
3/4/03

1

P a g e 1March 4 , 2003

hp e3000

strategy MPE CI Programming

for 7.5

… and other tidbits

p r e s e n t e d b y

Jeff Vance, HP-CSY
jeff_vance@hp.com

3/4/03

2

March 4 , 2003 P a g e 2

hp e3000

strategy

out l ine
(r e a d t h e n o t e s t o o !)

• “ r e c e n t ” C I e n h a n c e m e n t s

• r e d o f e a t u r e s

• U D C s a n d s c r i p t s

• v a r i a b l e s

• i /o red i rec t ion and f i l e I /O

• e r r o r h a n d l i n g

• s c r i p t c l e a n u p t e c h n i q u e s

• d e b u g g i n g a n d g o o d p r a c t i c e s

• l o t s o f e x a m p l e s

• a p p e n d i x

•This version of my “CI Programming” talk focuses on comparisons of command files vs. UDCs, I/O redirection for
reading files, and examples. There is much information in the appendix, including longer examples.

•The notes are an integral part of these slides. Please read the notes, as they contain many more details than are
presented in the slides alone.

3/4/03

3

March 4 , 2003 P a g e 3

hp e3000

strategy

“recent” CI enhancements

• e x t e n d e d P O S I X f i l e n a m e c h a r a c t e r s

• n e w C I f u n c t i o n s : a n y p a r m , b a s e n a m e, d i r n a m e , f q u a l i f y ,

f s y n t a x , j o b c n t, j i n f o , p i n f o , w o r d c n t , x w o r d

• n e w C I v a r i a b l e s : h p d a t e t i m e , h p d o y , h p h h m m s s m m m ,

h p l e a p y e a r, h p m a x p i n , h p y y y y m m d d

• n e w C I c o m m a n d s : a b o r t p r o c , n e w c i , n e w j o b q , p u r g e j o b q ,

s h u t d o w n

• e n h a n c e d c o m m a n d s : I N P U T f r o m c o n s o l e , F O S s t o r e - t o -

d i s k , : s h o w v a r t o s e e a n o t h e r j o b / s e s s i o n s ’ v a r i a b l e s , :c o p y

t o = a d i r e c t o r y , :a l t j o b H I P R I a n d j o b q =, :l i m i t + - N

• : H E L P s h o w s a l l C I v a r i a b l e s , f u n c t i o n s , O N L I N E I N F O , N E W

•Above enhancements begin with MPE/iX release 6.0 and span up to release 7.5.

•Extended POSIX filename characters are: “~\$%^*+|{}:” in addition to “_-.” that were originally supported.

•Enter HELP on each of these commands to ensure you are current on their usage. For example, did you know the
system manager can display the user variables from another job or session? Are you aware that you can wait until one
or more jobs terminate via the enhanced PAUSE command? Did you remember that the OPTION command is not just
in a UDC/script header, but can also be used as a CI command? Have you tried using the INPUT command to send a
prompt to the system console and wait for an operator reply? Did you know you can abort a single process without
killing an entire job or session? If you ever run low on processes, did you know the NEWCI command will save you
one process per logon? Do you know an easy way to determine the maximum number of processes supported on one of
your systems (answer: HPMAXPIN variable). In 7.0 Express 1, you can use the PINFO CI function to retrieve
detailed information on an individual process (PIN) or thread.

• HELP NEW - shows all features of the CI that are (relatively) new.

• HELP ONLINEINFO - shows current URLs where information on the e3000 is available online.
• Also, HELP VARIABLES, HELP EXPRESSIONS, HELP OPERATORS, and HELP FUNCTIONS all provide
useful information.

3/4/03

4

March 4 , 2003 P a g e 4

hp e3000

strategy

• delete a word

• dw , >dw , dwddw, dw iXYZ

• delete up to a specia l character

• d., d/, d*, d/iXYZ, d.d

• delete to end-of - l ine

• d>

• delete two or more non-adjacent characters

• d d

• upshift/downshift a character or word

• ^, ^w, v, vw, >^, >v, ^>, v>

• append to end-o f - l ine

• > X Y Z

• replace start ing at end of l ine

• > r X Y Z

• change one s t r ing to another

• c/ABCD/XYZ, c:123::

• undo last or al l edits

• u or u twice in a row

• a v a i l a b l e i n C I , V O L U T I L , S T A G E M A N , D E B U G o t h e r s . . .

redo

•REDO was enhanced in late 5.5 to operate on “words”. A word is defined as any set of characters delimited by a:
space, comma, semicolon, equal sign, left or right parentheses, left or right brackets, single quote or double quote. A
“word” in redo is the same as the default word definition used by the DELIMPOS, WORD and XWORD CI
functions.

•REDO deals with words as it does with characters. Words can be deleted (dw), upshifted (^w) and downshifted
(vw).

•Words can be operated on from the end of the line: >dw - deletes the last word, >^w - upshifts the last word, >vw -
downshifts the last word.

•Upshifting and downshifting can be useful when editing POSIX file names, or entering procedure names in the
debugger -- times when character case matters.

3/4/03

5

March 4 , 2003 P a g e 5

hp e3000

strategy

UDCs

• u s e r d e f i n e d c o m m a n d f i l e s (U D C s) - a single file that contains 1 or
more command definitions, separated by a row of asterisks (***)

• f e a t u r e s :

• s imp le way t o e xecu te seve ra l commands v i a one command

• a l low bu i l t - in MPE commands to be overr idden

• can be invoked each t ime the user l ogs on

• require lock and (read or eXecute) access to the f i le

• cata loged (de f ined to the sys tem) for easy v iewing and prevent ion o f

a c c i d e n t a l d e l e t i o n - - s e e S E T C A T A L O G a n d S H O W C A T A L O G

commands

• can be de f ined fo r each user o r account o r a t the sys tem leve l

• more di f f icult to modify s ince f i le is usual ly opened by users

UDCs were the only way to group commands together and execute them as a single command on classic
MPE V systems and earlier. Today, we can still use UDCs, and we can use command files (or “scripts)
for the same basic purpose. However, there are important differences between UDCs and scripts that
users should consider. The similarities and differences of UDC compared to scripts are discussed in the
next few slides.

Similarities

•UDCs and scripts reside in standard MPE ASCII files

•they both support parameters with optional default values

•they both require read or execute access

•they both support the options: HELP, NOHELP, LIST, NOLIST, BREAK, NOBREAK, PROGRAM,
NOPROGRAM

Differences

1. Cataloging:

One or more UDCs are collected into a single file. This file can be assigned (or cataloged) to a particular
user, an account or the entire system. Multiple UDC files can be cataloged to the same or to different
users and/or accounts simultaneously. The SHOWCATALOG and SETCATALOG commands provide
this cataloging service. Once a UDC file is cataloged it is opened by the user process and cannot be
deleted or modified until after the file has been un-cataloged (and closed). However, the POSIX shell’s
“mv” command does allow an open UDC file to be replaced. The changes are immediate to users just
logging on, but are not seen by current users unless the re-logon, or re-setcatalog.

The benefits of UDC cataloging are:

•many UDCs can reside in the same physical file,

•the UDC file cannot be accidentally purged or modified, since the file is open,

•visibility as to which UDCs are available to which users on the system.

The disadvantages of this cataloging approach are:

•cumbersome to modify individual UDCs defined in the UDC file,

•overhead to catalog the UDC file at logon time.

3/4/03

6

March 4 , 2003 P a g e 6

hp e3000

strategy

command files (scripts)

• c o m m a n d f i l e - a file that contains a single command definition

• f e a t u r e s :

• s i m i l a r u s a g e a s U D C s

• sea rched fo r a f t e r UDCs and bu i l t - i n commands us ing HPPATH

– de f au l t HPPATH i s : l ogon -g roup , PUB . l ogon -acc t , PUB .SYS , ARPA .SYS

• require read or e X ecu te access

• easy to modi fy s ince f i le is on ly in use whi le i t is be ing executed

• very s imi lar to unix scr ipts or DOS bat f i les

Command files (scripts) are single files that contain the commands to be executed. These files can reside
anywhere on a system; however, typically they are located in groups or directories referenced in the
HPPATH variable. Like UDCs, scripts are invoked via their name, however, since a script is a file, it can
be entered as a qualified filename or as an unqualified filename. Most commonly, script names are
entered as unqualified names (just the base name), and thus the HPPATH variable is used to complete
(“qualify”) the name based on successive group/directory names defined in HPPATH. UDC names can
be up to 16 characters long, and thus are longer than standard MPE filenames; however, POSIX script
names can be longer than UDC names.

2. Command override mechanism:

A UDC name can be the same name as a built-in MPE command. The CI resolves a user entered
command name by checking for a UDC prior to searching for a built-in CI command. Thus, a UDC can
hide a built-in CI command. For example, a UDC can be named RUN, hence overriding the :RUN
command.

A script cannot override a built-in CI command. For example, if a command file named RUN.PUB.SYS
exists and the user enters “:run ….”, the built-in :RUN command will be executed, not the script.
Typically, command file names are different from UDC and built-in command names. The :XEQ
command is provided to execute scripts with the same name as built-in commands or UDCs.

Note: after a user has logged on, UDCs are searched for in the following order:

•user level UDCs, starting at the first user file shown by :SHOWCATALOG

•account level UDCs,. starting at the first account file listed by :SHOWCATALOG

•system level UDCs, starting at the first system file displayed by :SHOWCATALOG.

Multiple files at the same level (user, account, system) are searched for (and executed, if found) based
upon the order the files are cataloged.

Note: OPTION RECURSION causes the UDC commands within the option recursion UDC to be
searched for starting at the first file cataloged at the user level, regardless of the level of the executing
UDC.

Note: the UDC search order is different at logon time.

3/4/03

7

3. Logon execution:

UDCs support the OPTION LOGON option. A single UDC at each level (user, account and system) can
be executed at logon. Even if there are several UDCs at a given level with OPTION LOGON defined,
only one UDC (the first) per level will be executed at logon time -- the remaining OPTION LOGON
UDCs at that level are ignored at logon. The order that UDCs are executed during logon is the opposite
of the execution order after logon. Namely, system level UDC are invoked first, followed by account
UDCs, followed last by user level logon UDCs. This order allows system managers to control access to
their system and to administer other security related policies via a system level logon UDC. Users cannot
override a system level logon UDC, at logon time nor during normal command usage.

Scripts do not support OPTION LOGON. However, it is not uncommon for an OPTION LOGON UDC
to simply invoke a script to do the real work. For example:

MYLOGONUDC file: LOGIN

OPTION LOGON # my logon script

invoke login script setvar hppath hppath+”,scripts.sys,hpbin.sys”

xeq login setvar hpredosize 100

*** if hpinteractive then ...

4. Command name:

A UDC name can be from 1 to 16 character long and consist solely of alphanumeric characters, with the
first character being a letter.

Note: A UDC filename can be an MPE syntax symbolic link pointing to a POSIX named UDC file, if for
some reason the actual UDC file needed to reside in the HFS. For example,

:newlink udclk, /usr/local/udcs/system.udc
:setcatalog udclk ; append

March 4 , 2003 P a g e 7

hp e3000

strategy

UDC / script comparisons

• s i m i l a r i t i e s :

• ASCI I , NOCCTL , numbered o r unnumbered , max 511 record w id th

• opt ional parameter l ine ok - max of 255 arguments

• o p t i o n a l o p t i o n s , e . g . H E L P , N O B R E A K , R E C U R S I O N

• opt ional body (actua l commands)

– no inl ine data, unl ike Unix ‘here’ f i les :(

• can protect f i le contents by al lowing e X ecute access-only secur i ty , i .e . ,

deny ing read access

3/4/03

8

March 4 , 2003 P a g e 8

hp e3000

strategy

UDC / script comparisons (cont)

• d i f f e r e n c e s :

• scr ipts can be var iable record width f i les

• UDCs require lock access , scr ipts don’ t

• sc r ip t names can be i n POS IX syn tax , UDC f i l enames mus t be i n MPE

syntax

• UDC name cannot exceed 16 chars , sc r ip t name length fo l l ows ru les fo r

M P E a n d P O S I X n a m e d f i l e s

• EOF fo r a sc r ip t i s the rea l eo f , end o f a UDC command i s one o r more

aster isks, start ing in column one

A script name follows the same rules as all filenames. These rules differ depending on the syntax
specified. MPE syntax filenames must be from 1 to 8 alphanumeric characters, with the first character
being a letter. If the MPE name is qualified it can contain a lockword, group and account names, each
having the same restrictions. POSIX syntax script names follow the rules for any POSIX-named file: 1 to
255 characters long, beginning with any valid character except a dash (-), case sensitive and several
special characters are supported. Like MPE names, POSIX names can be qualified or unqualified.
Unqualified (base) names are completed by pre-pending POSIX elements from the HPPATH variable to
the base name.

Note: a POSIX named script cannot be qualified via HPPATH unless HPPATH contains directory names
in POSIX syntax.

3/4/03

9

March 4 , 2003 P a g e 9

hp e3000

strategy

 Fi le : U D C U S E R . u d c . f i n a n c e

1 . I n voke UDCC , wh i ch ca l l s UDCA w i th

the argument “ghi”

2 . UDCA i s found , s ta r t ing a f te r the UDCC

definit ion (option NOrecursion default)

3. The l ine “p1=ghi” is echoed

4 . I n voke UDCB , wh i ch ca l l s UDCA pass i ng

the arg “def” . The recurs ion opt ion causes

the f i rs t UDCA to be found. This ca l ls

UDCC and fo l lows the path a t s tep 1
a b o v e

5. The l ine “p1=def” is echoed

UDC search order

UDCA p1 = abc
option NOrecursion
udcC !p1

UDCB p1 = def
option recursion
udcA !p1

UDCC p1 = ghi
udcA !p1

UDCA p1 = xyz
echo p1=!p1

•In the example above, :HELP UDCA, only finds the first definition of the UDC.

•OPTION RECURSION is necessary in UDCs that support multiple entry points, otherwise a UDC would not be able to
invoke itself recursively - as required by entry points (which are discussed elsewhere).

•OPTION RECURSION causes the UDC search to start completely over -- all the way back to the first user level UDC
cataloged. From this point all user, account and system level UDCs are checked in order to resolve the command name.

