletevar factor
endif
*kkkkk

hp e3000

UDCs vs. scripts (cont.)

¢ maintenance / flexibility /7 security

SETCATALOG opens UDC file, cannot edit without un-cataloging file,

but difficult to accidentally purge UDC file
UDC commands grouped together in same file, easier to view and
organize

UDC file can be lockword protected but users don’t need to know
lockword to execute a UDC

scripts opened while being executed (no cataloging), can be purged
and edited more easily than UDCs

scripts can live anywhere on system. Convention is to place general

scripts in a common location that grants read or eXecute access to all,

e.g. “XEQ.SYS” group
if script protected by lockword then it must be supplied each time the
script is executed

rrami March 4, 2003

Page 55

*SETCATALOG user needs to know the lockword, but the the user executing individual UDCs does not ever need to

specify alockword.

3/4/03

*Note: the POSIX shell’s“mv” command allows anew UDC to overwrite an existing UDC file that is being accessed.

The result of thisisthat user that just logon see the new UDC file, while users that were cataloged to the original file
see no difference until the re-logon. Once they all re-logon, the old file is purged by the system, since the file open

count went to zero.

55

UDC / script exit

hp e3000

EOF -- real EOF for scripts, a row of asterisks (starting in column 1) for
UDCs

:BYE, :E0QJ, :EXIT -- terminate the CI too, to use BYE or EOJ must be the
root Cl

:RETURN -- useful for entry point exit, error handling, help text - jumps back
one call level

:ESCAPE -- useful to jump all the back to the ClI, or an active :CONTINUE.
In a job without a :CONTINUE, :escape terminates the job. Sessions are
not terminated by :escape. Can optionally set CIERROR and HPCIERR
variables to an error number

----- March 4, 2003 Page 56

3/4/03

56

3/4/03

NV Qaram eters

« syntax: ParmName [= value]

¢« supplying a value means the parameter is optional. If no value is
defined the parameter is considered required.

¢ max parm name is 255 bytes, chars A-Z, 0-9, “_”

¢ max parm value is limited by the CI’s command buffer size (currently
511 characters)

« all parm values are un-typed, regardless of quoting
« Parms are separated by a space, comma or semicolon

« default value may be a: number, string, !variable, ![expression], an
earlier defined parm (!parm)

» all parameters must be explicitly referenced in the UDC/script body, e.g.

Iparmname

« the scope of a parm is the body of the UDC/script

----- March 4, 2003 Page 57

*A parameter and variable can have the same name but this should be avoided to improve support of UDC and scripts
*PARM pl=ahc
setvar pl, “xyzzy”
echoP1=Ipl ---> Pl=abc
echo P1=I[pl] ---> Pl=xyzzy

Note: explicit referencing (!x) looks for parameters first, then if no match searches for variables. Implicit referencing
(x) does not look for parameters at all, and only searches for a variable name.

*PARM p1, p2=abc, p3="def”, p4=1, p5="1", p6=true,p7="fase’, p8=!p2, p9=![rht(HPJOBNAME,-2)]
*Argument P1 isrequired. Argument P8 contains the value of P2. Argument P9 defaults to the value of the
HPJOBNAME variable -- less the first character.

eInternal to the Cl all parameter values are stored as strings, but since parameters must be explicitly referenced
(parmname) their string type is not preserved. Thus, to a Cl programmer all parameter values are un-typed:

«calc typeof(p2) =0 # no meaning since parm p2 was not explicitly referenced (assume no
variable named P2)

«calc typeof(!p2) =0 # no meaning (assume no variable named ABC)

ecalc typeof(“!p2”) =2 #dtring, regardless of p2's value since value was quoted

ecalc typeof(!p4) =1 #integer

«calc typeof(!p5) =1 #integer, quotes around default value don't matter

«calc typeof(!p6) =3 #boolean

ecalc typeof(“!p6”) =2 #sdtring since | quoted it!

«calc typeof(!p7) =3 #boolean

57

parameters (cont)

hp e3000

« all parameters are passed “by value”, meaning the parm value cannot be
changed within the UDC/script
« aparm value can be the name of a Cl variable, thus it is possible for a
UDC/script to accept a variable name, via a parm, and modify that variable’s
value, e.g.
SUM a, b, result_var SUM is a UDC name
setvar !result_var la+!b

*kkkk

:SUM 10, 210, x
:showvar x X =1034

:setvar | 10

:setvar J 12

:SUM i, j, x inside SUM: setvar x, i +j
:showvar x X=22

----- March 4, 2003 Page 58

*Note: inside the SUM UDC the parameters A and B cannot be changed. For example, if

:setvar a,at+l
appeared inside SUM, it would try to create a Cl variable named A, but would fail since ajob/session global variable
named A does not exist and thus cannot be referenced. |If instead,

‘setvar a,lat+l
appeared inside the SUM UDC, this would create a new Cl variable named A with avalue equal to the value of the
parameter A+1. Neither example alters the parameter’ s value.

3/4/03

58

3/4/03

el ANYPARM parameter

« all delimiters ignored
« must be last parameter defined in UDC/script
« only one ANYPARM allowed

« only way to capture user entered delimiters, without requiring user to quote
everything

« example:

TELLT user

ANYPARM msg = “”

prepends timestamp and highlights msg text
tell 'user; at thptimef: ![chr(27)]&dB !msg

:TELLT op.sys Hi,, what’s up; system seems fast!
FROM S68 JEFF.U1/3:27 PM: HI,, what’s up; system seems..

« anyparm() function is useful with ANYPARM parameters

rrami March 4, 2003 Page 59

A few examples using ANY PARM and the anyparm function are shown in other parts of thistalk, with respect to
capturing an INFO= string.

*The only way to get an ANYPARM parameter value to default to “” (empty string) is as follows:
ANYPARM p=1[""] # correct
ANYPARM p="" # wrong - default value is literally the two quote marks

59

hp e3000

entry points

simple convention for executing same UDC/script starting in different
“sections” (or subroutines)

a UDC/script invokes itself recursively passing in the name of an entry

(subroutine) to execute

the script detects that it should execute an alternate entry and skips all the
code not relevant to that entry.

most useful when combined with 1/0 redirection, but can provide the
appearance of generic subroutines

benefits are: fewer script files to maintain, slight performance gain since
MPE opens an already opened file faster, can use variables already

defined in script

UDCs need OPTION RECURSION to use multiple entry points

----- March 4, 2003 Page 60

*Thereisno limit to the number of entry points, and there is no required order: al entry points can appear in the

beginning of the script, the end or both.

*An entry point is just a programming convention implemented by adding another parameter to the PARM line, and
passing the desired entry point name to the script/UDC when it isinvoked. This extra parameter is never explicitly

provided by the user.

*By definition, al scripts and UDCs using alternate entries are recursive.

3/4/03

60

hp e3000

entry points (cont)

two approaches for alternate entries:

define a parm to be the entry point name, defaulting to the main part
of the code (“main”)

the UDC/script invokes itself recursively in the main code, and may
use I/0 redirection here too

each entry point returns when done (via :RETURN command)

test HPSTDIN or HPINTERACTIVE variable to detect if script/UDC
has 1/0 redirected.

if TRUE then assume UDC/script invoked itself.

limited only to entry points used when $STDLIST or $STDIN are
redirected

limited to a single alternate entry point, may not work well in jobs

mraes March 4, 2003

Page 61

*My preferenceisthe first approach since it is the most flexible method. In fact, | usually structure my scriptsto be
able to work with multiple alternate entry points, even if | need only a single alternate entry at the time the script is

being first written.

3/4/03

61

3/4/03

entry points (cont)

hp e3000

¢« generic approach:

PARM p1l .. entry=main # default entry is “main”

if “lentry” = “main” then
... initialize etc...
xeq 'HPFILE !pl, ..entry=dgo # run same script, different entry
. cleanup etc...
return

elseif “lentry” = “go” then...
execute the GO subroutine ...
return

elseif “lentry” = ..

endif

----- March 4, 2003 Page 62

*This shows a script structured so that it can accept multiple alternate entry points.
*There should be little or no code before the if “lentry” = “main” line.

*Notice that RETURN is used to exit the main and all alternate entries. Thisis not required since the CI will drop out
of the entry block of code, reach the eof and naturally return back to where the script called itself. However,
performance isimproved using RETURN in the manner shown above.

*ANYPARM scripts with entries use adlightly different structure and require more parsing:
ANYPARM p1=1["]
if “Ip1” =" or pos(“entry=","p1") = O then
main entry for script
xeq !hpfile some parm value entry =do_this
return
dse
parse out entry name and execute entry subroutine, entry nameis last word
setvar _entry word(“!pl”,,-1)
remove “entry=name” from parm line
setvar _parm Ift(“!pl”,pos(‘ entry=","1p1")-1)
case on entry name
if _entry ="“do_this’ then ...
return
elsalf _entry = ...
endif
endif
*UDCs with entries need to specify OPTION RECURSION so that the UDC can invoke itself with the aternate entry
name. OPTION RECURSION can be in the UDC header or a separate CI command.

62

entry points (cont)

hp e3000

* i/o redirection specific approach:

if HPSTDIN = “$STDIN” then

.. (*main” entry -- initialize etc...)

execute the entry to read “somefile”

setvar eof FINFO(hpstdin, “eof”)

return
endif

PARM p1l .. # no “entry” parm defined

xeq 'HPFILE !p1, ... <somefile
. (cleanup etc...)
return
else # no elseif since only 1 alternate

March 4, 2003

Page 63

*Note: the HPSTDIN = “$STDLIST” test above could be replaced with:
if HRINTERACTIVE then...

*This approach to alternate entry points works fine for its limited uses. It does not handle multiple alternate entries

and requires |/O redirection for the single alternate entry.

*Inajob you must use the HPSTDLIST test since HPINTERACTIVE is always FALSE.

«If the script itself is run with /O redirected then both tests (HPSTDIN and HPINTERACTIVE will be inaccurate,

and the generic approach must be used.

3/4/03

63

WU string manipulations
1) parse out all tokens in a string var
2) extract the first N tokens from a string var
3) extract the last N tokens from a string var
4) test for “hi” somewhere in a string var (or “LOGON” vs.
“NOLOGON™)
5) count tokens in a string var
6) remove Nth token from a string var
7) remove N consecutive tokens from a string var
setvar x " ab c;de, fg;hij=k Imn,op=qr”
1 setvarj 0 -or-
setvar j O
whilej <=len(x) do whilesetvar(j,j+1)
<= wordcnt(x) do
setvar tok word(x, , , j, j+1) setvar tok word(x, , j)
endwhile endwhile
2136 msec for 500 iterations 2298 msec

-or-

#below failson anull token, but otherwiseissimple:

setvar j O
while setvar(tok, word(x, ,setvar(j,j+1))) <>*“" do
endwhile
1686 msec
2) setvar toks Ift(x, delimpos(x, , N)-1) -or- setvar j O and setvar toks '
note the var toks includes the delimiters while setvar(j,j+1) <= N do
between the individual tokens setvar toks toks + word(x,,j) +“ “
endwhile
note toks may not contain the origina delimiters
3) setvar toks rht(x, -delimpos(x, , -N)-1) -or- setvar j 0 and setvar toks '
same notes as for 2) whilesetvar(j,j+1)
<=Ndo

setvar toks word(x,,-j) +“ “ +toks
endwhile

4) pos(“hi” x) is potentially wrong. What if you want only “hi” and not “high”?
if word(x, , , ,pos(“hi”,x)) = “hi" then ...

5) setvar cnt wordent(x)

3/4/03

more examples

hp e3000

« MPE/X version

« synchronizing jobs via the PAUSE command
« current working directory (CWD)

« info= examples and anyparm

« random names (file names, passwords)

« compound variables and variable “arrays”

« Cl “grep”

« “where” is a certain command?

« “stream” UDC for easy use of job queues

e March 4, 2003

Page 65

3/4/03

65

hp e3000

MPE version

PARM vers_parm=!hprelversion “Vers” script

react to MPE version string
setvar vers "lvers_parm”
convert to integer, e.g.. "C.65.02" => 6502
setvar vers str(vers,3,2) + rht(vers,2)
setvar vers lvers
if vers >= 7000 then
echo On 7.0!
elseif vers >= 6500 then
echo On 6.5!
elseif vers >= 6000 then
echo On 6.0!
endif

March 4, 2003

Page 66

*The CI does not support a direct mechanism to let the programmer know if a certain command, function, variable or
other new feature is present on the system at hand. The bound() function lets you test for the existence of any variable

prior to referencing it. Itistrickier to test for the existence of afunction prior to invoking it. Thus, it may be

necessary to test the MPE OS version prior to using anew feature. However, the Cl version variables only reflect what

the version strings displayed by the :SHOWME command. Thus, asyou are aware, the version granularity is

sometimeslacking.

«:showvar @vers@
HPOSVERSION = C.70.00

HPRELVERSION = C.70.01

HPVERSION = X.70.11

. vers
On7.0!

vers C.65.01
On6.5!

3/4/03

66

synchronize jobs

hp e3000

1JOB jobO...

Himit +2

Istream job1l

Ipause job=!hplastjob

Istream job2

lerrclear

Ipause 600, 'hplastjob

lif hpcierr = -9032 then

! tellop Job "!hplastjob” has exceeded the 10 minute limit
I eoj

lendif

Istream job3

Ipause job=!hplastjob; WAIT

linput reply, “’Reply ‘Y’ for thplastjob”; readcnt=1; CONSOLE
lif dwns(reply) = “y” then

----- March 4, 2003 Page 67

*Thejob limit isincreased by 2.
*The 1st pause deeps until the job just streamed (jobl) completes.

*The 2nd pause deeps until job just streamed (job2) completes or 10 minutes, whichever happens first. CIERR 9032 is
reported if the pause expires and the job is till dive.

*The 3rd pause deeps while job3 is introduced or waiting. As soon asjob3 starts executing (or terminates, if itisa
short lived job) the pause expires.
*The INPUT command displays a message to the system console and waits for areply. INPUT will only accept al
character response from the operator, in this example. Syntax:
INPUT [NAME=]varname

[[;PROMPT=]prompt] [[;WAIT=]seconds]

[[;READCNT=]chars] [[;DEFAULT=]default_str]

[;CONSOLE]

*HPCIERR shows positive Cl errors and negative Cl warnings. CIERROR = abs(hpcierr)

3/4/03

67

Ny new location (group, CWD)

CD script
PARM dir=""
setvar d “Idir”
“-” means go to prior CWD
if d = *-* and bound(save_chdir) then
setvar d save_chdir
elseif fsyntax(d) = “MPE” then # MPE syntax?
if finfo(“./”+d, “exists”) then # HFS dir?
setvard “./” +d
elseif finfo(*../”+ups(d), “exists”) then # MPE group?
setvar d “../” + ups(d)
elseif finfo(ups(d), “exists™) then # MPE dir name?
setvar d ups(d)
endif
endif
setvar save_chdir HPCWD
chdir !d

----- March 4, 2003 Page 68

*The HPCWD variable contains your current working directory in POSIX syntax. Y our current directory isthe same
as your logon group until you explicitly changeit viathe CHDIR Cl command.