•OPTION NORECURSION is the UDC default and causes resolution of the next command to commence just after the
current UDC. Thus, in the example above, when udcC is processing the command “udcA”, it tries to resolve that command
name by first checking if it it a UDC defined somewhere “below” the definition of udcC. However, when udcB calls udcA
with OPTION RECURSION set, the search goes back to the first UDC catalogued. In this example, that is the udcA, at the
beginning of the file. The RECURSION scope is local to the current UDC and is not inherited by successive UDCs. So,
when the first udcA calls udcC which calls udcA, this invocation of udcA is not recursive, and thus executes the last udcA
defined in the file.

•OPTION RECURSION and NORECURSION are also CI built-in commands and can appear anywhere in the UDC body.
•Scripts are recursive by definition and OPTION NORECURSION has no meaning.

•Like OPTION RECURSION, none of the UDC/script options are inherited when one UDC invokes another UDC in a
nested fashion, except for OPTION NOBREAK. Once a UDC or script is encountered with OPTION NOBREAK
specified,. all other UDCs/scripts that are called by the NOBREAK UDC/script are treated as if OPTION NOBREAK were
specified -- regardless of how BREAK is defined in the called UDC/scripts. OPTION NOBREAK is somewhat common in
conjunction with OPTION LOGON UDCs.
•OPTION NOPROGRAM is new to MPE/iX (MPE XL). This option indicates that the UDC or script is not allowed to be
executed from within a program (via calling the HPCICOMMAND intrinsic). Once an OPTION NOPROGRAM UDC is
encountered all UDC searching stops. The command in question may still be resolved to be a built-in command, or a script
or program file, but further UDC searching ceases. For example, define a UDC named LISTF, with OPTION
NOPROGRAM, which simply does ECHO LISTF!. If :LISTF is executed from the CI it will execute the LISTF UDC. If
:LISTF is executed from VOLUTIL (which calls the HPCICOMMAND intrinsic to execute all non-VOLUTIL commands),
the UDC is found, but, since it is OPTION NOPROGRAM, the UDC is not executed and no other UDCs are processed.
:LISTF is found to be a known CI command, and the real :LISTF command is executed. In the slide example above,
assume the first UDCA haa OPTION NOPROGRAM defined. If UDCB is executed from VOLUTIL, the first UDCA
would be located, and since it is OPTION NOPROGRAM, it would not be executed. Also, the second UDCA in the file
would not be executed either, because all UDC processing stops when the NOPROGRAM UDCA was found.

3/4/03

10

March 4 , 2003 P a g e 10

hp e3000

strategy

script search order

• scr ipts and programs are searched for a f ter the command is known

n o t to be a UDC or bu i l t - in command

• same order for scr ipts and for program f i les

• ful ly or part ial ly qual i f ied names are executed without qual i f icat ion

• unqua l i f i ed names are combined w i th HPPATH e lements to fo rm

quali f ied f i lenames:

• f i rst match is executed – could be a scr ipt , could be a program

file

• f i lecode = 1029, 1030 for program f i les

• EOF > 0 and f i lecode in 0. .1023 for scr ipt f i les

• to execute POSIX named scr ip ts w i th HPPATH qua l i f i ca t ion , a

POS IX named d i r ec to r y mus t be p r esen t i n HPPATH

•HPPATH can contain POSIX names, e.g.. “/bin, /usr/bin/local” etc., mixed with or not mixed with traditional MPE
group and group.account names.

•Typically script names should be chosen to not collide with UDC names nor with built-in command names.
•Qualifying a script name that is also a UDC or built-in command name does not work. For example, suppose you
have a script named ABORTIO, which is also the name of a CI command,and this script resides in the XEQ.SYS
group. If you enter:

:abortio.xeq.sys 17,20
you will see this CI error:

ABORTIO has exactly one parameter, the device number. (CIERR 3027)

Why? The CI is really executing the built-in ABORTIO command and passing the arguments: “.xeq.sys”, “17”, “20”.
The CI has “strange” name parsing rules for reasons of MPE V compatibility, and decides the command name ends on
the first non-alpha character -- “.” in this case. Thus, the command name is “ABORTIO” and the first parameter is
“.xeq.sys”. The ABORTIO command only expects a single LDEV number and thus reports the above error.
The remedy is to use the XEQ command which expects its first parameter to be the name of a script or program file.

:xeq abortio 17, 20 or
:xeq abortio.xeq.sys 17, 20 works fine.

3/4/03

11

March 4 , 2003 P a g e 11

hp e3000

strategy

variable scoping

• a l l CI var iables are job/session global , except the fo l lowing:
H P A U T O C O N T , H P C M D T R A C E , H P E R R D U M P , H P E R R S T O L I S T ,
HPMSGFENCE, which are local to an instance of the CI

• thus i t is easy to set “persistent” var iables v ia a logon UDC

• need care in name of UDC and scr ipt “ local” var iables to not col l ide with
exist ing job/session var iables

• _scr ip tName_varname - - fo r a l l scr ip t var iab le names. Use :de le tevar
scr iptName@ at end o f scr ipt

• Can c rea te un ique va r i ab l e names by us ing !HPP IN , !HPC IDEPTH,
! H P U S E R C M D E P T H a s p a r t o f t h e n a m e , e . g .
 :setvar _scr ipt_xyz_!hppin , v a l u e

• save or ig ina l va lue o f some “env i ronment” var iab les

• : se t va r _sc r ip t_savemsgfence hpmsgfence
 :setvar hpmsgfence 2

•The variables that are not job/session global reside in a local CI data structure, and thus are unique to each CI. If you run a child CI
program it can have a different value for these variables, and any settings you do in that CI are not reflected when you exit back to
the root CI.

•Since (almost) all CI variables are scoped global to the job or session environment, you can set/create variables in logon UDC,
scripts etc. and these variables are available to the job or session. User variables are not automatically deleted when a script or UDC
exits.

•Since (almost) all CI variables are scoped global to the job or session environment, you may need care in choosing a unique
variable name. If you have a variable named XYZ defined from the CI, and you execute a script that sets XYZ and then deletes it
before exiting, your CI set XYZ variable is gone. For this reason, it is generally important to use script variable names that have a
decent chance of being unique to that script. A convention I use is to prefix all script variable names with the name of the script. For
example, if my script is named CH and I need a counter variable named “j”, I will name it _CH_J in my script.

3/4/03

12

March 4 , 2003 P a g e 12

hp e3000

strategy

variable referencing

• two ways to re fe rence a var iab le :

• expl ici t -- !v a r N a m e

• implicit - - v a r N a m e

• s o m e C I c o m m a n d s expect var iables (and express ions) as the i r
arguments , e .g .

• : C A L C , : I F , : E L S E I F , : S E T V A R , : W H I L E

• u s e implicit re ferenc ing here , e .g .
: i f (HPUSER = “MANAGER”) then

• mos t C I commands don’t expect v a r i a b l e n a m e s (e . g . B U I L D , E C H O ,
L I S T F)

• u s e expl ici t re ferenc ing here , e .g .
:echo You are logged on as : !HPUSER. !HPACCOUNT

• note: a l l UDC/scr ipt parameters must be expl ic i t ly referenced

• al l CI funct ions accept var iable names, thus impl ic i t referencing works

• :wh i l e J INFO (HPLASTJOB, “ex i s ts”) do… be t te r than . . .
:wh i l e J INFO (“ !H P L A S T J O B” , “exists”) do

•I see many people confused on when to put an exclamation mark in front of a variable name and when you don’t need to. Since it
almost always works to code as !varname or “!varname” this becomes the standard practice. Some users find the rules to be
ambiguous so they opt to use !varname. Although, I think this is unnecessary and less “attractive”, it works fine most of the time.
There are, however, situations when using !varname results in difficult-to-diagnose programming bugs, which are shown in the next
slide.

3/4/03

13

March 4 , 2003 P a g e 13

hp e3000

strategy

explicit referencing -
!varname

• p rocessed by the C I ea r l y , be fo re command name i s known

• can cause hard- to -detect bugs in scr ipts - array example

• loose var iable type - - s t r ings need to be quoted, e .g . .
“!v a r N a m e ”

• !! (two exc lamat ion marks) used to “escape” the meaning of “ !”, multiple “! ’ s ”
are folded 2 into 1

• even number o f “ !” - -> don’t reference variable’s value

• odd number o f “!” - -> reference the var iable ’s va lue

• use fu l to conver t an ASCI I number to an in teger , e .g .
 setvar int “123” or i n p u t f o o , “ e n t e r a n u m b e r ”

 i f ! int > 0 then … i f ! f oo = 321 t hen . . .

• the on ly way to re ference UDC or scr ip t parameters

• the on ly way fo r most C I commands to re fe rence var iab les

•Bang folding: echo !!!!varname writes !!varname to $stdlist
 echo !!!varname writes ! followed by varname’s value to
$stdlist

•Number conversion example:
:setvar x “123”
:if !x > 0 then …

:input x, “enter a value” # user enters 123
:if x = 123 then # ERROR, x is a string!
:if !x = 123 then # OK

•Here is an example when using an explicit variable reference is incorrect (assume an “array” of variables: name1, name2, name3,
etc.):
 1) setvar j 0

2) while setvar(j,j+1) <= limit and name!j <> “EXIT” do …

Line 2 will always be reference the N-1th element in the “array”, and, worse, will try to reference ‘name0’ the first time.
Solution: 2) while setvar(j,j+1) <= limit and name![j - 1] <> “EXIT” do … -- or --
 while setvar(j,j+1) <= limit do
 if name!j <> “EXIT” then ...

•The biggest issue with regards to using !varname is that varname’s type is lost. Sometimes, this is exactly what is desired, as shown
in the number conversion examples. Other times, the type was never intended to be lost, and therefore the user needs to surround
!varname with quotes to preserve its string type. It is this second usage that I am trying to reduce because, in my opinion, readability
and maintainability suffer.

3/4/03

14

March 4 , 2003 P a g e 14

hp e3000

strategy
• evaluated dur ing the execut ion of the command - - later than expl ic i t

referencing

• makes for more readable scr ipts

• var iable type is preserved - - no need for quotes, l ike : “! v a r n a m e”

• on l y 5 commands accept implicit r e f e r e n c i n g : C A L C , E L S E I F , I F ,
SETVAR, WHILE - - a l l o thers requ i re exp l i c i t re fe renc ing

• al l CI funct ion parameters accept implic i t referencing

• var iables inside ![expression] may be impl ic i t ly referenced

• per formance d i f ferences:

• “!H P U S E R .!H P A C C O U N T ” = “OP .SYS” 4340 msec

• H P U S E R + “ . ” + H P A C C O U N T = “ O P . S Y S ” 4370 msec

• H P U S E R = “ O P ” a n d H P A C C O U N T = “ S Y S ” 4455 msec*
(*with user match true)

 I prefer the last choice s ince many t imes : IF wi l l not need to evaluate the
express ion a f ter the AND

implicit referencing -
just varname

•I prefer to use implicit referencing whenever possible. It makes scripts easier to read (closer to conventional programming), avoids
problems of early explicit referencing shown on the previous page, and preserves the variable’s type. So my recommendation is that
in the five commands listed above, and for all function arguments, and inside ![expressions] use implicit referencing as your first
choice.

3/4/03

15

March 4 , 2003 P a g e 15

hp e3000

strategy

CI i/o redirection

• > n a m e - red i rect output f rom $STDLIST to “name”

• “name” wil l be overwritten if it already exists

• f i le wi l l be saved as “name”;rec=-256,,v ,asci i ;d isc=10000;TEMP

• f i l e name can be MPE o r POS IX s yn t a x

• > > n a m e - red i rect , append output f rom $STDLIST to “name”

• same fi le attributes for “name” if i t is created

• < n a m e - redirect input f rom $STDIN to “name”

• “name” must ex is t (TEMP f i l es looked for be fore PERM f i l es)

• I/O redirect ion has no meaning i f the command does not do I/O to $STDIN
o r $ S T D L I S T

• ava i lab le on a l l commands, e x c e p t :

• I F , E L S E I F , S E T V A R , C A L C , W H I L E , C O M M E N T , S E T J C W , T E L L ,
T E L L O P , W A R N .

•I/O redirection in the CI works similarly to the same feature in DOS and Unix systems. Of course, there are some exceptions:
on MPE the file created by output redirection is a TEMP, variable record width file. The motivation for these choices is that we
didn’t want to mistakenly overwrite a permanent file if the “>” or “>>” symbols on a command line were not really intended for
redirection. We decided to make the default record with be variable so that the file created and also be read more easily by the
CI, since trailing spaces (found in fixed ASCII files) would not need to be stripped. All of the I/O redirection defaults can be
overridden via a file equation.

•There are 10 CI command that do not accept I/O redirection. Five of these are commands that introduce an expression as one of
their parameters. Since expressions can contain “<“, “>” it was decided to disable I/O redirection on these command. The
remaining commands are excluded because we were conservative and careful when I/O redirection was introduced in MPE XL
Release 2.1. We did not want to break existing scripts, UDCs, or JCL that might have “>” or “<“ in one of these commands,
causing the CI would to remove the symbol and following name, and write to a file.

3/4/03

16

March 4 , 2003 P a g e 16

hp e3000

strategy

CI i/o redirection (cont)

• how i t works :

• C I ensures the command i s no t one o f the exc luded commands

• CI scans the command l ine looking for <, >, >> fo l lowed by a poss ib le
f i lename (after expl icit var iable resolut ion has a lready occurred)

– text inside quotes is excluded from this scan

– text ins ide square brackets is exc luded f rom the scan

• f i l ename i s opened and “exchanged” fo r the $STDIN o r $STDLIST

• af ter the command completes the redirect ion is undone

• e x a m p l e s :

• I N P U T v a r n a m e < f i l e n a m e

• ECHO The nex t answer i s : ! r esu l t > > f i l e n a m e

• L ISTF ILE . /@,6 > f i lename

• P U R G E A C C T m y a c c t <Yesf i le

• PURGE f oo@ ; t emp ; nocon f i rm >$null

• E C H O Y o u n e e d t o i n c l u d e !< THIS !> too!

•The CI first replaces all explicit variable referencing by the variable’s value. Next, all ![expression] references are evaluated
and replaced by the result. Then, the CI deals with processing any I/O redirection it encounters on the command line. This
order allows a target redirection filename to be contained in a variable or ![expression]. Also, by this time in the command
processing, the CI has determined the command name and thus can check the exclusion list to make sure I/O redirection is
permitted for the command being executed
•If an I/O redirection symbol is found but the token immediately right of it is not a legal filename, the CI assume I/O
redirection was not intended. E.g.:

:echo abc >123 does not create a file named “123” but instead echo's:
abc >123

•Also, if the I/O redirection symbol appear inside a quoted string or inside square brackets, it is not interpreted an I/O
redirection. E.g.:

:echo abc “>xyz” does not create a file named “XYZ” but instead echo's:
abc “>xyz”

And,
:echo abc [>def] does not create a file named “DEF” but instead echo's:
abc [>def]

The reason that square brackets are excluded is to support selection equations which are contained by square brackets and allow
relational operators, such as “<“ and “>”.

•To tell the CI to ignore I/O redirection in commands that it would otherwise accept I/O redirection you need to place a “!” in
front of the I/O redirection token. This “escapes” the special meaning of the I/O redirection symbol and is consistent with the
use of multiple exclamation marks in front or potential variable names.

3/4/03

17

March 4 , 2003 P a g e 17

hp e3000

strategy

file i/o

• w h y n o t u s e I N P U T i n W H I L E t o r e a d a f l a t f i l e ? , e . g . :

 w h i l e n o t e o f d o

 i n p u t v a r n a m e < f i l e n a m e

e n d w h i l e

• a n s w e r: t h e C I o p e n s a n d c l o s e s “ f i l e n a m e ” e a c h i t e r a t i o n , t h u s

y o u w i l l b e r e a d i n g t h e 1 s t r e c o r d o v e r a n d o v e r …

• t h r e e m a i n a l t e r n a t i v e s :

• w r i t e t o (c r e a t e) a n d r e a d f r o m a M S G f i l e v i a I / O r e d i r e c t i o n

• u s e : P R I N T a n d I / O r e d i r e c t i o n t o r e a d f i l e 1 r e c o r d a t a t i m e

• u s e e n t r y p o i n t s a n d I / O r e d i r e c t i o n

• MSG file works because each read is destructive, so next INPUT
reads next record

• INPUT <flat_file in the WHILE loop fails because the CI opens the redirected file for each iteration in the loop. Thus, an
open is done for each record in the file. Not only is this expensive, it also means that the file’s record pointer (current
record) is reset to the beginning of the file each time INPUT is executed. Therefore, INPUT from a flat file in a WHILE
loop always reads (and re-reads!) the first record of the file.

3/4/03

18

March 4 , 2003 P a g e 18

hp e3000

strategy

• PARM fi leset=./@
This scr ip t reads L ISTFILE,6 output and measures CPU mi l l i secs
using a MSG f i le
s e t v a r s a v e c p u h p c p u m s e c s : r eadmsg

er rc lear 259 msecs t o r ead 22 r eco rds

f i le msg=/tmp/LISTFILE.msg ; M S G
cont inue : r eadmsg @.pub .sys

listfile !fileset,6 > * m s g 15845 msecs to read 1515

i f hpcierr = 0 then
 # read l istf i le names into a variable
 setvar cntr setvar(eof , f info('*msg' , "eof "))
 whi le se t va r (cn t r , cn t r -1) >= 0 do
 i n p u t r e c < * m s g
 e n d w h i l e
endif
e c h o ! [h p c p u m s e c s - s a v e c p u] msecs to read !eof records.
deletevar cntr , eof , rec

file i/o - MSG file

•Each read of a MSG file is destructive so it works with INPUT in a while loop.

•Example shows using POSIX names to keep temporary files.

•Shows setting two variables in one CI command line.
•Shows how to measure the performance of a script or UDC.

3/4/03

19

March 4 , 2003 P a g e 19

hp e3000

strategy
• PARM fi leset=./@

Th is sc r ip t reads a f i l e p roduced by L ISTF ILE ,6 and measures CPU msecs
us ing PRINT as an in te rmed ia te s tep
se t va r savecpu hpcpumsecs
er rc lear : readprnt

cont inue 735 msecs to read 22 records

listfile !fileset,6 > lftemp 3 t imes s lower than MSG f i les

i f hpcierr = 0 then
 # read l istf i le names into a variable : readprnt @.pub.sys

 setvar cntr 0 74478 msecs to read 1515 recs

 setvar eof f info(' l f temp' , "eof ") over 4 t imes s lower than MSG f i l es !

 wh i l e se t va r (cn t r , cn t r+1) <= eo f do

 p r i n t l f t e m p ; s t a r t = ! c n t r ; e n d = ! c n t r > l f t e m p 1

 i n p u t r e c < l f t e m p 1
 e n d w h i l e
endif
echo ! [hpcpumsecs - savecpu] msecs to read !eo f records .
deletevar cntr ,eof , rec

file i/o - :print

•The PRINT method is the least efficient of the three choices presented. This technique requires two opens and closes for
each record in the file: one open for PRINT, one open for the output redirection, one close for PRINT and another close to
redirect output back to $STDLIST.

•The PRINT technique is also not any easier to code than the MSG file method, so why use it?
•Perhaps the data is already in a file and the file is not large (or performance is unimportant).
In this case, using PRINT may be appropriate since the script is intuitive and easy to write, and may be better
(faster) than copying the existing data to a MSG file first.

3/4/03

20

March 4 , 2003 P a g e 20

hp e3000

strategy

• PARM fileset=./@, entry="main”
This script reads a file produced by LISTFILE,6 and measures CPU
msecs
using entry points and script redirection
if "!entry" = "main" then
 setvar savecpu hpcpumsecs
 errclear
 continue
 listfile !fileset,6 > lftemp
 if hpcierr = 0 then
 xeq !hp f i le ! f i l ese t en t ry=read < l f temp

 endif
 echo ![hpcpumsecs - savecpu] msecs to read !eof records.
 deletevar cntr,eof,rec
 purge lftemp;temp
 return
 . . . (continued on next slide)

file i/o - entry points

•The choices of “entry” for the name of the entry control parameter and “main” for the default value of the entry control
parameter value are arbitrary but self-documenting.

•All initialization should be done in only the “main” entry portion of the script, rather than earlier in the script. This is
more efficient (and perhaps the only correct way) since the initialization code is invoked only once.

3/4/03

21

March 4 , 2003 P a g e 21

hp e3000

strategy
e l se

 # read l istf i le names into a variable

 setvar cntr setvar(eof , f info(hpstdin, "eof "))

 whi le se tvar (cn t r , cn t r -1) >= 0 and s e t v a r (r e c , i n p u t ()) < > c h r (1) d o

 e n d w h i l e

 return

endif

: readntry

90 msecs to read 24 records .

---> A lmos t 3 t imes faster than MSG f i les

---> 8 t imes faster than the PRINT method!

:readnt ry @.pub.sys

2400 msecs to read 1515 records .

---> Over 6 t imes fas te r than MSG f i l es

---> 31 t imes fas te r than us ing PRINT!

file i/o - entry points (cont)

•Use the HPSTDIN variable to get the name of the redirected input file, so there is less hard coding of the temporary file
names.

•This example doesn’t do anything with the contents of the file. Each record is placed in the variable REC, one record
overwriting the previous.
•The input() function is used here, rather than the INPUT command in the other examples. A motivation for doing this is
to eliminate the body of the WHILE loop, which increases performance. The silly test for “<> chr(1)” is done to satisfy
the requirements for an expression and is expected to always be true.

3/4/03

22

March 4 , 2003 P a g e 22

hp e3000

strategy

• u s e H P A U T O C O N T variable judiciously :

• better - -
cont inue
c o m m a n d
if hpcierr > 0 then ...

• i f error-condition then

 echo someth ing…

 return - - or - - escape

endif …

• R E T U R N v s . E S C A P E
• :return g o e s b a c k O N E l e v e l

• : e s c a p e goes back to the CI leve l in a sess ion, to an act i ve
CONT INUE , o r can abo r t a j ob

• H P C I E R R M S G - var iable contains the error text for the value of

C I E R R O R J C W / v a r i a b l e

• : E R R C L E A R - s e t s H P C I E R R , C I E R R O R , H P F S E R R , H P C I E R R C O L
variables to zero

error handling

•HPAUTOCONT = true is sometimes useful, but can be a dangerous practice. It allows every command to behave as if it is
proceeded by a :CONTINUE command. This may be desired for some of the commands in a job or script, but not necessarily all of
the commands. I find it safer and more reliable to leave HPAUTOCONT set to false (default) and to use an explicit :continue in
front of each command that I want to test for success or failure. This allows me to control the behavior of the script, e.g., I can do
some cleanup if an error occurs, and at the same time, it permits the script to abort if an unexpected failure arises.
•I think that scripts are more maintainable and easier to read if the error checking portion reports the trouble and then simply exits.
This is preferred to using constructs such as:

if <error> then
 report problem… # Don’t handle errors this way if possible!

 else
 execute more code…

if <error> then
 report error # Do handle errors this way if possible!
 return
endif

•RETURN causes execution to resume in the calling environment. RETURN is useful as a method of exiting an alternate entry in a
script or UDC. RETURN does not set CI error related variables and cannot directly cause the calling environment to abort.
Returning from a script closes the file; however that is the only cleanup done automatically by the system. Scratch files, file
equations, variable, etc., in general, should be cleaned up prior to exiting a script or UDC.

•ESCAPE causes execution to resume at the main CI level for sessions, and at the calling environment if a :continue proceeded the
invoking command. If the calling environment is a job and the invoking command was not “protected” by a :continue then ESCAPE
will abort the job. Additionally, ESCAPE can set CIERROR and HPCIERR to an error number, but the default is to not alter these
variables. ESCAPE mimics to some degree the TRY/ RECOVER / ESCAPE construct provided by Pascal, which is used by a large
portion of the MPE/iX operating system. ESCAPE is useful when a script or UDC needs to duplicate the CI’s error handling. This
duplication can be further improved by exploiting the HPFSERR and HPCIERRCOL predefined variables, which provide the
associated file system error (if any), and the column position of the offending command line parameter, where the CI would locate
the caret (‘^”) in an error message.

•The HPCIERRMSG string variable contains the error/warning message associated to the current value of the CIERROR variable.
Note that message inserts (like the offending filename) are not, and thus, some messages will contain “!” as insert place holders.

•The ERRCLEAR command is useful in the initialization part of scripts to set all error related predefined CI variables to zero. It is
over twice as fast compared to setting all four variables individually. It is approx 25% faster than setting only HPCIERR and
CIERROR to zero separately. It is slightly slower (7%) than setting only CIERROR to zero.

•HPCIERR is signed -- CI warnings are negative, CI errors are positive. CIERROR contains the absolute value of HPCIERR -- thus
there are no CI warnings with the same absolute value as a CI error. The CI keeps HPCIERR and CIERROR in sync, but users can
change their values independent of each other.

3/4/03

23

March 4 , 2003 P a g e 23

hp e3000

strategy
• d e l e t e v a r i a b l e s “ l o c a l ” t o t h e U D C / s c r i p t

• : d e l e t e v a r _ ” p r e f i x ” _ @

• p u r g e s c r a t c h f i l e s

• r e s e t “ l o c a l ” f i l e e q u a t i o n s

• d o n ’ t d o t h e a b o v e i f s t i l l d e b u g g i n g !

• b e t t e r , b u i l d i n a w a y t o p r e s e r v e f i l e s , v a r i a b l e s , e t c . o n

the f l y

• u s e a c e n t r a l c l e a n u p “ e n t r y ” r o u t i n e

• u s e a v a r i a b l e t o c o n t r o l t h e c l e a n u p r e l a t e d

c o m m a n d s

cleanup

Some cleanup examples:

•Using a cleanup “entry” routine -

…
elseif “!entry” = “cleanup” then
 # do all script cleanup here
 if finfo(_foo_file,”exists”) then
 purge !_foo_file
 endif
 if _foo_used_feq then
 reset !_foo_feq
 endif
 echo End of ![basename(hpfile)] ...
 deletevar _foo_@
 escape 0
endif

•Allowing variables and files to be saved or deleted on the fly -
…
elseif “!entry” = “cleanup” then
 if bound(_foo_debug) then
 escape
 endif
 # do all script cleanup here
 if finfo(_foo_file, “exists”) then …

 or
…
!_foo_del reset !_foo_feq
!_foo_del purge !_foo_file
!_foo_del deletevar _foo_@

… somewhere _foo_del is set as:

setvar _foo_del “#” -- or -- setvar _foo_del “”

•Scripts and UDCs cannot trap break or other signals (like pending process aborts) thus it is not possible to clean up correctly in all
scenarios.

3/4/03

24

March 4 , 2003 P a g e 24

hp e3000

strategy

• s o m e c o m m o n p r o b l e m s :

• s y n t a x e r r o r (u n m a t c h e d p a r e n t h e s i s) , v a r i a b l e n a m e t y p o ,

re l i ance on a va r tha t has no t been in i t i a l i zed , h i t t i ng eo f ,

u s i n g a n H F S f i l e f o r I O r e d i r e c t i o n a n d t h e n r e f e r e n c i n g

F I N F O (h p s t d i n) - - C I b u g ! , e n t r y n a m e t y p o (c a s e s e n s i t i v e !) ,

o f f - b y - o n e o n l o o p c o u n t e r s , u n e x p e c t e d u s e r i n p u t , r e - u s i n g

t h e s a m e v a r i n t w o p l a c e s t h a t a r e e x e c u t e d t o g e t h e r (e . g . , 2

eo f coun te r s) , r ead ing f r om te rmina l bu t $s td in i s a l r eady

redirected to a f i le

• t r i c k i e r p r o b l e m s t o f i n d :

• echo ing a l i t e ra l “>” w i thou t escap ing , w o r d () b y i n d e x b u t

i n d e x o u t o f b o u n d s , “ a r r a y ” i n d e x i n c r e m e n t a n d r e f e r e n c e i n

s a m e l o o p , u n m a t c h e d e n d w h i l e o r e n d i f , c r e a t i n g f i l e s t h a t

c o u l d c o n t a i n C I m e t a c h a r s , da t e c a l cu l a t i ons t ha t c r o s s day ,

m o n t h , y e a r b o u n d a r i e s ,

debugging

•insert echo/showvar statements, revealing a variable’s value and/or a location in the script.