*CD script hierarchy is: 1) dirname asis, 2) ./+dirname, 3) group name (“../” +dirname) 4) uppercase MPE dirname
Note: the CHGROUP command & so changes your CWD; wheress, the CHDIR command does not alter your logon
group. CHGROUP has security implications sinceit can give you GU (group user) file access. There are no security
implicationswith CHDIR.
ecd - changes your current directory to the previous directory you've CD'd to.
* CD examples:

(assume CWD =/SY S/PUB)

:od ./NET # CWD=NET.SYS

:cd - #
CWD=PUB.SYS

:cd /TELESUP/PRV XL # CWD=PRIVXL.TELESUP

:cd #
CWD=PUB.SYS

:cd foo # CWD=/SY SPUB/foo

od .. #
CWD=PUB.SYS

:cd net # CWD=NET.SYS

3/4/03

68

hp e3000

INFO= example

ANYPARM info=![""] # ‘anyrun” script
run volutil.pub.sys; info=":!info"
e Zanyrun echo "Hi there!”

run volutil_pub.sys;info=":echo "Hi there!""
N

Expected semicolon or carriage return. (CIERR 687)

ANYPARM info=1[""]
setvar _inf repl('linfo’, ", ") # double up quotes in :RUN

inf"

run volutil.pub.sys;info="

« :anyrun echo "Hi there!”
Volume Utility A.02.00, (C) Hewlett-Packard Co.,
1987. All Rights...
volutil: :echo "Hi there!”
"Hi therel!”

is this correct now?

rrami March 4, 2003

Page 69

to“” the quotes are accepted literally asits default value.
*Thisexample does nat handle both kinds of quotesin the info= string.
*Thisexample does not handle single quote mark in the REPL function call.

*Shows how to set an ANYPARM parameter to null, which isnot intuitive! If an ANYPARM parameter is defaulted

3/4/03

69

INFO= example (cont)

hp e3000

ANYPARM info=![""]

setvar _inf repl(_inf, "', "

")

_linf

run volutil.pub.sys;info=

« :anyrun echo "Hi there, ‘buddy’!”

All Rights...
volutil: :echo "Hi there, “buddy”!”
"Hi there, “buddy’!”

setvar _inf anyparm (!info) # note info parm is not quoted

Volume Utility A.02.00, (C) Hewlett-Packard Co., 1987.

rrami March 4, 2003

Page 70

*Do not quote the parameter being passed to the anyparm() function.
*Note: the anyparm() function has some specia considerations:

«it cannot be nested inside other functions, e.g.
Ift(anyparm(!parm), x)
«it cannot be combined with other expressions, e.g.

isNOT supported

anyparm(!parm) + chr(x) isNOT supported.

«anyparm() must be the only function in the expression

«:help anyparm has more details; :help functions showsall of the CI functions.

3/4/03

70

3/4/03

random names

hp e3000

PARM varname, minlen=4, maxlen=8

This script returns in the variable specified as "varname" a ‘random’
name consisting of letters and numbers - cannot start with a number.
At least "minlen" characters long and not more than "maxlen" chars.

expression for a ‘random’ letter:
setvar letter "chr((hpcpumsecs mod 26) + ord('A"))™

expression for a ‘random' number:

setvar number "chr((hpcpumsecs mod 10) + ord('0"))"
first character must be a letter

setvar Ilvarname !letter

now fill in the rest, must have at least "minlen” chars , up to "maxlen"”
setvaril
setvar limit min((hpcpumsecs mod !maxlen) + !Iminlen, !maxlen)
while setvar(i,i+1) <= limit do
if odd(hpcpumsecs) then
setvar lvarname !varname + !letter
else
setvar !varname !varname + Inumber
endif
endwhile

o March 4, 2003 Page 71

Script onjazz at: http://jazz.exter nal.hp.com/sr c/scriptsrandname.txt
*This example shows a script returning avalue via a passed in variable.
*Shows using HPCPUM SECS to get a sort of pseudo random number.
*Breaking down the line: setvar letter "chr((hpcpumsecs mod 26) + ord(‘A"))”
*HPCPUM SECS returns some large number
*mod 26 returns a number in the range of 0..25
eord(“A”) is 65 and is the decima number of the letter “A” (uppercase)
echr(0..25 + 65) is chr(65..90), which is one of the lettersA..Z
*The same logic appliesto the “number” line above.
*The LIMIT lineis evaluated as (using the parameter default values):
* (hpcpumsecs mod 8) is a number in the range of 0..7
* + minlen makes the number in therange 4..11
» min(4..11, 8) returns a pseudo random number in the range of 4..8, which is exactly what is desired.

*The WHILE loop iterates “limit-1" times, filling in the 2nd through “limit” charactersin the name. If the
HPCPUMSECS vaueis odd at this moment we append to the name a“random” Ietter, else a“random” number is
appended.

«It would be nice to have a pseudo random number and name generator in the Cl core, IMO!

71

compound variables

hp e3000

« :setvara“!lb” # B is not referenced, 2!’s fold to 1
« setvarb“123”

« :showvar a, b A=“1b” B=123

« :echo bis!b, ais!a bis 123, ais 123

e :setvar al23 “xyz”

« :echo Compound var "a!lb": I Compound var "alb": xyz

e :setvarJ2
:setvar VAL2 “bar”
:setvar VAL3 “foo”

« :calc VALIJ bar
« :calc VALI![J] bar
¢« :calc VAL![decimal(J)] bar
« :calc VAL![setvar(J,J+1)] foo

mraes March 4, 2003 Page 72

*The Cl dlowstwo or more variable names to be concatenated to form anew variable name, and to reference the value of this
derived variable.
*A common application of compound namesis variable arrays, discussed next.
*The value of avariable can reference another variable, e.g..

:setvar color “red”

:setvar bg “!!color”

:showvar bg

BG = Icolor

:echo 123 ! bg 456

123 red 456
*Explicit variable referencing resolves al levels of recursion; thus :showvar X and :echo !X will not produce the same result
when X issetto “!'name” of another variable.