•don’t initially delete variables and scratch files.

•turn on command tracing (HPCMDTRACE) within suspect sections of the script -- implies omitting OPTION NOHELP too.
•check OPTION RECURSION setting in UDCs with entry points.

•force an unexpected condition by hard-coding the rare value – may be the only way to test certain code paths.

•steal working fragments from other scripts.
•add your own tracing into complex scripts, via a “hidden” command line parm or a special variable.

•use HPLEAPYEAR, HPDATETIME for date calculations, e.g. :
 setvar tmp hpdatetime # reference the predefined var only once
 setvar tmpdate lft(tmp,8) # just the yyyymmdd part
 setvar tmptime str(tmp,9,6) # just the hhmmss part
Don’t do below for three reasons:
 setvar tmpdate “20!hpyear”+”!hpmonth”+”!hpdate”
 1) may need leading zeros in the string date,
 2) use HPYYYY (4 digit string) instead of HPYEAR (2 digit integer),
 *3) what happens if the month changes after HPMONTH is referenced?

3/4/03

25

March 4 , 2003 P a g e 25

hp e3000

strategy

examples

• s o m e s i m p l e e x a m p l e s t o g e t s t a r t e d

• e a s y w a y t o p r i n t $ S T D L I S T s p o o l f i l e f o r a j o b

• g e t t i n g C I v a r i a b l e v a l u e s i n t o a j o b s t r e a m

• p o w e r f a i l s c r i p t e x a m p l e

• c r e a t i n g c o l u m n a r o u t p u t

• t e s t i n g r e m o t e c o m m a n d s u c c e s s o r f a i l u r e

• p a r s i n g H P P A T H

• P R N T s c r i p t

• s c a n h i s t o r y (r e d o) s t a c k

3/4/03

26

March 4 , 2003 P a g e 26

hp e3000

strategy

display last N records of a f i le (no process creat ion)

• PARM f i le , last=12 “Tail ” script
print !file; start= - ! l a s t

display CI error text for a CI error number

• PARM c ie r r= !c ie r ror “Cier r ” script
se t va r save_er r c i e r ro r
setvar cierror !cierr

s h o w v a r H P C I E R R M S G
setvar c ierror save_err
de le tevar save_er r

alter priority of job just streamed -- great for onl ine compiles ; -)

• P A R M j o b = ! H P L A S T J O B ; pri= C S “Altp ” script
altproc job=!job; pri=!pri

simple examples

•The tail script has no process create overhead, unlike the POSIX tail.hpbin.sys program.

•The HPCIERRMSG CI variable contains the error text for the error defined by the current value of the CIERROR
variable (JCW). Note that message inserts values, that would normally be displayed by the CI in processing an
error, are not inserted via HPCIERRMSG.

3/4/03

27

March 4 , 2003 P a g e 27

hp e3000

strategy

• P A R M fi leset=./@ “LF ”
listfile !f i leset,6

• P A R M g r o u p = @ “LG ”
listgroup !group; f o rmat=br ie f

• PARM use r=@ “LU ”

l istuser !user; f o rma t=b r i e f

• PARM d i r= ./@ “LD ”
setvar _dir “!dir”
if d e l i m p o s(_dir, “./”) <> 1 then
 # c o n v e r t M P E n a m e t o P O S I X n a m e
 se tvar _d i r d i r n a m e(fqual i fy(_dir)) + “/” + b a s e n a m e(_dir)
endif
listfile !_dir, 6; se l eq= [ob j e c t=HFSD IR] ; tree

brief file, group, user, dir listings

•The last example (LD) shows the BASENAME, DELIMPOS, DIRNAME and FQUALIFY functions being used.

•DELIMPOS(_dir, “./”) <> 1 tests if the directory name in _dir starts with a dot or slash, and thus is a POSIX
named directory. The FSYNTAX function could have been used for this purpose too.

•An MPE name can be converted to a POSIX name easily:
•DIRNAME returns the directory portion, in POSIX syntax, of a filename, but does not qualify the
name.

•FQUALIFY qualifies the name in _dir. Now, DIRNAME will return the absolute path of the name in
_dir1, less the file portion of the name.
•BASENAME returns just the base (file) portion of the name in _dir. When appended to the result of
DIRNAME(…) the result is a fully qualified, POSIX name.

•LISTFILE will search for just POSIX (HFS) named directories (seleq=[object=hfsdir]), and the TREE option tells
LISTFILE to search recursively, following all sub-directories.

3/4/03

28

March 4 , 2003 P a g e 28

hp e3000

strategy

printing spoolf i les

• PRINTSP script :

PARM job= !HPLASTJOB
Prints spoolfile for a job, default is the last job you streamed
if “!job” = “” then

echo No job to print
 return
endif
setvar hplastjob “!job”
if hplastspid = “” then

echo No $STDLIST spoolfile to print for “!job”.
return

endif
print !HPLASTSPID . ou t .hpspool

• :s t ream scope job
#J324
:pr intsp
:JOB SCOPEJOB,MANAGER.SYS,SCOPE.
 Priority = DS; Inpri = 8; Time = UNLIMITED seconds . . .

•The default value for the parameter “JOB” is the job number of the job most recently streamed by you (HPLASTJOB
variable).

•If you have not streamed a job (or HPLASTJOB is empty for some other reason) the script reports an error and exits.
•The HPLASTSPID variable contains the spoolfile number (Onnnn) for the $STDLIST spoolfile for the job referenced
in the HPLASTJOB variable. HPLASTSPID is not a qualified MPE filename, so the “.out.hpspool” suffix needs to be
appended.

•All output spoolfiles live in @.OUT.HPSPOOL.
•Could be improved by saving the value of HPLASTJOB before setting it to the JOB parameter, and then reinstating
this saved value before the script ends.

•Could check for the existence of “!hplastspid.out.hpspool” before trying to print it.

3/4/03

29

March 4 , 2003 P a g e 29

hp e3000

strategy

customize jobs us ing var iables

PARM p1= "my va l ue " , p2= " some th ing“

create a s imple job pass ing p a r m s and var iables to the job

setvar testvar1 true

setvar testvar2 46

setvar testvar3 " abc“

e c h o ! ! j o b jeff .v a n c e ; o u t c l a s s = , 2 > t m p j o b

e c h o ! !s e t v a r m y P 1 " ! p 1 " > > t m p j o b

e c h o ! !s e t v a r m y P 2 " ! p 2 " > > t m p j o b

e c h o ! !s e t v a r m y V a r 1 ! t e s t v a r 1 > > t m p j o b

e c h o ! !s e t v a r m y V a r 2 ! t e s t v a r 2 > > t m p j o b

e c h o ! !s e t v a r m y V a r 3 " ! t e s t v a r 3 " > > t m p j o b

e c h o ! !s h o w v a r m y @ > > t m p j o b

e c h o ! !e o j > > t m p j o b

st ream tmpjob

•Simple script creates a simple job stream. To stream the job you need to execute this script.

•Easy method to pass parameters, variables, even user input to a job stream. Need to be careful on use of quotes.
Remember all parameter references need to be explicitly referenced, thus the type (string, boolean, integer) of the parm
is lost.

3/4/03

30

March 4 , 2003 P a g e 30

hp e3000

strategy

powerfail script

• UPS con f i gu ra t i on f i l e , UPSCNF IG .PUB.SYS) :

 Contents:
powerfail_message_routing = all_terminals
powerfail_low_battery = keep_running
powerfail_command_file = prodshut.opsys.sys
powerfail_grace_period = 300

• P R O D S H U T . O P S Y S . S Y S scr ipt example :

 w a r n @ ; Power fa i l de tec ted by UPS . O rde r l y shu tdown BEGIN…
warn @; ***** Please logoff immediately! *****
if jobcnt (“ prod1J.usr.acct”, jobID) > 0 then
 s t ream hipriJ
 pause 60; job=!hplast job
 abort job !jobID
endif
errclear

pause 180; j o b = @ s
i f c ierror = 9032 then
 warn @;Sys tem go ing down in 2 minu tes !
 p a u s e 1 2 0
endif
s h u t d o w n

UPSMON accepts a default configuration file named UPSCNFIG.PUB.SYS. This file can be overridden via
UPSUTIL’s NEWCONFIG command, which prompts for a simple configuration file (flat ASCII, 32 - 128 bytes wide,
numbered or unnumbered). The UPS config file consists of the following (each occupying its own unique record): the
fully qualified MPE file name (it’s own name) must be the first record. The remaining contents (records) are optional
and in the form: config_keyword = value. Below is the configuration file syntax:
 Config_file_name
 powerfail_message_routing = <all_terminals | console_only>
 powerfail_command_file = <MPE filename> [;parm1 parm2 … parmN] *
 powerfail_grace_period = <number of seconds, 0 .. 1800> *
 powerfail_low_battery = <system_abort | keep_running (provides ~120 extra sec)> *
* mainline for 7.5 and patch for 7.0

The powerfail_grace_period specifies the number of seconds to wait, after detecting a powerfail, prior to invoking the
script named in the powerfail_command_file setting. After “powerfail_grace_period” seconds expires the script is
executed. This script can perform needed system cleanup, but caution is necessary since the system is running on
batteries at this point. The most important consideration is to ensure that all disk writes are consistent.

If the power remains off at some point the battery will run out. The power_fail_low_battery setting allows you to
squeeze approx 2 more minutes from your shutdown script before the system bellies up. The default is not to play
Russian Roulette with your data, thus the system is aborted at the 2 minute warning. However, a knowledgeable, risk
adverse system manager may specify “keep_running” to gain more time for their cleanup script to complete. The risk
is that if the script fails to complete in the remaining ~2 minutes the system will fail and disk states may be corrupted.

Note the new SHUTDOWN CI command, which also supports a RESTART option to allow the system to be restarted
after the shut down is complete. OP capability is required to issue SHUTDOWN from the CI.

3/4/03

31

March 4 , 2003 P a g e 31

hp e3000

strategy

• b e f o r e : o u t p u t :

 setvar j 0 a xxxx bbbbbb xxxx
while setvar(j , j+1) < 4 do aa xxxx bbbb xxxx
 se t var a r p t(“a”, j) aaa xxxx bb xxxx
 se tvar b r p t(“b”, (4-j)*2)

 e cho ! a x x !b xx
endwhile

• a f t e r :

 whi le …

 se tvar a ; se tvar b… s a m e w a y … a xxxx bbbbbb xxxx
 e cho ! a ![rpt(“ “, 3-len (a))] xx & aa xxxx bbbb xxxx
 ![rpt(“ “, 6-len (b))] !b xx aaa xxxx bb xxxx
endwhile

columnar output

•The “align” script demonstrates using the rpt() function to pad output with a variable number of spaces, based on the
length of the data fitting in a field.

•Variable A is set from 1 to 3 “a”s. Variable B is set from 6 to 2 “b”s, in this example.
•The before script shows staggered columns – the “xx”s should form a column.

•When ![rpt(“ “…)] is used just after echoing a value, the proceeding value becomes left justified.

•When ![rpt(“ “…)] is used just before echoing a value, the proceeding value becomes right justified.
•The after script shows a left justified variable followed by a right justified variable.

3/4/03

32

March 4 , 2003 P a g e 32

hp e3000

strategy
A N Y P A R M cmd
Script that executes a command in a remote session and returns the
CIERROR and HPCIERR values for that command back to the local
environment.
purge rmstatus >$null
build rmstatus ;rec=-80,,f,ascii

remote f i le rms ta tus = r m s t a t u s :$back,old
continue
remote !cmd

r e m o t e e c h o s e t v a r c i e r r o r !!c ie r ror >*r m s t a t u s

remo te echo se t va r hpc i e r r ! ! hpc i e r r >>* rms ta tus
xeq rmstatus
echo remote C IERROR=!cierror, remote HPCIERR=!hpcierr

:r e m l i s t f i l e 4abc ,2

First character in file name not alphabetic. (CIERR 530)
remote CIERROR=530, remote HPCIERR=530

testing remote command execution

•Available on Jazz at: http://jazz.external.hp.com/src/scripts/index.html

•Thanks to Craig Fairchild for this method.

•Creates a “status” file which is filled in on the remote system, using remote variable values, but the file lives on the
local system.

•The contents of this “status” file are two commands which get executed on the local system. These commands set the
CIERROR and HPCIERR variables to their respective values on the remote system.

•The double bangs (!!) prevent the local values of CIERROR and HPCIERR from being referenced. Instead,
“!CIERROR” and “!HPCIERR” are executed (and thus referenced) on the remote system.

•Once the “status” file/script is executed on the local system (where it lives – no dscopy needed) the local CIERROR
and HPCIERR are set to the corresponding values from the remote CI.

3/4/03

33

March 4 , 2003 P a g e 33

hp e3000

strategy

pars ing HPPATH

 setvar x 0

 whi le setvar(token, &
 word (“!h p p a t h ” ,”,; “,se tvar (x , x+1))) <> ”” do

 if delimpos(token,”/.”) = 1 then

 # w e h a v e a P O S I X p a t h e l e m e n t

 e l s e

 # w e h a v e a n M P E p a t h e l e m e n t

 endif

 e n d w h i l e

• W h y d i d I explici t ly r e f e r e n c e H P P A T H ?

•HPPATH defaults to “!!HPGROUP, PUB, PUB.SYS, ARPA.SYS”. Users can add their own path elements, which
can be contained in one or more CI variables. HPPATH elements can name an MPE group, an MPE group.account, an
absolute POSIX named directory, or a relative POSIX named directory. HPPATH elements are separated by a comma,
semicolon or a space.
•The 2nd argument to word() is the delimiter list, which is passed as the same delimiters used in HPPATH.

•The 3 rd argument to word() is the token number to extract. In this case, the token number is incremented by 1, starting
at 0. Thus the 1st token is parsed out, then the 2nd, then the 3 rd, etc.

•The loops stops once the “next” token in HPPATH is empty, which usually means you reached the end of HPPATH.
Using an index in word(), which is the 5th argument, is trickier since this index value cannot be incremented beyond the
end of the string being parsed. If that occurs then word() reports an error and stops. So usually is is easier to extract the
Nth word rather than a word starting a position N.

•The most important aspect in this otherwise simple loop is to explicitly reference HPPATH, which resolves variables
that are contained in the HPPATH value, like !HPGROUP, for instance. Failure to do this will cause the delimpos()
statement to test the variable name (actually the “!”) rather than its value.

•The delimpos() function returns the string index where the first of the supplied delimiters characters is found in the
passed string. If the extracted token begins with a “.” or a “/” then a 1 is returned and we know this path element is a
POSIX directory name. Otherwise we assume and MPE group[.acct] name.

•Being able to parse HPPATH correctly allows you to create scripts that locate unqualified commands(files), or scripts
that act upon a file you find by applying HPPATH elements to a base filename. One possible action would be to print
the file, and this example is shown next.

3/4/03

34

March 4 , 2003 P a g e 34

hp e3000

strategy

PRNT - pr int f i le based on HPPATH

P A R M f i l e n a m e

Th is command f i l e pr in ts the f i rs t MPE f i l ename found in HPPATH.

setvar _ p rn t_i 0

setvar _ p rn t_match f a l se

while not (_prnt_match) and &
 setvar(_ prnt_ tok,word(“! hppath ”,',; ',setvar(_ prnt_i,_ prnt_i+1)))<>””do
 if delimpos(_ prnt_ tok,'./') <> 1 then
 # skip HFS path e lements, we have an MPE syntax e lement
 setvar _ p rn t_match (finfo("!filename.!_ prnt_ tok", 'exists'))
 endif
endwhile
if _ prnt_ma t ch t hen

 setvar _ prnt_ f fqualify ("!f i lename.!_ prnt_ tok")

 echo !_ prnt_ f

 cont inue

 print !_ prnt_f , !out ;page=22

e lse

 echo ! [ups (" ! f i l ename ")] was no t found in your HPPATH.

endif

•Available on Jazz at: http://jazz.external.hp.com/src/scripts/index.html

•The WHILE loops parse HPPATH, appends each MPE group[.acct] element to the filename parameter, and tests to
see of the resulting filename exists.
•If the file exists the WHILE loop stops, the qualified filename is displayed, and the file is printed to $STDLIST with
22 lines per “page”. Otherwise, an error is reported.

•Could be enhanced to work with POSIX named “filename” arguments and POSIX path elements.

•I use this script all the time !
•Example:

:echo !hppath
UDCS,PUB,PUB.SYS,ARPA.SYS,scripts.sys,hpbin.sys
:prnt rem

REM.UDCS.VANCE
ANYPARM cmd
Script that executes a command in a remote session and
returns the CIERROR
and HPCIERR values for that command back to the local
environment.
#
purge rmstatus >$null
. . .

3/4/03

35

March 4 , 2003 P a g e 35

hp e3000

strategy

scan h is tory (redo) s tack

P A R M cmdstr entry=main
Scr ipt scans the redo stack, f rom top-o f -s tack (TOS) , backwards towards the
begining , searching for the 1st c m d l ine that contains " cmdst r“ a n y w h e r e .
i f ' ! en t ry ' = 'main ' then
 listredo ;unn >lrtmp
 # create var iables for each command l ine in the redo stack
 xeq !hpfile "! cmdstr " ent ry= ' l i s t redo ' < lrtmp
 # scan above variables for f i rst match on " cmdstr “
 xeq !hpfile "! cmdstr " ent ry= 'match ‘
 # match or not?
 if _ rdo_ l ine = " " then

 e c h o " !cmdst r" not found in h istory stack.

 e lse
 # do an interact ive command redo feature
 e cho Ed i t command l i ne f o r REDO:
 echo !_ rdo _line
 setvar _ r d o_edit i n p u ()
 while _ rdo_ e d i t < > " " d o
 setvar _ r d o_ l ine edi t (_ rdo _line,_ rdo _edit)
 echo !_ rdo _line
 setvar _ r d o_edit input ()
 endwhi le
 # e xecu te the command
 cont inue
 ! _ r d o _ l i n e
 endif
 deletevar _ r d o_ @
 return

•Available on Jazz at: http://jazz.external.hp.com/src/scripts/index.html

•The REDO and DO commands let you re-execute (and edit) a command from the CI’s history (redo) stack. The size of
this stack is defined by the HPREDOSIZE variable, and the default is 20, meaning the most recent 20 commands are
kept in this area. Commands issued in jobs or from UDCs or scripts are not posted to the history stack. The REDO,
DO, and ERRCLEAR commands are also not posted.

•The LISTREDO command displays the contents of the history stack, starting at the least recent command and ending
at the most recent command. However, when you REDO/DO using a string, the CI searches the history stack
beginning at the most recent command (top-of-stack), looking backwards towards the beginning of the stack. The first
entry found anchored in column 1 with the string parameter supplied to DO/REDO is processed. Thus, if you want to
re-execute the most recent command which ends with “foo”, the CI’s DO/REDO mechanism falls short. But, the RDO
script here works!

•Thanks to Ray Shahan, who provided me a script that scans the history stack and got me interested in this script.

•The “RDO” script uses two alternate entry points (“listredo” and “match”) and a “main” entry.
•The UNN option to the LISTREDO command suppresses command line numbers and thus eliminates some parsing.

•There is a subtle but very important difference in the use of the INPUT command vs. the input() function:

•The INPUT command does not modify the named variable (if it already exists) when the user provides no
input, such as just hitting <return>
•The input() function always returns what the user inputs, and thus, in this usage, causes the variable to
always be set, even if set to a null (empty) value.

•These differences are important in the WHILE loop above. If the INPUT command was used instead of the
input function, when the user just pressed <return> to stop editing the command line, the _rdo_edit variable
would not be modified. Thus, _rdo_edit would contain the last value it had, which could have been the last
edit applied to the command image. This most likely would result in an infinite while loop. Use the input()
function or add ;DEFAULT=“” to the INPUT command to solve this null user input issue.

•:help inputfn show the input() function.
•The edit() function accepts a redo-like edit string and applies it to the first parameter. The result, after applying the
edit, is functionally returned.

•The edited command is executed in this script by explicitly referencing the variable that contains the command image.

3/4/03

36

March 4 , 2003 P a g e 36

hp e3000

strategy

scan h is tory s tack (cont)

elseif ' !entry' = ' l i s t redo ' then
 # F i l l var iab le "a r ray " so redo s tack can be searced f r o m T O S d o w n .
 # Input comes f rom output o f L ISTREDO ; u n n command.
 # Skip TOS redo l ine s ince i t invoked th is scr ipt !
 setvar _ r d o_ x 0
 setvar _ r d o_size f info(hpstdin, 'eof ') -1
 wh i le se tvar (_rdo _x,_ rdo_x+1) <= _ rdo_ s i z e d o
 se t va r _ r d o _ ! _ r d o _x inpu t ()
 endwhi le
 return

elseif ' !entry' = ' m a t c h ' then
 # Find redo entry (now in variable "array") that matches user 's str ing.
 # Search from last array element down to the f i rst . Return _ rdo_ l i n e a s
 # " " for no match, or the matching c m d.
 setvar _ r d o_ t x t d w n s (" !cmdstr ")
 setvar _ r d o_ x _ rdo _s i ze+1
 wh i le se tvar (_rdo _x,_ rdo_x -1) > 0 and &
 p o s (_ rdo_txt,dwns (_ r d o _ ! [_ r d o _x-1])) = 0 do
 endwhi le
 if _ rdo_ x > 0 t h e n
 # match
 setvar _ r d o_l ine _ r d o_ ! _ rdo _ x
 e lse

 setvar _rdo _line "“
 endif
 return
endif

•The “listredo” entry reads input from the TEMP file that contains the output from the LISTREDO command. The
HPSTDIN predefined variable contains the name of the file used to capture LISTREDO’s output. The TOS command
in the history stack is omitted since this command will always be the command that invokes this script.

•Since we want to scan the history file from TOS back towards the beginning, but the order output by LISTREDO is
oldest to newest, we collect each history stack image into a CI variable “array”:

•setvar _rdo_!_rdo_x a-value creates a numbered CI variable which can be easily indexed.

•The “match” entry scans each “array” element in reverse order from how it was created. This gives us our TOS ->
beginning scan direction, which is the same direction used by the CI’s REDO and DO commands.
•The pos() function provides the functionality to match the desired string anywhere in the command image. Of course
we downshift the user’s matching string and each command image before applying the pos() function. The case shift is
done temporarily so that the original image is visible for editing and re-execution.

•If the DELETEVAR in the main entry were commented out you would see the following CI vars created by this
script. Note the format of an “array”.

:showvar _rdo_@
_RDO_X = 2
_RDO_SIZE = 20
_RDO_1 = lf p@.udcs
_RDO_2 = cg udcs
_RDO_3 = diff prnt prnt.scripts.sys
_RDO_4 = diff "prnt prnt.scripts.sys“
_RDO_5 = hped prnt
_RDO_6 = diff "prnt prnt.scripts.sys“
_RDO_7 = copy prnt,.scripts.sys
_RDO_8 = purge prnt
_RDO_9 = lf
_RDO_10 = prnt tok
_RDO_11 = prnt rem
_RDO_12 = shiwvar hppath
_RDO_13 = showvar hppath
_RDO_14 = prnt prnt
_RDO_15 = prnt rem
_RDO_16 = echo !HPPATH
_RDO_17 = lr
_RDO_18 = rdo tok
_RDO_19 = hped rdo
_RDO_20 = lr
_RDO_TXT = udcs
_RDO_LINE = cg udcs

3/4/03

37

March 4 , 2003 P a g e 37

hp e3000

strategy

scan h is tory s tack (cont)

:l istredo

1) listf,6

2) Showt ime

3) run editor

4) run edit.pub.s y s

 5) hpedit rem

 6) listredo ;u n n

 7) show job

 8) m e

 9) s p m e

 10) showproc 0

 11) l istredo

:rdo s y s

Edit command line for REDO:
run edit.pub.sys
 i h p

run hpedit.pub.sys
HP EDIT HP32656A.02.33 (c) COPYRIGHT Hewlett-Packard Co. …
FRI, FEB 28, 2003, 5:21 PM

3/4/03

38

March 4 , 2003 P a g e 38

hp e3000

strategy

• C O M M A N D v s . H P C I C O M M A N D i n t r i n s i c s

• CI programming features :

• c ommands

• var iab les

• expressions

• UDCs and scr ipts

• file layouts

• feature compar isons

• per formance considerat ions

• parameters

• e x a m p l e s

appendix

3/4/03

39

March 4 , 2003 P a g e 39

hp e3000

strategy

COMMAND intrinsic

• COMMAND is a programmat ic sys tem ca l l (in t r ins ic)

s y n t a x : C O M M A N D (c m d i m a g e , e r r o r , p a r m)

• imp l emen ted i n na t i v e mode (NM, PA -R ISC mode)

• use COMMAND fo r s y s t em l e ve l s e r v i c es , l i k e :

• building, altering, copying purging a fi le

• no UDC search (a UDC canno t i n te rcep t “ c m d i m a g e ”)

• no command f i le or impl ied program f i le search

• returns command error number and error locat ion

(for positive p a r m n u m) , or f i le system error number for negat ive p a r m n u m

COMMAND is a user-callable system level API that executes the command passed in as the cmdimage
argument. Cmdimage can name any built-in MPE command including the XEQ command, which
directly executes scripts and program files. Cmdimage cannot name a UDC or imply a script or program
filename. Cmdimage must be terminated with an ASCII carriage return (#13) and cannot exceed 512
bytes, including the CR.

It is recommended to call the COMMAND intrinsic to obtain a system service , such as creating a file,
etc. Other intrinsics may provide the same function, yet it is sometimes easier to call COMMAND since
the programmer is likely familiar with the interactive CI command that provides the desired service.
COMMAND is recommend over HPCICOMMAND in this case since the cmdimage passed to
COMMAND cannot be intercepted by a UDC. For example, to create a new file one could call
COMMAND passing the string: “build filename”. The built-in MPE BUILD command will be executed,
even if there exists a UDC named “BUILD” -- which may do anything, and may not actually create the
file at all.

The error argument returns zero, or a CI error number in case of a command execution error. This is the
same error number reported if cmdimage is executed interactively, and is the value of the predefined
CIERROR JCW/variable. If cmdimage executes with an error or warning there is no indication of this
fact, other than the error return value. Specifically, there is no error message reported to $STDLIST, and
the CIERROR and HPCIERR CI variables are not modified. In fact COMMAND operates by locally
setting the HPMSGFENCE variable to 2, thus suppressing all CI error and warning messages. This is
verifiable by executing SHOWVAR programmatically via the EDITOR, e.g.:

 :showvar hpmsgfence (= 0)
 :editor
 /:showvar hpmsgfence (= 2) Note: a leading “:” causes editor to call COMMAND with the
 string following the “:”. This is common for many programs.

3/4/03

40

March 4 , 2003 P a g e 40

hp e3000

strategy

HPCICOMMAND intrinsic

• HPC ICOMMAND i s an i n t r i ns i c

s y n t a x : H P C I C O M M A N D (c m d i m a g e , e r r o r , p a r m

 [,msgleve l])

• imp l emen ted i n na t i v e mode (NM, PA -R ISC mode)

• use HPC ICOMMAND fo r a “w indow” t o t he C I , e . g . :

• prov id ing a command inter face to a program, “ :cmdname”

• UDCs s ea r ched f i r s t

• command f i le and impl ied program f i les searched

• returns command error number and error locat ion or f i le system error

number.

• M s g l e v e l con t ro l s C I e r ro rs/warn ings - - s imi la r to the HPMSGFENCE

variable

HPCICOMMAND is a user-callable system level API that executes the command passed in as the
cmdimage argument. Cmdimage is identical to that passed to the COMMAND intrinsic, except that it
can name UDCs, scripts and program filenames, in addition to most of the built-in MPE commands. Due
to implementation constraints the following built-in commands cannot be executed via COMMAND or
HPCICOMMAND:
 ABORT, BYE, CHGROUP, DATA, DISMOUNT, DO, EOD, EOJ, EXIT, HELLO, IMF,
 IMFMGR, JOB, LISTREDO, MOUNT, NRJE, REDO, RESUME, RJE, SETCATALOG,
 VSUSER.
However, the remaining 245 CI commands can all be executed programmatically via COMMAND or
HPCICOMMAND.