3/4/03

72

3/4/03

variables arrays

hp e3000

« simple convention using standard Cl variables

« varnameO
varnamel..varnameN
varname!lJ
!”varname!J”

number of elements in the array
array elements, 1 .. lvarnameO
name of element J

value of element J

:showvar buffer@

BUFFERO = 6

BUFFER1 = aaa
BUFFER2 = bbb
BUFFER3 = ccc
BUFFER4 = ddd
BUFFERS = eee
BUFFER6 = fff

----- March 4, 2003 Page 73

«Cl does not formally support arrays, but this ssimple convention works well. The technique aso support heterogeneous arrays.
*Max number of Cl variables depends on the length of the variable name and the size of itsvalue.
«In 7.5 an approximate maximum number of user variablesis 10,800 unique varigbles. Thisisderived asfollows:
deletevar @
setvarz 0
whiletruedo
setver z z+1
setvar zz 0
while setvar(zz,zz+1) <= 26 do
setvar ![chr(ord(“A")+zz-1)]!z true #A1,B1, Cl... Z1followed by
endwhile
#A2,B2,C2...Z2 etc.
endwhile
Executing this script fillsthe variable table, evident by the ClI error reported below:
Symbol table full: addition failed. To continue, delete some variables, or start a
new session. (CIERR 8122)

:calc ((z-1)* 26)+zz+2 (the +2 isfor thetwo local vars z, z2)
10804, $2A34, %25064

«An approximate more typical maximum number of user variableson 7.5is. 8,347 unique variables, derived as:
deletevar @
setvar z0
setvar name ‘! [rpt(chr((hpcpumsecs mod 26)+ord("A")),(hpcpumsecs mod 14)+2)]’
var names begin w/ A-Z, from 2..15 charslong
setvar value ‘!![rpt(chr((hpcpumsecs mod 26)+ord("A")),(hpcpumsecs mod 60)+1)]’
var values begin w/ A-Z, from 1 to 60 charslong

whiletrue do
setvar 'namel[setvar(z,z+1)] “!vaue’
endwhile
:calc z+3 #+ 3 for local variables: z, name, and vaue

8347, $209B, %20233

73

variable array example

hp e3000

*« centering output:

PARM count=5 “Center” script
setvar cnt O
while setvar(cnt,cnt+1) <= !count do
setvar stringlcnt,input("Enter string !cnt: ")
endwhile
setvar cnt O
while setvar(cnt,cnt+1) <= !count do
echo I[rpt(" ",39-len(stringknt))]!"stringkcnt”
endwhile
:center
Enter string 1: The great thing about Open Source
Enter string 2: software is that you can
Enter string 3: have any color
Enter string 4: "screen of death”
Enter string 5: that you want.

The great thing about Open Source
software is that you can
have any color
"screen of death”
that you want.

I March 4, 2003 Page 74

*The“center” script shows generically the following:
*how to create a Cl variable “array”
*how to access a varigble “array”
othe " literal!lnamel” construct, which alows compound variable namesto be referenced. If literal = FOO,

namel = FUM and FOOFUM = 23 then
I"literal!namel” =!" FOO!namel” =!"FOOFUM” = 'FOOFUM = 23

I[rpt(* “, fidldWidth - lenOfVar)] putsthe correct number of blanks before echoing the field' s value.
*Specificaly, the“count” parameter is the number of elementsin the“array”.
estringlent, wherecent is from 1..5, defines each element in the “array”.
I"stringlent” references the value of each element in the “array”.
*The rpt() function places the correct number of spaces before each line is echoed.
(The Open Source quote comes from Gavin Scott, Allegro Consultants, June ‘01 from the HP3000-L list.)

3/4/03

74

filling variables arrays -- wrong!

hp e3000

example 1: # array name is “rec”
setvar j O
setvar looping true
while looping do
input name, “Enter name “
if name = “” then
setvar looping false
else
setvar j j+1
setvar rec!j name
endif
endwhile
setvar recO j

« :xeg exmpll
« infinite loop!, won’t end until <break>

----- March 4, 2003 Page 75

*The previous “center” example had the size (or number of elements) of the array defined and thus hard-coded. This exampleis more
generd, in that, the size of the “array” is determined based on user input. In this case, when the user just presses <return>, meaning
no more input, that defines the size of the array. These arrays can be very dynamic, limited only by the maximum number of
variables supported by the Cl — defined elsewhere in these dides.

«To fix the infinite loop bug the variable “name’ needs to be cleared or deleted inside the while loop. Recall that the INPUT
command does not change the value of the variableif it times out or if the input valueisnull (“”). Thuswe need to :deletevar name
each iteration, or setitto “”, or usethe input() function. Recall that the input() function returns an empty string, “”, if it times out or
if the user just presses <return>.

*Syntax: INPUT [NAME=]varname
[[;PROMPT=]prompt] [[;WAIT=]seconds]
[[;READCNT=]chars] [[;DEFAULT=]default_str]
[;CONSOLE]

=The variable, , will always be created by INPUT if it does not yet exist.
Varname®s value is typically the exact value entered as a response by the user;
however, if the user enters no response (either by just pressing the enter key, or via
the INPUT read expiring) varname®s value is determined as follows:

- if a DEFAULT= value is provided that becomes the value for varname.

- 1f no DEFAULT= is specified and varname already exists it is not changed.

- i1f no DEFAULT= is specified and varname does not exist it is created with a
value of """ (empty string).

3/4/03

75

3/4/03

filling variables arrays (cont)

hp e3000

« example 2:
setvar j O
setvar looping true
while looping do
setvar NAME “”
input name, “Enter name “

if name = “” then
setvar looping false
else

setvar j j+1
setvar reclj name
endif
endwhile
setvar recO j

« :xeq exmpl2 <datafile (datafile has 20 text records)

(“enter name” prompt shown 20 times snipped...)
End of file on input. (CIERR 900)
input name, "enter name *

Error executing commands in WHILE loop. (CIERR 10310)

----- March 4, 2003 Page 76

«Script aswritten works fine interactively!
*Works correctly if alinein DATAFILE isempty (but it must be variable width file)

*Otherwise, if datafileis fixed ASCII, you will see the “Enter name” prompt 20 times (no crlf) and get eof error on INPUT, as shown
inthe dide.

*The next slide shows how to modify this script to work correctly when $STDIN isredirected and till function as expected when
invoked interactively.

76

hp e3000

example 3;

setvar j O
if HPINTERACTIVE then
setvar prompt “’Name = *”
setvar limit 2730
setvar test ‘name= “” *
else
setvar prompt “”

filling variables arrays (cont)

setvar limit FINFO (HPSTDIN, "eof”)

setvar test “false”
endif
while (j < limit) do
setvar name *“”
input name , !prompt
if Itest then
setvar limit O
else
setvar j j+1
setvar reclj name
endif
endwhile
setvar recO j

exitinteractive input

March 4, 2003

Page 77

*Don’'t want blank linesin datafile to stop while loop, so we don't test for “” in the redirected case.
*Each variable, rec!j, is 80 byteslong -- no blanks were stripped. This may be fine, or you can use the rtrim() function to remove the

trailing spaces.

*Shows how you can make adynamic Cl command line, e.g..if !test then ...
+Shows finfo(), HPINTERACTIVE and HPSTDIN.

3/4/03

77

« :xeq exmpl3 <datafile

« :showvar rec@

REC1 = linel
REC2 = line2
REC20 = line20
RECO = 20

performance:

* Script asis: 100 records:

100 records:

W filling variables arrays (cont)

530 millisecs

« Script modified for file input only (shown in notes):

380 millisecs

----- March 4, 2003

Page 78

*The script as written works correctly for both interactive and redirected environments; however, the most common usage is when

input is redirected to afile. The next dide shows the script optimized for file input.

*Here is the modified version of example 3 to handle only file input:
setvar j O
setvar limit FINFO (HPSTDIN, " eof”)
while (j < limit) do
setvar name “”
input name , ! prompt
setvar j j+1
setvar reclj name
endwhile
setvar recO |

3/4/03

78

3/4/03

filling variables arrays (cont)

hp e3000

can we fill arrays (and read files) faster?

example 4:

setvar recO 0O

setvar limit FINFO (HPSTDIN, "eof”)

while setvar(recO, recO+1) <= limit and &
setvar(rec![recO+1], input()) <> chr(1) do

endwhile

setvar recO recO-1

performance (;xeq exmpld <datafile):
¢ 100 records: 185 millisecs (twice as fast!)