It is recommended to call the HPCICOMMAND intrinsic as a simple way for a program to provide a
“window” to the CI. It is common for MPE programs to accept a leading colon (“:”) to indicate that
what follows is a CI command to execute, and not a command recognized by the program. A nice feature
of HPCICOMMAND is that it executes UDCs, which makes the “window” to the CI more natural and
powerful for the end user.

The error argument and parm arguments work the same as in COMMAND, except HPCICOMMAND
will set the CIERROR and HPCIERR CI variables to 0, or an error number if the passed in command
fails.

The optional msglevel parameter is unique to HPCICOMMAND and controls the HPMSGFENCE setting
described in the COMMAND notes. By default msglevel is passed as 0, meaning that all CI errors and
warning messages are written to $STDLIST, just as if cmdimage was executed interactively. Msglevel
can be set to any legal HPMSGFENCE value and causes HPCICOMMAND to control error, warning and
some diagnostic output identically to how the CI interprets HPMSGFENCE. Entering HELP hpmsgfence
will show the details.

3/4/03

41

March 4 , 2003 P a g e 41

hp e3000

strategy
• I F , E L S E I F , E L S E , E N D I F branching

E S C A P E , R E T U R N

• W H I L E , E N D W H I L E looping

• E C H O , I N P U T terminal, console, file I/O

• S E T V A R , D E L E T E V A R create/modify/delete/display a variable
S H O W V A R

• E R R C L E A R sets CI error variables to 0

• R U N invoke a program
X E Q invoke a program or script

• P A U S E sleep; job synchronization

• OPT ION r ecu r s i on on l y way to ge t r ecurs ion i n UDCs

common CI “programming”
commands

•The CI supports commands that provide the basic requirements of a programming language: storage, branching/looping and I/O.
The CI expands on these necessities by providing a rich set of predefined variables and functions, many of which are described later.

•There are 270 CI commands as of release 7.5, but the 18 commands above are common in most scripts and UDCs that have any
level of complexity, such that they are considered a “program”.

3/4/03

42

March 4 , 2003 P a g e 42

hp e3000

strategy

CI variables

• 113 predef ined “HP” var iables

• user can c rea te the i r own var iab les v ia :SETVAR

• var iable types are: integer (s igned 32 bi ts) , Boolean and str ing (up 1024 characters)

• var iable names can be up 255 alphanumeric alphanumeric and “_” (cannot start with

number)

• predef ined var iable cannot be de leted, some a l low wr i te access

• : S H O W V A R @ ; H P - - shows a l l predef ined var iab les

• can see user def ined var iables for another job/sess ion (need SM)

• :S H O W V A R @ ; j o b = # S o r J n n n

• the b o u n d () function returns true i f the named variable exists

• var iables deleted when job / session terminates

• :HELP va r iab les and :HELP Var iab leName

•CI variables can be strings (up to 1024 bytes in length), 32 bit signed integers or boolean TRUE/FALSE. There is
not support for 64 bit integers or unsigned 32 bit numbers.

•See the slides on variable arrays for a method to determine the maximum number of CI variables that can be defined.
This maximum is a function of the length of the variable’s name and the length of its value. The longer your variable
names and/or their values the fewer variables can be stored by the CI. A typical range is 8,000 to 9,000 user variables
can be defined.

•A summary of all of the predefined variables is available by entering HELP VARIABLES. The details for a specific
variable can bee seen by entering HELP varname. For example, if you have trouble remembering the new values for
the HPMSGFENCE variable, enter HELP HPMSGFENCE and see:

HPMSGFENCE A variable used by the CI that controls the output for all
CI errors, warnings and skipped commands. Skipped commands refer
to commands that are not executed by the CI because they follow a

 conditional expression that evaluated FALSE.

HPMSGFENCE is divided into 2 fields, 3 bits each in size.
The low order field (bits 29..31) controls the output of CI error and

warning messages as:
0 = display all CI errors and warning
1 = show only errors, warning are suppressed
2 = suppress all CI errors and warning messages.

 The next field (bits 26..28) controls the output of skipped commands and the
 "*** EXPRESSION FALSE: ...", "*** EXPRESSION TRUE: ...", and "***

RESUME
EXECUTION OF COMMANDS" messages:
0 = show all skipped commands and the above "***…” messages
1 = show only the "***..." messages, suppress commands that are

skipped. Integer value is 8.
2 = suppress the skipped commands and the "***...” messages. Integer

value is 16.

Etc…

•HPMAXPIN is new to 7.0 and returns the maximum number of processes supported by your system

3/4/03

43

March 4 , 2003 P a g e 43

hp e3000

strategy

predefined variables

• H P A U T O C O N T - set TRUE causes CI to behave as if each command is protected by a
:continue.

• H P C M D T R A C E - set TRUE causes UDC / scripts to echo each command line as long
as OPTION NOHELP not specified. Useful for debugging.

• H P C P U M S E C S - tracks the number of milliseconds of CPU time used by the process.
useful for measuring script performance.

• H P C W D - current working directory in POSIX syntax.

• H P D A T E T I M E - contains the date/time in
CenturyYearMonthDateHourMinuteSecondMicrosecond format.

• H P D O Y - the day number of the year from 1..365.

• H P F I L E - the name of the executing script or UDC file.

• H P I N T E R A C T I V E - TRUE means $STDIN and $STDLIST do not form an interactive
pair, useful to test if it is ok to prompt the user.

• H P L A S T J O B - the job ID of the job you most recently streamed, useful for a default
parm value in UDCs that alter priority, show processes, etc.

•I rarely use HPAUTOCONT. I prefer to be explicit when I am anticipating that the next command may fail. Also,
there is slight extra overhead with HPAUTOCONT. Lastly, its original value should be saved and re-instated before
the script ends.

•HPCMDTRACE is often useful, despite being overly verbose . There is a simple example that toggles the
HPCMDTRACE value in the “Examples” section of this presentation.

•My CI prompt contains HPCWD, e.g.. :setvar hpprompt “!!hpcwd: “

•I use HPCPUMSECS to measure script performance as follows:
- save its value at script entry
- save its value near the script end
- calculate the time in the script as: end_value - start_value.

•Express 1 of 6.0 added 5 new variables related to the date and time.
- HPDATETIME - is a string that contains “YYYYMMDDHHMMSSMMM”. The value of this

variable is that the date and time are retrieved autonomously, thus you are guaranteed that the time portion of the
variable is not early the next day. Note: currently the microseconds field has only tenths of a second resolution due to
restrictions on the CLOCK intrinsic call.

- HPDOY - an integer variable containing
- HPHHMMSSMMM - current time in hour, minutes, seconds, micro-seconds.
- HPLEAPYEAR - a boolean variable that is true when the current year is a leap year.
- HPYYYYMMDD - a string variable that contains the year, month and date as an autonomous

value.

•HPFILE reduces the need to hard-code the filename of your script, e.g.:
if user-selected-help then
 echo ![hpfile] -- Syntax: …
 …

•HPLASTJOB can be modified which is useful when referencing the HPLASTPSID variable. E.g..
:setvar hplastjob “#J12”
:print !hplastspid.out..hpspool

3/4/03

44

March 4 , 2003 P a g e 44

hp e3000

strategy

predefined variables (cont)

• H P L A S T S P I D - the $STDLIST spoolfile ID of the last job streamed, useful in
:print !hplastspid.out.hpspool

• H P L O C I P A D D R - IP address for your system.

• HPMAXPIN - the maximum number of processes supported on your system.

• H P P A T H - list of group[.acct] or directory names used to search for script and program
files

• H P P I N - the Process Identification Number (PIN) for the current process.

• H P P R O M P T - the CI’s command prompt, useful to contain other info like: !!HPCWD,
!!HPCMDNUM, !!HPGROUP, etc.

• H P S P O O L I D - the $STDLIST spoolfile ID -- if executing in a job.

• H P S T D I N - the filename for $STDIN, useful in script ”subroutines” where input has been
redirected to a disk file

• H P S T R E A M E D B Y - the “Jobname,User.Acct (jobIDnum)” of the job/session that
streamed the current job.

• H P U S E R C A P F - formatted user capabilities, useful to test if user has desired capability,
e.g. if pos(“SM”,hpusercapf) > 0 then

•My HPPATH contains “HPBIN.SYS” so I can run the POSIX programs more easily.

•HPREMIPADDR and HPREMPORT are useful for determining how a user is connecting to your system.

•HPSTREAMEDBY shows the same information as seen at the beginning of the $STDLIST output of a job

•A common way to see if the user has sufficient capabilities is:
:if pos(“SM”,hpusercapf) > 0 then # has SM cap

or

:setvar has_SM (pos(“SM”,hpusercapf) > 0)

•A geek way to see if a user has SM capability is:
:if hpusercap < 0 then # has SM cap,

since sign bit (bit 0) is set
or
:if odd(hpusercap lsr 31) then … # more “geeky”

3/4/03

45

March 4 , 2003 P a g e 45

hp e3000

strategy

CI expressions

• operators:

• + (ints and strings), - , * , / , ^, () , <, <=, >, >=, =, AND, BAND, BNOT,
B O R , B X O R , C S L , C S R , L S L , L S R , M O D , N O T , O R , X O R

• precedence (h igh to low) :

• 1) var iable dereferencing

• 2) unary + or -

• 3) b i t operators (csr , ls l…)

• 4) exponentiation (^)

• 5) *, /, mod

• 6) +, -

• 7) <, <=, =, >, >=

• 8) log ica l operators (not , or…)

• left to r ight evaluation, except exponentiat ion is r - to- l

•:HELP operators and :HELP band, etc. provides additional information.

3/4/03

46

March 4 , 2003 P a g e 46

hp e3000

strategy

• what i s an express ion?

• any var iable, constant or funct ion with or without an operator, e .g:
MYVAR, “a”+”b”, x^10*y/(j mod 6), false, (x > l im) or (input() =“y”)

• partial evaluation:
if t rue or x # “x” s ide not evaluated
if f a l se and x # “x” s ide not evaluated
if bound(z) a n d z > 10 then # i f “z” not def ined i t won’t be referenced

– prob lems when MPEX runs the scr ip t

• whe re can exp ress i ons be used?

• 5 commands that accept implicit var iable re ferences:
:calc, : i f , :elseif, :setvar, :while

• ! [e xp ress ion] c an be used i n any command :
:bui ld af i le; rec=-80; disc= ![100+varX]
:build bfile; disc= ! [finfo(“afile”,”eof”)*3] # file b is 3 times bigger

• e x a m p l e s :

• :print ![input(“Fi le name? “)]

• :setvar reply ups(rtrim(ltrim(reply)))

CI expressions

•Expressions are expected naturally in five CI command (CALC, IF, ELSEIF, SETVAR and WHILE), but they
must be forced to be evaluated in the remaining CI commands. This forcing is done by enclosing the
expression inside square brackets with a leading “!”.

•A powerful feature of CI expression evaluation is what is called “partial evaluation”. Most programming
languages support this concept, which is, performing the minimum level of evaluation needed to determine if a
boolean expression is true or false. Not only does this allow the CI to evaluate expressions more efficiently, it
is necessary for some compound expressions. For example, consider the following expression:

if FALSE and lft(input(“OK to continue?”),1) = “y” then …
If the CI had to evaluate the entire expression then the user would see the prompt and be required to enter input.
Clearly this is not desirable since the expression will be FALSE regardless of the user input, and the user
should not be bothered with the prompt. To my knowledge, MPEX still does not support partial evaluation
with respect to the existence or not of variables. That is, in a statement like:

if TRUE or lft(varA, 1) = “” then …
MPEX evaluates the expression and enforces that “varA” exists, even though the TRUE clause could halt the
left-to-right evaluation. The above expression produces no errors in the CI (regardless of varA’s existence),
thus CI scripts written to exploit partial evaluation may not work correctly in an MPEX environment.

•As will be seen in the examples at the end of this presentation, some expressions can be long and complex.
The motivation for writing expressions this way is purely performance, and sometimes hinders support of the
script.

3/4/03

47

March 4 , 2003 P a g e 47

hp e3000

strategy

CI functions

• funct ions are invoked by the i r name, accept zero or more parms and
return a va lue in p lace of the i r name and arguments

• f i le oriented functions:

• B A S E N A M E , D I R N A M E, F INFO, F S Y N T A X, FQUAL I FY

• string parsing functions:

• ALPHA , ALPHANUM, DEL IMPOS , D W N S , EDIT , LEN, LFT, LTRIM,
NUMERIC , P M A T C H, POS , REPL , RHT , RPT , RTR IM, STR , UPS ,
W O R D , W O R D C N T , X W O R D

• convers ion funct ions:

• CHR , DEC IMAL , HEX , OCTAL , ORD

• arithmetic functions

• ABS , MAX , MIN , MOD, ODD

• job/process functions:

• J INFO, JOBCNT, P INFO

• misc. functions:

• A N Y P A R M , B O U N D , I N P U T , S E T V A R , T Y P E O F

•The CI currently supports 56 functions, over twice as many functions as in the base release of 5.0. However, the CI
only supports predefined functions -- user written functions are unavailable.

•Help is available for all functions by entering HELP functionName. A summary of the CI functions can be seen by
entering HELP FUNCTIONS. To get function help on a function that has the same name as a CI command, enter
HELP function_nameFN, e.g.. HELP setvarFN or HELP inputFN.

•The arguments to a function can be a literal constant, the name of a variable, or another function. When a variable is
used as a function argument, its value will be used as the argument value. However, five functions accept a variable
name but do not evaluate the variable (i.e. they don’t use its value): JINFO, PINFO, SETVAR, WORD and XWORD.

•Functions can be nested, that is, function A can invoke function B to obtain the value for one of function A’s
parameters. The only nesting limit is defined by the size of the CI’s internal buffer that holds the command line --
currently 511 bytes. There is an exception to nesting -- the ANYPARM function is special. Since anyparm() ignores
all delimiters, including all but the last right parentheses, it cannot be nested inside other functions, nor can other
functions be nested within anyparm’s argument.