----- March 4, 2003 Page 79

« Is rec0 being incremented TWICE in the while loop?

 No. Explicit referencing, ![recO+1], is performed by the Cl before the command name is even known to be “WHILE". Thus, the
command actually processed by the WHILE Cl codeis:

setvar(recO, recO+1) <= limit and setvar(!recl, input()) <> chr(1)
Note: if red [recO+1] was replaced withred recO, as | originally wrote the test script, then the loop counter and array high water mark
(recO) would be overwritten by the first record in the input file.

« Thisversion of the script is twice as fast with just alittle thought.

* Shows the input() function.

* Shows empty WHILE body.

» The test against chr(1) is arbitrary but needed to have an empty while body.

79

hp e3000

Cl grep

PARM pattern, file, entry=main
This script implements unix$grep -in <pattern> <file>.
setvar savecpu hpcpumsecs
if 'lentry’ = 'main’ then
errclear
setvar _grep_matches O
if not finfo('!file’,'exists’) then
echo File "!file" not found.
return
endif
continue
xeq 'HPFILE !pattern !file entry=read_match <!file
echo I[hpcpumsecs-savecpu] msecs ...

echo !_grep_eof records read -- !_grep_matches lines match "!pattern”
deletevar _grep_@
return

(continued on next slide)

mraes March 4, 2003

Page 80

3/4/03

80

hp e3000 CI grep (Cont)

elseif 'lentry' = 'read_match' then

input redirected to "!file”

setvar _grep_eof finfo("!file","eof")
setvar _grep_recno O

setvar _grep_pat ups("!pattern")

if pos(_grep_pat,ups(_grep_rec)) > 0 then
echo !_grep_recno) !_grep_rec
setvar _grep_matches _grep_matches+1
endif
endwhile
return
endif
4667 msecs ...
1669 records read -- 18 lines match "version”
4627 msecs ...
1669 records read -- 0 lines match "foo"

finds each "pattern” in "file" and echoes the record + line num

while setvar(_grep_recno,_grep_recno+1) <= _grep_eof and &

setvar(_grep_rec, rtrim(input())) <> chr(1) do

March 4, 2003

Page 81

*It takes approximately 4.6 seconds to read, upshift and find a string literal in a 1669 record ascii file, and

approximately 123 seconds to so the same in a 45,149 record file.

*xeq grep.hpbin.sys “-in pattern file” is much faster for large files! The GREP program in HPBIN.SY S does not
support Cl or shell wildcarding. If you need to grep a pattern on a set of files start grep from the shell.

3/4/03

81

3/4/03

where is a “cmd”?

hp e3000

PARM cmd=“", entry=main

This script finds all occurrences of "cmd" as a UDC, script or program in

HPPATH. Wildcards are supported for UDC, program and command file names.
Note: a cmd name like "foo.sh" is treated as a POSIX name, not a qualified

MPE name.
if "lentry” = "main” then
errclear

setvar _wh_cmd "lcmd”

ifdelimpos(_wh_cmd,”/.") = 1 then
echo WHERE requires the POSIX cmd to be unqualified.
return

endif

see if the command could be a UDC (wildcards are supported)

setvar _wh_udc_ok (delimpos(_wh_cmd,"._") = 0)

see if the command could be an MPE filename (wildcards ok, and

MPE names cannot be qualified at all)

setvar _wh_mpe_ok (delimpos(_wh_cmd,"._") = 0)

All command values are assumed to be ok as a POSIX filename.

The dash (-) char is excluded above since it could be in a [a-z] pattern

... continued . ..

rrami March 4, 2003 Page 82

Thewherescript combines many Cl programming ideas. multiple entry points are used with input redirection, two
forms of file 1/O are used, several newer Cl function are called, output is aligned in columns, and several more
complex Cl expressions are encountered. Plus, this script has proven valuable to me and othersin CSY numerous
times. The next few dide notes will go over some of the more salient points of thewhere script.

where can be found on Jazz at: http://jazz.exter nal .hp.com/sr c/scripts/wher e.txt

«the PARM line alowsthe “cmd” argument to default to “”, in which case a usage statement is displayed. The by-
convention “entry=main” argument is used to handle aternate entry points, with the default entry being named “main”.
Theuser of where will never specify this parameter.

*the ERRCLEAR command isinvoked to set CIERROR, HPCIERROR, FSERROR, and HPCIERRCOL predefined
variablesto 0.

«the delimpos() function is invoked several times and is better than using pos() when two or more characters are being
checked. For instance, it is more efficient to code:

if delimpos(var,”abc”) >0
whichtestsif an“a’ or “b” or “c” appearsin var, thanto code:

if pos(*d’,var) > 0 or pos(“b”,var) > 0 or pos(“c’,var) > 0
eintentionally, there are separate tests to see if the “cmd” parameter could potentially be a UDC and/or a MPE named
file. Currently, these tests are identical; however, over time the rules may change and this script will be easier to
maintain in that event.

«all values of “cmd”, at this point, are assumed to be alegal POSIX filename. Later, the fsyntax() function will be
called to ensure that “cmd” isalegal filename.

82

where (cont)

hp e3000

check for UDCs first
if _wh_udc_ok then
continue
showcatalog >whereudc
if cierror = 0 then
xeq !'hpfile !'_wh_cmd entrvy=process_udcs <whereudc
endif
endif

Now check for command/program files

if word(setvar(_wh_syn fsyntax(“/+_wh_cmd))) = “ERROR” then
illegal name, could be a longer UDC name, in any event there
no need to check for command/program files.
deletevar _wh_@
return

endif

setvar _wh_wild pos("WILD",_wh_syn) >0

.. continued . . .

----- March 4, 2003 Page 83

*now, assuming “cmd” could be a UDC name, the SHOWCATALOG command is executed with output redirected to a
TEMP file named “whereudc”.

*If SHOWCATALOG worked without error, the where script invokes itself recursively, viathe XEQ command, to
display relevant UDC information. The predefined HPFILE variable contains the fully qualified name of the current
script, and is used here in case the next author decides to use a different filename. This allows the script filename to
not be hard-coded into the script.

«the XEQ command invokes, viaHPFILE, the script again, passing the same “cmd” value asthefirst argument. An
aternate entry point is passed as the second parameter, via the by-convention usage of “entry=". Input towhereis
redirected from the file that the SHOWCATALOG command created.

«the fsyntax() function is called after processing UDCs since a UDC name can be longer than avaid MPE filename.
Also, thewherescript expectsthat all names, even POSIX command names, to be passed in unqualified. There are not
explicit checksfor quaified MPE names (f.g.a) since it isambiguousif aname such as*“foo.sh” isthe name of ashell
script, or apartially quaified MPE name. Since the user of this script is not expected to use the “ M PE-escaped”

syntax for POSIX names, a“./" is prepended to the “cmd” name that is parsed by fsyntax().

«if thereisa syntax error the script exits viathe RETURN command.

cavariableisset to trueif there are any wildcard charactersin the“cmd” value. In generd, if an expression evaluates
to aboolean (true or false) it can be used to directly set the value of avariable. For example:
setvar x (a> b)
ismore efficient than:
if (a>b) then
setvar X true
else
setvar x false
endif

3/4/03

83

where (cont)

hp e3000

loop through hppath
setvar _wh_i O
_____ while setvar(_wh_tok,word(hppath,”,; “,setvar(_wh_i,_wh_i+1)))<>""do
if delimpos(_wh_tok,”/.”) = 1 then
we have a POSIX path element
setvar _wh_tok "!_wh_tok/A_wh_cmd”
elseif _wh_mpe_ok then
we have an MPE syntax HPPATH element with an unqualified _tok
setvar _wh_tok "!_wh_cmd!_wh_tok”
endif
errclear
if _wh_wild then
continue
listfile !_wh_tok,6 >prntlf
elseif finfo(_wh_tok,'exists') then
write to same output file as listfile uses above
echo ![fqualify(_wh_tok)] >prntlf
else
setvar hpcierr -1
endif
if hpcierr = 0 then
xeq 'hpfile !'_wh_tok entry=process_listf <prntlf
endif
endwhile
deletevar _wh_@
L return

.. continued. . .

rrami March 4, 2003 Page 84

«this dide shows the end of the “main” entry code in thewhere script.

*hereistheloop that parses each element in HPPATH, tests to seeif afile exists based on the “cmd” value and the
extracted element from HPPATH, and invokes an entry “subroutine” to display the filename and other file attributes.

the word() function extracts atoken from HPPATH based on the defined delimiters of acomma, semicolon or a space.
The word counter/index (_wh_i) isincremented inside the argument to word(), which is not necessary, but more
convenient and slightly more efficient.

«the delimpos() function is used to seeif the extracted HPPATH element is an MPE name or a POSIX name. POSIX
elements are prepended to the “cmd” value and MPE path elements are appended to “cmd”.

«if the“cmd” value was wildcarded, e.g. “grep@”, then the LISTFILE command lists the full filenames to disk.
Otherwise, the non-wildcard name is qualified by calling the fqualify() function, and written to the same output file
used by LISTFILE. Thisalowsasingleentry routineto do all of the formatted output for afile.

*XEQ and HPFILE are used again to invoke the script recursively, this time passing the “process _listf” entry name,
and redirecting input to afile that contains the equivalent of aLISTFILE,6 output.

eregardless of success or failure, al _wh_@ variables are deleted and control returnsto the invoker of the script. In
this script the two TEMP files are not purged and the file equation, seen later, is not reset. For scripts with more
complex cleanup, | often use an aternate entry point specifically for doing all of the cleanup. Thisentry isinvoked in
place of executing asmple RETURN.

3/4/03

where (cont)

hp e3000

elseif "lentry” = "process_udcs" then
input redirected from the output of showcatalog
setvar _wh_udcf rtrim(input())
setvar _wh_eof finfo(hpstdin,”eof”) -1
while setvar(_wh_eof,_wh_eof-1) >= 0 do
if Ift(setvar(_wh_rec,rtrim(input())),1) =" " then
#aUDC command name line
if pmatch(ups(_wh_cmd),setvar(_wh_tok,word(_wh_rec))) then
display: UDC_command_name UDC_level UDC_filename
echo !_wh_tok ![rpt(" ",26-len(_wh_tok))] &
I[setvar(_wh_tok2,word(_wh_rec,,-1))+rpt(" ", 7-len(_wh_tok2))] &
uDC in!_wh_udcf
endif
else
a UDC filename line
setvar _wh_udcf _wh_rec
endif
endwhile
return

e

March 4, 2003 Page 85

ethisisthe “process_udcs’ entry routine. It isinvoked with input redirected to the output of asimple
SHOWCATALOG command.

«it primesthe variable _wh_udcf by reading the first record of the input file, which, in this case, is the name of the first
cataloged UDC file.

esetting a counter to the “EOF” value of the input file and decrementing it to zero is acommon method of processing
the entirefile. The HPSTDIN predefined variable contains the name of the $STDIN input file. In this case, it isthe
name of the file input was redirected to (which isthe name of the file the SHOWCATALOG output was redirected to).
HPSTDIN is used so that the I/O file name is not hard-coded throughout the script -- only where it isfirst created.

«the while loop decrements the eof counter, reads arecord from the input file, trims trailing spaces from the record,
decidesif the record isa UDC filename (leftmost byte <> *“ “) or aUDC command name record.

«if the record isa UDC command name that matches the “cmd” parameter value, aline of output is generated,
containing: the UDC command name, the UDC level (user, account or system), and the UDC filename.

*All output is“tabularized” viathe rpt() function by prepending or appending the appropriate number of spaces before
or after the echoed value.

*The pmatch() function is an easy way to add pattern matching power to your scripts. HEL P pmatch provides more
information. Since “cmd” could also be the name of a POSIX file, its value is not permanently upshifted. Local
upshifting is needed since al UDC names reported by SHOWCATLOG are in uppercase.

«the entry routine exits, via RETURN, back to its caler, which isthe “main” entry code. The RETURN command
closesthefile (where) and resets |/O redirection back to its state prior to the invocation of the entry point -- in this case
input is back to the terminal $STDIN.

3/4/03

85

3/4/03

where (cont)

hp e3000

elseif "lentry” = "process_listf" then
input redirected from the output of listfile,6 or a simple filename
setvar _wh_eof finfo(hpstdin,'eof")
while setvar(_wh_eof,_wh_eof-1) >= 0 do
setvar _wh_fc "”
if setvar(_wh_fc, finfo(setvar(_wh_tok,ltrim(rtrim(input()))),' fmtfcode’)) =
setvar _wh_fc 'script’
elseif _wh_fc <> 'NMPRG"' and _wh_fc <> 'PROG' then
setvar _wh_fc "”
endif
if _wh_fc <> " and finfo(_wh_tok,'eof') > 0 then
setvar _wh_Ink “”
if _wh_fc = “script” and finfo(_wh_tok,filetype') = 'SYMLINK' then
setvar _wh_fc 'symlink’
get target of the symlink
file If7tmp;msg
continue
listfile !_wh_tok,7 >*If7tmp
if hpcierr = 0 then
discard first 4 records
input _wh_Ink <*If7tmp
input _wh_Ink <*If7tmp
input _wh_Ink <*If7tmp
input _wh_Ink <*If7tmp
input _wh_Ink <*If7tmp
setvar _wh_Ink "--> " + word(_wh_Ink,,-1)
endif
ndif

(€D |

e March 4, 2003 Page 86

othisisthe “process _listf” entry routine. It isinvoked with input redirected to the output of aLISTFILE,6 command.

the while loop reads each record in the input file, tests to ensure the file could be alegitimate script or program file,
and symbolic links are resolved.

the input() function reads each filenamein the input file, after which, trailing and leading blanks are trimmed. The
_wh_tok variableis set to thistrimmed value. Thefinfo() function is called, passed this same trimmed name, to obtain
the formatted file code, which is stored inthe _wh_fc variable. If thefile codeisblank (“”) it isarbitrarily set to
“seript”. All of thisisdoneisasingle command line.

«if the EOF is positive and the file code is“ script” then the script tests to see if the name might be the name of a
symbalic link.