•DIRNAME(“f.g.a”) “/A/G”

•FSYNTAX(“f.g.a”) “MPE”
FSYNTAX(“./a[c-g]”) “POSIX;WILD”

•FQUALIFY(“f”) “F.GRP.ACCT” or “/CWD/F”
FQUALIFY(“./f”) “/CWD/f”

•DELIMPOS(“a,b;c d”) 2 useful when delimiter is a set of two or more characters

•EDIT(“ab;cd,ef”,”dw”) “;cd ef” full REDO programmatic editing

•PMATCH(“ab”,”abc”) FALSE easy way to add pattern matching
 PMATCH(“ab@”,”abc”) TRUE

•WORDCNT(“a b,c=,d”) 5 test if a variable contains the expected number tokens
(value of ‘c’ is null, but counts as a token -- consistent with word and xword)

•XWORD(“Hi there, Fred”) “there, Fred”

3/4/03

48

March 4 , 2003 P a g e 48

hp e3000

strategy

JINFO function

syntax : JINFO (“[#]S|Jnnnn”, “ i tem” [,s tatus])

where jobID can be “[#]J|Snnn” or “0”, meaning “me”

• 63 un ique i t ems : Ex i s t s , CPUSec , IPAddr , JobQ, Command ,

JobUserAcctGroup, JobState , S t reamedBy, Wa i t ing . . .

• s ta tus parm is a var iab le name. I f passed, C I se ts s ta tus to J INFO error

return - - normal CI error handl ing bypassed

• can see non -sens i t i ve data fo r any job on sys tem

• c a n s e e s e n s i t i v e data on: “you”; on other jobs w/ s a m e

user .acct i f jobsecur i ty is LOW; on other jobs in s a m e

a c c t i f AM cap; on any job i f SM or OP cap

• :help JINFO provides all of the items, security rules and some examples.

• if JINFO (HPLASTJOB, “EXISTS”) then …
 # you know the job exists, at least right now!

• if JINFO (“S543”, “IPADDR”) <> “” then
 # Session 543 is connected via the network

• if JINFO (target_job, “FMTPRIORITY”) = “DQ” then
 # ‘target_job’ is currently in the DQ dispatcher queue

• setvar state JINFO (HPLASTJOB, “STATE”, status)
 while status = 0 and state = “WAIT” do …
 setvar state JINFO (HPLASTJOB, “STATE”, status)
 endwhile

• if JOBCNT(“@J”, list) > 0 then
 while JINFO (word(list), “EXISTS”) do
 setvar list xword(list)
 ….

• while JINFO(hplastjob, ”EXECUTING”) do ...

3/4/03

49

March 4 , 2003 P a g e 49

hp e3000

strategy

JOBCNT function

syntax : JOBCNT (“ j ob_spec” [, j ob l i s t _ va r])

• “ Job_Spec” can be :

• “user.account”

• “jobname ,user .account”

• “@J” , “@S” , “@”

• “ @ J :[jobname ,]user .acct” or “@S:[jobname ,]user.acct”

• wi ldcarding is supported

• use empty jobname (“ ,”) to se lect jobs wi thout jobnames

• omi t jobname to match any jobname

The JOBCNT function returns the number of job/sessions that match the “job_spec”, regardless of the state of the
matching job/sessions. In other words, JOBCNT does not filter based on whether the job is waiting, scheduled,
executing, etc. The function return is valid only for the moment it is returned, as a system’s job/session count can
continually fluctuate.

The “job_spec” parameter allows just jobs or just session to be selected for a given “user.acct” specification. For
example, to find only the jobs logged on as MANAGER.SYS use:
 JOBCNT (“ @J:MANAGER.SYS”)

It is possible to retrieve the job/session IDs for the matching jobs by passing the “joblist_var” parameter. This
unquoted argument names an existing or new CI string variable. It will be set to a list of matching job/session IDs of
the form: J|Snnn, followed by a space, followed by the next ID, etc. For example:
 “S123 S445 J9 S567 J10”

Since CI string variables currently cannot exceed 1024 characters, it is possible that the “joblist_var” passed to
JOBCNT cannot contain all of the matching job IDs. This situation is only detected by comparing the number of
tokens in the “joblist_var” against the function return. For example:

 setvar cnt JOBCNT(“@”,jlist)
 if cnt <> wordcnt(jlist) then ... # not all matching jobs in variable

Assuming three digit job numbers, approximately 204 matches will fit in the “joblist_var” variable. Possible
solutions to this restriction are:

• use separate JOBCNT calls for jobs and sessions

• use separate JOBCNT calls for various target accounts

There are no restrictions on the use of JOBCNT. Any user, regardless of their capabilities, can specify any
“job_spec” and retrieve the matching job/session IDs.

3/4/03

50

March 4 , 2003 P a g e 50

hp e3000

strategy

PINFO function

syntax : PINFO (p in , “ i tem” [,s ta tus])
where PIN can be a string, “[#P]nnn[.tin]”, or a simple integer, “0” is “me”

• 66 unique i tems: A l ive , IPAddr, Parent , Chi ld, Chi ldren, Proctype,

WorkGroup , Seconda ryTh reads , NumOpenF i l e s , P rog ramName , e t c .

• s ta tus parm is a var iab le name. I f passed, C I sets s ta tus to PINFO error

return - - normal CI error handl ing bypassed

• can see non -sens i t i ve da ta fo r any user p rocess on sys tem

• fo l l ows SHOWPROC’s ru l es f o r sens i t i v e da ta

• documented in 7.0 Express 1 Communicator or on Jazz at:
 http://jazz.external.hp.com/papers/Communicator/7.0/exp1/ci_enhancements.html

•:help PINFO provides all of the items, security rules and some examples.

• if PINFO (HPPIN, “Info”) = “PRINT” then …
 # info=“PRINT” was specified for your process...

• if PINFO (547, “IPADDR”) <> “” then
 # This process is connected via the network

• if PINFO (target_pin, “SchedQ”) = “DS” then
 # ‘target_pin’ is currently in the DS dispatcher queue

•walk down process tree:
setvar p PINFO (0, “jsmainPin”)
while p <> 0 do
 setvar p PINFO (p, “child”)
endwhile

•walk up process tree:
setvar p 0
while PINFO (p, “proctype”) <> “JSMAIN” do
 setvar p PINFO (p, “parent”)
endwhile

•find state of each descendant process:
setvar kids PINFO (0, “children”)
setvar kids word(kids,”/”,2) # get rid of count field
setvar k 0
while setvar(p,word(kids,,setvar(k,k+1))) <> “” and PINFO (p, ‘alive’) do
 echo Pin: !p, state=![PINFO (p, “procState”)]
endwhile

3/4/03

51

March 4 , 2003 P a g e 51

hp e3000

strategy

 filename: AUDC.PUB.SYS

header:

body:

e n d - o f - U D C

 header:

body:

UDC file layout

UDCcommandname [parm1] [p2 [= value]]
[ANYPARM parm4 [= value]]
[OPTION option_list]

any MPE command, UDC or script
(option list or option recursion supported in body too)

********** (end of this command definition)

NextUDCcommand [parm1]
[PARM P2, P3 = value]
[OPTION option _list]
any MPE command etc…

•A UDC file contains one or more individual UDCs, separated by an asterisk in column one (characters
right of the asterisk are ignored).

•The header consists of the UDC name (required), zero or more parameters, and zero or more UDC
options.

•The parameter line may immediately follow the UDC name, or can begin on the following line
introduced with the reserved word PARM.

•If ANYPARM is specified it must be the last parameter defined.

•The OPTION line conventionally follows all parameters, though this is not required. Two
options (RECURSION and LIST) may appear in the body as well as the option line.

•The header ends at the first non-PARM, non-ANYPARM, non-OPTION command line.

•The body consists of zero or more commands, where the command can be a comment (#), a UDC, a
built-in CI command, a command file name or a program file name. The body ends when an asterisk is
found in column one. However, a UDC can exit prior to this end point in several ways:

•an error can cause the UDC to terminate

•the :RETURN command exits the UDC

•the :ESCAPE command exits the UDC

•the :EOJ command in a UDC executing in a job

•the :BYE command in a UDC executing in a session

3/4/03

52

March 4 , 2003 P a g e 52

hp e3000

strategy

script file layout

 filename: PRNT.SCRIPTS.SYS

header:

 body:

e o f

 filename: LG.SCRIPTS.SYS

 header:

body:

[PARM parm1, parm2 [= value]]
[ANYPARM parm3 [= value]]
[OPTION option_list]

any MPE command, UDC or script
(:option list or :option recursion supported in body too)

PARM …
OPTION nohelp ...
any MPE command etc...

•A script has the same parts (header, body) as a UDC with a few differences:

•There is no script name in the header -- the script name is the filename, thus if there are any
parameters a PARM or ANYPARM line is required.

•An asterisk does not terminate a script. Thus a file equation can be reference the name of a
script to execute from within a script. For example:

file xy z= /bin/scripts/local-xyz

*xyz parm1 parm2 …

The above “*xyz” works only in a script -- in a UDC, the leading ‘*’ (if it was in column one)
would indicate the end of the UDC command.

3/4/03

53

March 4 , 2003 P a g e 53

hp e3000

strategy

UDCs vs. scripts

• o p t i o n l o g o n

• UDCs on l y (a sc r ip t can be execu ted f rom an “opt ion l ogon” UDC)

• logon UDCs executed in th i s o rder :

– 1 . Sys tem leve l 2 . Account leve l 3 . User leve l
(opposite of the non- logon execut ion order!)

• C I c o m m a n d s e a r c h o r d e r:

• A . UDCs (1 . User l eve l 2 . Account l eve l 3 . Sys tem leve l)

– thus UDCs can overr ide bu i l t - in commands

• B . bu i l t - i n MPE commands , e .g . L ISTF ILE

• C. scr ipt and program f i les . HPPATH var iable used to qual i fy

unqual i f ied f i lenames

• :XEQ command a l lows scr ip t to be same name as UDC or bu i l t - in

command, e .g . : xeq l istf .scripts.sys

3/4/03

54

March 4 , 2003 P a g e 54

hp e3000

strategy

UDCs vs. scripts (cont.)

• p e r f o r m a n c e

• logon t ime:

9 UDC f i l e s , 379 UDCs , 6050 l i nes: 1 / 2 s e c .

most overhead in open ing and ca ta log ing the UDC f i l es

– t o make l ogons f a s t e r r emove unneeded UDCs

• execut ion t ime:
ident ica l (wi th in 1 msec) for s imple UDCs vs scr ipts ,
h o w e v e r :

– factorial script:
 : f ac 12 157 msec

– factor ia l UDC (opt ion recurs ion) :
 : f acudc 12 100 msec

– f i le c lose logging impacts per formance for scr ipts more s ince they
are opened/closed for each invocat ion

Script FAC: UDC FACUDC:

PARM f FACUDC f

compute up to 12 factorial. OPTION RECURSION

if typeof(!f) <> 1 or !f <= 0 or !f >= 13 then if typeof(!f) <> 1 or !f <0 or !f >= 13 then

 echo Expected an integer between 1 and 12. echo Expected an integer between 1 and 12.

 return return

endif endif

if not bound(factor) then if not(bound) factor then

 setvar savecpu hpcpumsecs setvar savecpu hpcpumsecs

 setvar factor 1 setvar factor 1

 echo !f factorial used .… echo !f factorial used …

endif endif

if !f > 1 then if !f > 1 then

 setvar factor factor * !f setvar factor factor*!f

 xeq !hpfile ![!f-1] facudc ![!f-1]

else else

 # all done, report answer and cpu time # all done, report answer and cpu time

 echo ![hpcpumsecs-savecpu] msecs to compute. echo ![hpcpumsecs-savecpu] msecs to...

 echo Answer is: !factor ![octal(factor)] ![hex(factor)] echo Answer is : !factor ![octal(factor)] ...

 deletevar factor deletevar factor

endif endif

3/4/03

55

March 4 , 2003 P a g e 55

hp e3000

strategy

UDCs vs. scripts (cont.)

• m a i n t e n a n c e / f l e x i b i l i t y / s e c u r i t y

• SETCATALOG opens UDC f i l e , canno t ed i t w i thou t un -ca ta log ing f i l e ,
but dif f icult to accidental ly purge UDC f i le

• UDC commands g rouped toge ther in same f i l e , eas ie r to v i ew and
organize

• UDC f i le can be lockword protected but users don’ t need to know
lockwo rd t o e x ecu t e a UDC

• scr ip ts opened wh i le be ing executed (no cata log ing) , can be purged
and ed i t ed more eas i l y than UDCs

• scr ip ts can l i ve anywhere on sys tem. Convent ion i s to p lace genera l
scr ipts in a common locat ion that grants read or eXecute access to a l l ,
e . g . “XEQ .SYS” g roup

• i f scr ipt protected by lockword then i t must be suppl ied each t ime the
scr ipt i s executed

•SETCATALOG user needs to know the lockword, but the the user executing individual UDCs does not ever need to
specify a lockword.

•Note: the POSIX shell’s “mv” command allows a new UDC to overwrite an existing UDC file that is being accessed.
The result of this is that user that just logon see the new UDC file, while users that were cataloged to the original file
see no difference until the re-logon. Once they all re-logon, the old file is purged by the system, since the file open
count went to zero.

3/4/03

56

March 4 , 2003 P a g e 56

hp e3000

strategy

UDC / script exit

• E O F - - real EOF for scripts, a row of asterisks (starting in column 1) for
UDCs

• : B Y E , : E O J , : E X I T - - terminate the CI too, to use BYE or EOJ must be the
root CI

• : R E T U R N - - useful for entry point exit, error handling, help text - jumps back
one call level

• : E S C A P E - - useful to jump all the back to the CI, or an active :CONTINUE.
In a job without a :CONTINUE, :escape terminates the job. Sessions are
not terminated by :escape. Can optionally set CIERROR and HPCIERR
variables to an error number

3/4/03

57

March 4 , 2003 P a g e 57

hp e3000

strategy

parameters

• syn tax : ParmName [= value]

• supply ing a va lue means the parameter is opt ional . I f no va lue is

def ined the parameter is cons idered required.