«if FINFO returns “symlink” for thefile type then the target of thelink isretrieved. Thisisdone using asmall MSG
fileand 1/O redirection, as follows: 1) aLISTFILE,7 iswritten to the MSG file, 2) if the LISTFILE is successful the
MSG fileisread (all reads are destructive), 3) the first four records in the M SG file can be discarded, done by reading
them and ignoring the input, 4) the last word/token in the fifth record contains the name of the target of the symlink,
which is extracted, and has “-->" prepended to enhance the final output. The“-->" stringsneed a“!” to escape the
meaning of “>", which if not done, causes the following ECHO statement to perform output redirection.

86

hp e3000

where (cont)

display: qualified_filename file_code or "script" and link if any
echo !_wh_tok ![rpt(" ",max(0,26-len(_wh_tok)))] !_wh_fc &
I[rpt(" ",7-len(_wh_fc))] !_wh_Ink

endif
endwhile
return
endif

:where @sh@
SHOWME

SH

SH.PUB.VANCE
SHOWVOL . PUB . VANCE
BASHELP.PUB.SYS
HSHELL .PUB.SYS
PUSH.SCRIPTS.SYS
RSH.HPBIN.SYS
SH_HPBIN.SYS
/bin/csh
/bin/ksh
/bin/remsh
/bin/rsh
/bin/sh

USER
SYSTEM
NMPRG
script
PROG
script
script
NMPRG
NMPRG
NMPRG
symlink
symlink
symlink
symlink

UDC in SYS52801.UDC.SYS
UDC in HPPXUDC.PUB.SYS

--> /SYS/HPBIN/SH
--> /ENM/PUB/REMSH
--> /SYS/HPBIN/RSH
--> /SYS/HPBIN/SH

(€D |

e March 4, 2003

Page 87

«this concludesthe“ process_listf” entry and the where script.

«the ECHO command displays quaified (MPE or POSIX) filename, the file code (which can be set to anon-MPE
value of “script”, and symbolic link info, if pertinent. Note again that the rpt() function is used to | eft justify thefile

code string and any symlink display.

«as should be done for al entry routines, RETURN exits back to the “main” entry, where cleanup is done.

Example:

HPPATH = IHPGROUP,PUB,PUB.SYS,ARPA_SYS,scripts.sys,hpbin.sys,/bin

:where @sh@

SHOWME
SYS52801.UDC.SYS
SH
HPPXUDC.PUB.SYS
SH.PUB.VANCE
SHOWVOL.PUB.VANCE
BASHELP.PUB.SYS
HSHELL.PUB.SYS
PUSH.SCRIPTS.SYS
RSH.HPBIN.SYS
SH.HPBIN.SYS
/bin/csh
/bin/ksh
/bin/remsh
/bin/rsh

/bin/sh

NMPRG

script

script

NMPRG
NMPRG

USER UDC in

SYSTEM in
PROG
script
NMPRG
symlink --> /SYS/HPBIN/SH
symlink --> /ENM/PUB/REMSH
symlink --> /SYS/HPBIN/RSH
symlink --> /SYS/HPBIN/SH

3/4/03

87

3/4/03

stream UDC - overview

hp e3000

STREAM
ANYPARM streamparms =![“"]
OPTION nohelp, recursion

ifmain entry point then
initialize ...
- if “jobg=" not specified then read job file for job “card”
- if still no “jobg=" then read config file matching “[jobname,]user.acct”
- stream job in HPSYSJQ (default) or derived job queue
- clean up
else
alternate entries
separate entry name from remaining arguments

if entry isread_jobcard then read job file looking for “:JOB”, concatenate
continuation lines (&) and remove user.acct passwords

elseif entry isread_config then
read config file, match on “[jobname,]Juser.acct”

endif

----- March 4, 2003 Page 88

*http://jazz.external .hp.com/src/scripts/stream.txt

*Shows entry points used with UDC. ANYPARM requires more parsing and a convention for the entry specification.
In my example, the entry is always specified as “entry=name” and is the last argument in the command line.

*Shows how to default an ANYPARM value to nothing, '[“”]. Quotes by themselves don’t work, and, in fact, cause
the value to default to the quote marks literally.

*OPTION NOHELP chosen since this UDC overrides a built-in Cl command. If auser enters “help stream” they will
not see the contents of this UDC; instead, they will see the HEL P text for the real STREAM command.

*OPTION RECURSION is specified, since there are several recursive calls to the STREAM UDC, asaway to
process the various entry points. OPTION NORECURSION will be executed prior to invoking the real :stream
command.
«Sample job queue configuration file:

(All comments appear at the end of this file for search performance

reasons)
J@,usrl._acct jobqgJ
usril.acct jobqgl
@.acct jobg2

@.0 mySysDefq

88

3/4/03

stream UDC - “main”

hp e3000

comments ..
if "Istreamparms” = "" or pos("entry=","Istreamparms”) = 0 then
main entry point of UDC
setvar _str_jobfile word("!streamparms") # extract 1st arg

extract remaining stream parameters
setvar _str_parms ups(&
repl(rht("!streamparms”,-delimpos("!streamparms"))," ",""))

if setvar(_str_pos, pos(“;JOBQ=",_str_parms)) > 0 then
setvar _str_jobq word(_str_parms,,2,,_str_pos+5)

endif

if _str_jobq = “” then
no jobg=name in stream command so look at JOB “card”
STREAM _str_jobcardentry=read_jobcard <! str_jobfile
if setvar(_str_pos,pos(";JOBQ=",_str_jobcard)) > 0 then

setvar _str_jobq word(_str_jobcard,,2,,_str_pos+5)

endif

endif

----- March 4, 2003 Page 89

*The main entry point is detected by the absence of all parameters or by the lack of the “entry=" keyword.
*The first parameter extracted is the name of the file to be streamed.

*The remaining parameters are captured in the variable _str_parms, after the command line has been upshifted and all
blanks have been removed.

«If the*;JOBQ=" keywordsis found in the command line the queue name is extracted. Y ou might wonder why the
second word (instead of the default of 1), and why at a position that indexes the “=" rather than the character
immediately right of the “="? Using word(_str_parms,,,,_str_pos+6) worksin all cases, including a null (empty)
jobq value. However, it fails when ;jobg= with no value is the last token on the command line. It failsin this case
since theindex (_str_pos+6) is beyond the end of the _str_parms string length. Extracting the second word starting at
the =" worksin all cases.

*If “jobg=" is not present in the command line, the STREAM UDC invokesitself (highlighted in blue) using an
aternate entry point, with $STDIN redirected to the file being streamed. This method allows the stream file to be
read efficiently by the UDC.

89

stream UDC - “main” (cont)

hp e3000

if _str_jobqg = " and finfo(_str_config_file,'exists’) then
No jobg=name specified so far so use the config file.
STREAM ![word(_str_jobcard,";")] _str_jobg entry=read_config &
<!_str_config_file
if _str_jobq <> " then
found a match in config file, append jobg name to stream command line
setvar _str_parms _str_parms + ";jobg=!_str_jobqg"
endif
endif

now finally stream the job.
if _str_jobg =" then

echo Job file "I_str_jobfile" streamed in default "HPSYSJQ" job queue.
else

echo Job file "!_str_jobfile" streamed in "!_str_jobq" job queue.
endif
option norecursion
continue

stream !_str_jobfile !_str_parms

----- March 4, 2003 Page 90

oIf “jobg=" is not found in the job “card” and if the simple configuration file exists, the STREAM UDC isagain
invoked recursively to read the config file looking for amatch. The config file has two fields: the first field isa

[jobname,]user.acct name, the second field is the corresponding job queue name. Wildcards are supported in the first
field. The code that processes the config fileis shown later.

Finaly, thereal STREAM Cl command isinvoked with an appended jobg=name if appropriate. To execute the real
STREAM command, OPTION NORECURSION is specified; otherwise the STREAM UDC would be invoked (and

in this case we would have an infinite loop -- eventually stopped by a Cl limit that disallows UDC nesting beyond
100 levels.

3/4/03

90

stream UDC - “read_jobcard”

hp e3000

else
alternate entry points for UDC.
setvar _str_entry word("!streamparms™”,,-1)
remove entry=name from parm line
setvar _str_entry_parms Ift('!streamparms’,pos(‘entry=","Istreamparms')-1)

if _str_entry = "read_jobcard"then

Arg 1 is the *name* of the var to hold all of the JOB card right of "JOB".
Input redirected to the target job file being streamed

Read file until JOB card is found. Return, via argl, this record,

including continuation lines, but less the "JOB" token itself. Remove
all passwords, if any. Skip leading comments in job file.

setvar _str_argl word(_str_entry_parms)

while str(setvar(!_str_argl,ups(input())),2,4) <> "JOB " do

endwhile

remove line numbers, if appropriate

if setvar(_str_numbered, numeric(rht(!_str_arg1,8))) then

setvar !_str_argl Ift(!_str_argl,len(!_str_arg1)-8)
endif

----- March 4, 2003 Page 91

*The next few dides detail the two alternate entry points for the STREAM UDC. If the entry isnot “main” thenitis
an alternate entry. Thefirst step is to determine which entry is being called by extracting the entry name. By
convention the entry name is the last parameter passed to the UDC, and thusis extracted viaword(...,-1).

*Next, the “entry=name”’ needs to be removed from the parameter line so that the alternate entry routines can freely
parse the arguments.

*Now atest can be made for each individual entry name, and each entry point can be coded like a subroutine. All
entries have read and write access to al of the variables set by the UDC.

*The“read_jobcard” entry defines the first parameter (argl) to be the name of a Cl string variable that will contain
the full job “card” line minus the pseudo colon and the word “JOB” (“!JOB “).

*Input has been redirected to the stream job file, which the “main” entry verified exists.

Since there can be comments preceding the JOB command line, these are skipped by the WHILE loop above. This
WHILE loop reads the JOB record, viathe input() function, and stops.

*A simple test is made to determine if the stream file is numbered or unnumbered: if the last 8 characters of the JOB
card record are numeric then the entire file is considered numbered.

econtinued...

3/4/03

91

stream UDC - “read_jobcard” (cont)

hp e3000

concatenate continuation (&) lines
while rht(setvar(!_str_argl,rtrim(!_str_argl)),1) = '&' do
remove & and read next input record
setvar !_str_argl Ift(!_str_argl,len(!_str_argl)-1)+Itrim(rht(input(), -2))
if _str_numbered then
setvar !_str_argl Ift(!_str_argl,len(!_str_argl)-8
endif
endwhile
remove passwords, if any
while setvar(_str_pos,pos(‘'/",!_str_argl)) > 0 do
setvar !_str_argl repl(!_str_argl,"/"+word(!_str_argl,'.,;',,,_str_pos+1),")
endwhile
return, upshifted, all args right of "JOB", and strip all blanks.
setvar !_str_argl ups(repl(xword(!_str_argl),"","))
return

----- March 4, 2003 Page 92

«If the JOB record is continued (ends with an ampersand) then the first WHILE loop above will read the remaining
continuation lines.

*Each continuation line is appended to the return variable (argl) after numbers and leading spaces (Itrim) are
removed.

ol _str_argl isreferenced, rather than simply “_str_argl” since the contents of _str_argl isthename of avariable.
For instance, inthe STREAM UDC arglispassed as“_str_jobcard”. After calling the read_jobcard entry the main
body of the UDC will test the value of _str_jobcard, looking for a JOBQ parameter. Using!_str_argl on the left side
of aSETVAR slikeusing “_str_jobcard”.

*Next, any user, account and/or group passwords, if present, are removed (not blanked over). If a password is found
(posof “/” > 0) then the “/” and the password itself are replaced with “”.

*Finally, the concatenated, password filtered, de-numbered, de-blanked and upshifted JOB record is returned, via
argl, to the caller. The“:JOB “ portion is aso removed by the xword function.

3/4/03

92

3/4/03

stream UDC - “read_config”

hp e3000

elseif _str_entry = "read_config” then
Arg 1 is the "[jobname,]user.acct” name from the job card.
Arg 2 is the *name* of the var to return the jobQ name if the acct name
Input redirected to the jobQ config file.
setvar _str_argl word(_str_entry_parms,"” ")
setvar _str_arg2 word(_str_entry_parms,"” ",2)
setvar _str_eof finfo (hpstdin, “eof”)

read config file and find [jobname,Juser.acct match (wildcards are ok)

while setvar(_str_eof ,_str_eof-1) >= 0 and &
(setvar(_str_rec,Itrim(rtrim(input()))) = “» or &
Ift(_str_rec,1) = '#" or &
not pmatch (ups(word(_str_rec,,-2)),_str_ua) or &
(pos(',",_str_rec) > 0 and Ift(_str_rec,2) <>'@,’ and &
notpmatch(ups(word(_str_rec)),_str_jname))) do
endwhile

if _str_eof >= 0 then
[jobname,Juser.acct match, return jobgq name
setvar !_str_arg2 word(_str_rec,,-1)
endif
return

----- March 4, 2003 Page 93

*The“read_config” entry reads the config file (verified by “main” to exist) looking for a user.acct match. This entry
defines the first parameter (argl) to be the string “[jobname,]user.acct” from the JOB record returned by the
read_jobcard entry. The second parameter (arg2) is defined to be the name of a Cl string variable the will hold “” or
the corresponding job queue name.

*These two arguments are easily extracted viaword(...,1) and word(....,2). Notethat oneisthe default parameter
number for word().

eInput has been redirected to the configuration file.

*The WHILE loop stopsiif the entire config file has been read or on the first match. Based on this implementation,
specific entries (specific [jobname,]user.acct) names should proceed generic, wildcarded names.

*The WHILE loop continues for empty (blank) records and comment (#) lines.
*A match is defined as: user.acct matches and if ajobnameis present in the config file (and not simply “@") the
jobnames must match too. Wildcard support is easy with pmatch()!
Line by line evaluation of this WHILE loop:
decrement a counter that initially contains the number of recordsin the config file. When this counter is
negative the file has been completely read.
*set the variable _str_rec to arecord in the config file, after trimming al trailing and leading blanks, test if
theresult is empty and if so continue the while loop.
«if the _str_rec record starts with “#” then skip it since it is a comment record.
«if the second-to-last word in the record (thisis the user.acct token -- second-to-last is used rather than first
to handle an optional jobname which is terminated by a comma) doesn’t match the user.acct already
extracted from the JOB card then continue the loop.
«if user.acct matches and the config record has a jobname (pos comma > 0) and the jobnameis not “@” and
the jobname doesn’t match the already extracted jobname from the JOB card then continue the loop.
*The loop ends when either all records have been read without a match, or thereis amatch. If the loop counter

(_str_eof) is>= 0 then there was a match and the corresponding job queue name (last word in the config file record)
isreturned viaarg2.

93