• max parm name i s 255 by tes , chars A -Z , 0 -9 , “ _”

• max parm value is l imited by the CI ’s command buf fer s ize (current ly

511 charac ters)

• a l l parm va lues are un- typed, regardless of quot ing

• Parms a re separa ted by a space , comma or semico lon

• defaul t va lue may be a: number, str ing, !var iable, ! [expression] , an

ear l ier def ined parm (!parm)

• al l parameters must be expl ic i t ly referenced in the UDC/scr ipt body, e .g.

!pa rmname

• the scope o f a parm is the body o f the UDC/scr ipt

•A parameter and variable can have the same name but this should be avoided to improve support of UDC and scripts

•PARM p1=abc
setvar p1, “xyzzy”
echo P1=!p1 ---> P1=abc
echo P1=![p1] ---> P1=xyzzy

Note: explicit referencing (!x) looks for parameters first, then if no match searches for variables. Implicit referencing
(x) does not look for parameters at all, and only searches for a variable name.

•PARM p1, p2=abc, p3=“def”, p4=1, p5=“1”, p6=true,p7=“false”, p8=!p2, p9=![rht(HPJOBNAME,-2)]

•Argument P1 is required. Argument P8 contains the value of P2. Argument P9 defaults to the value of the
HPJOBNAME variable -- less the first character.

•Internal to the CI all parameter values are stored as strings, but since parameters must be explicitly referenced
(!parmname) their string type is not preserved. Thus, to a CI programmer all parameter values are un-typed:

•calc typeof(p2) = 0 # no meaning since parm p2 was not explicitly referenced (assume no
 variable named P2)

•calc typeof(!p2) = 0 # no meaning (assume no variable named ABC)

•calc typeof(“!p2”) = 2 # string, regardless of p2’s value since value was quoted

•calc typeof(!p4) = 1 # integer

•calc typeof(!p5) = 1 # integer, quotes around default value don’t matter

•calc typeof(!p6) = 3 # boolean

•calc typeof(“!p6”) = 2 # string since I quoted it!

•calc typeof(!p7) = 3 # boolean

3/4/03

58

March 4 , 2003 P a g e 58

hp e3000

strategy • all parameters are passed “by value”, meaning the parm value cannot be
changed within the UDC/script

• a parm value can be the name of a CI variable, thus it is possible for a
UDC/script to accept a variable name, via a parm, and modify that variable’s
value, e.g.

 SUM a, b, result_var SUM is a UDC name
 setvar !result_var !a + !b

:SUM 10, 2^10, x

: showvar x X = 1034

:setvar I 10
:setvar J 12

:SUM i, j , x inside SUM: setvar x, i + j
: showva r x X = 22

parameters (cont)

•Note: inside the SUM UDC the parameters A and B cannot be changed. For example, if
:setvar a,a+1

appeared inside SUM, it would try to create a CI variable named A, but would fail since a job/session global variable
named A does not exist and thus cannot be referenced. If instead,

:setvar a,!a+1
appeared inside the SUM UDC, this would create a new CI variable named A with a value equal to the value of the
parameter A+1. Neither example alters the parameter’s value.

3/4/03

59

March 4 , 2003 P a g e 59

hp e3000

strategy
• al l del imiters ignored

• must be last parameter def ined in UDC/scr ipt

• o n l y o n e A N Y P A R M a l l o w e d

• only way to capture user entered del imiters, without requir ing user to quote

everyth ing

• example :

 T E L L T u s e r

 A N Y P A R M m s g = “ ”

 # prepends t imestamp and h igh l ights msg text

 tel l !user; at !hptimef: ![chr(27)]&dB !msg

 :TELLT op .sys H i , , what ’ s up ; sys tem seems fas t !
 FROM S68 JEFF.UI/3:27 PM: HI,, what’s up; system seems…

• a n y p a r m () funct ion i s use fu l w i th ANYPARM parameters

ANYPARM parameter

•A few examples using ANYPARM and the anyparm function are shown in other parts of this talk, with respect to
capturing an INFO= string.

•The only way to get an ANYPARM parameter value to default to “” (empty string) is as follows:
ANYPARM p = ![“”] # correct
ANYPARM p = “” # wrong - default value is literally the two quote marks

3/4/03

60

March 4 , 2003 P a g e 60

hp e3000

strategy

entry points

• s imple c o n v e n t i o n for execut ing same UDC/script start ing in di f ferent

“sections” (or subroutines)

• a UDC/scr ipt invokes i tsel f recursively passing in the name of an entry

(subroutine) to execute

• the scr ipt detects that i t should execute an alternate entry and skips al l the

code not relevant to that entry.

• most useful when combined with I/O redirect ion, but can provide the

appearance o f gener ic subrout ines

• benef i ts are: fewer scr ipt f i les to maintain, s l ight performance gain since

MPE opens an a l ready opened f i l e fas te r , can use var iab les a l ready

def ined in scr ipt

• UDCs need OPT ION RECURS ION t o u se mu l t i p l e en t r y po i n t s

•There is no limit to the number of entry points, and there is no required order: all entry points can appear in the
beginning of the script, the end or both.

•An entry point is just a programming convention implemented by adding another parameter to the PARM line, and
passing the desired entry point name to the script/UDC when it is invoked. This extra parameter is never explicitly
provided by the user.

•By definition, all scripts and UDCs using alternate entries are recursive.

3/4/03

61

March 4 , 2003 P a g e 61

hp e3000

strategy

entry points (cont)

• two approaches for a l ternate entr ies:

• def ine a parm to be the entry point name, default ing to the main part
of the code (“main”)

• the UDC/scr ipt invokes i tse l f recurs ive ly in the main code, and may

use I/O redirect ion here too

• each en t r y po in t r e tu rns when done (v i a :RETURN command)

 --------------------------- or ---------------------------------

• t es t HPSTDIN or HPINTERACTIVE var iab le to de tec t i f sc r ip t/UDC
has I/O redirected.

• i f TRUE then assume UDC/scr ipt invoked i tse l f .

• l imi ted on ly to ent ry po in ts used when $STDLIST or $STDIN are

redirected

• l imited to a single alternate entry point, may not work wel l in jobs

•My preference is the first approach since it is the most flexible method. In fact, I usually structure my scripts to be
able to work with multiple alternate entry points, even if I need only a single alternate entry at the time the script is
being first written.

3/4/03

62

March 4 , 2003 P a g e 62

hp e3000

strategy

entry points (cont)

• gener ic approach :

P A R M p 1 … en t ry=main # default entry is “main”

i f “ !ent ry” = “main” then

 … ini t ia l ize etc…

 x eq !H P F I L E ! p 1 , … en t r y=go # run same script, different entry

 … c l eanup e tc…

 return

e lse i f “ !en t ry” = “go” then...

 # execute the GO subrout ine . . .

 return

elseif “!entry” = …
 ...

endif

•This shows a script structured so that it can accept multiple alternate entry points.

•There should be little or no code before the if “!entry” = “main” line.

•Notice that RETURN is used to exit the main and all alternate entries. This is not required since the CI will drop out
of the entry block of code, reach the eof and naturally return back to where the script called itself. However,
performance is improved using RETURN in the manner shown above.

•ANYPARM scripts with entries use a slightly different structure and require more parsing:
ANYPARM p1 = ![‘’]
if “!p1” = “” or pos(“entry=“,”p1”) = 0 then
 # main entry for script …..
 xeq !hpfile some parm value entry =do_this
 return
else
 # parse out entry name and execute entry subroutine, entry name is last word
 setvar _entry word(“!p1”,,-1)
 # remove “entry=name” from parm line
 setvar _parm lft(“!p1”,pos(‘entry=‘,”!p1”)-1)
 # case on entry name
 if _entry = “do_this” then …
 return
 elseif _entry = ...
 endif
endif

•UDCs with entries need to specify OPTION RECURSION so that the UDC can invoke itself with the alternate entry
name. OPTION RECURSION can be in the UDC header or a separate CI command.

3/4/03

63

March 4 , 2003 P a g e 63

hp e3000

strategy

entry points (cont)

• i/o redirection specif ic approach:

P A R M p 1 … # no “entry” parm def ined

i f HPSTDIN = “$STDIN” then

 … (“main” entry - - in i t ia l ize etc…)

 x eq !HPF ILE !p1 , … <somef i l e

 … (c l e a n u p e t c …)

 return

e l se # no elseif since only 1 alternate

 # execute the entry to read “somef i le”

 setvar eof F INFO(hpstdin, “eof”)

 …

 return

endif

•Note: the HPSTDIN = “$STDLIST” test above could be replaced with:
if HPINTERACTIVE then…

•This approach to alternate entry points works fine for its limited uses. It does not handle multiple alternate entries
and requires I/O redirection for the single alternate entry.

•In a job you must use the HPSTDLIST test since HPINTERACTIVE is always FALSE.

•If the script itself is run with I/O redirected then both tests (HPSTDIN and HPINTERACTIVE will be inaccurate,
and the generic approach must be used.

3/4/03

64

March 4 , 2003 P a g e 64

hp e3000

strategy

1) p a r s e o u t a l l t o k e n s i n a s t r i n g v a r

2) e x t r a c t t h e f i r s t N t o k e n s f r o m a s t r i n g v a r

3) e x t r a c t t h e l a s t N t o k e n s f r o m a s t r i n g v a r

4) t e s t f o r “ h i ” s o m e w h e r e i n a s t r i n g v a r (o r “LOGON” vs .

“ N O L O G O N ”)

5) c o u n t t o k e n s i n a s t r i n g v a r

6) r e m o v e N t h t o k e n f r o m a s t r i n g v a r

7) r e m o v e N c o n s e c u t i v e t o k e n s f r o m a s t r i n g v a r

string manipulations

setvar x "ab c;de,,fg;hij=k lmn,op=qr”

1) setvar j 0 -or-
setvar j 0

 while j <= len(x) do while setvar(j,j+1)
<= wordcnt(x) do
 setvar tok word(x, , , j, j+1) setvar tok word(x, , j)
 endwhile endwhile
 2136 msec for 500 iterations 2298 msec
 -or-

 # below fails on a null token, but otherwise is simple:
 setvar j 0
 while setvar(tok, word(x, ,setvar(j,j+1))) <> “” do
 endwhile
 1686 msec

2) setvar toks lft(x, delimpos(x, , N)-1) -or- setvar j 0 and setvar toks ‘’
 # note the var toks includes the delimiters while setvar(j,j+1) <= N do
 between the individual tokens setvar toks toks + word(x,,j) + “ “

endwhile

note toks may not contain the original delimiters

3) setvar toks rht(x, -delimpos(x, , -N)-1) -or- setvar j 0 and setvar toks ‘’
 # same notes as for 2) while setvar(j,j+1)
<= N do

 setvar toks word(x,,-j) + “ “ + toks

endwhile

4) pos(“hi”,x) is potentially wrong. What if you want only “hi” and not “high”?
 if word(x, , , ,pos(“hi”,x)) = “hi” then …

5) setvar cnt wordcnt(x)

3/4/03

65

March 4 , 2003 P a g e 65

hp e3000

strategy

• M P E /iX v e r s i o n

• s y n c h r o n i z i n g j o b s v i a t h e P A U S E c o m m a n d

• c u r r e n t w o r k i n g d i r e c t o r y (C W D)

• i n f o = e x a m p l e s a n d a n y p a r m

• r a n d o m n a m e s (f i l e n a m e s , p a s s w o r d s)

• c o m p o u n d v a r i a b l e s a n d v a r i a b l e “ a r r a y s ”

• C I “ g r e p”

• “ w h e r e ” i s a c e r t a i n c o m m a n d ?

• “ s t r e a m ” U D C f o r e a s y u s e o f j o b q u e u e s

more examples

3/4/03

66

March 4 , 2003 P a g e 66

hp e3000

strategy

MPE vers ion

• PARM ve r s_pa rm=!hpre l v e r s i on “Vers ” script

react to MPE vers ion str ing

se t va r ve r s " ! v e r s_parm”
convert to integer , e .g . . "C.65.02" => 6502

setvar vers str(vers,3,2) + rht(vers,2)

setvar vers !vers

i f vers >= 7000 then

 e cho On 7 .0 !

e lse i f vers >= 6500 then

 e cho On 6 .5 !
e lse i f vers >= 6000 then

 e cho On 6 .0 !

endif

•The CI does not support a direct mechanism to let the programmer know if a certain command, function, variable or
other new feature is present on the system at hand. The bound() function lets you test for the existence of any variable
prior to referencing it. It is trickier to test for the existence of a function prior to invoking it. Thus, it may be
necessary to test the MPE OS version prior to using a new feature. However, the CI version variables only reflect what
the version strings displayed by the :SHOWME command. Thus, as you are aware, the version granularity is
sometimes lacking.

•:showvar @vers@
HPOSVERSION = C.70.00
HPRELVERSION = C.70.01
HPVERSION = X.70.11

• :vers
 On 7.0!

 :vers C.65.01
 On 6.5!

3/4/03

67

March 4 , 2003 P a g e 67

hp e3000

strategy

synchron i ze j obs

! JOB j ob0…
!limit +2

!stream job1

!pause j o b = ! h p l a s t j o b

!stream job2

!errc lear

!pause 600, !hplastjob
!if hpcierr = -9032 then

! te l lop Job ”!hplast job” has exceeded the 10 minute l imit

! e o j

!endif

!stream job3

!pause job=!hplast job; W A I T

! input reply, “’Reply ‘Y’ for !hplastjob”; readcnt=1; C O N S O L E
! i f dwns(reply) = “y” then

 . . .

•The job limit is increased by 2.

•The 1st pause sleeps until the job just streamed (job1) completes.

•The 2nd pause sleeps until job just streamed (job2) completes or 10 minutes, whichever happens first. CIERR 9032 is
reported if the pause expires and the job is still alive.

•The 3rd pause sleeps while job3 is introduced or waiting. As soon as job3 starts executing (or terminates, if it is a
short lived job) the pause expires.

•The INPUT command displays a message to the system console and waits for a reply. INPUT will only accept a 1
character response from the operator, in this example. Syntax:

INPUT [NAME=]varname

 [[;PROMPT=]prompt] [[;WAIT=]seconds]

 [[;READCNT=]chars] [[;DEFAULT=]default_str]

 [;CONSOLE]

•HPCIERR shows positive CI errors and negative CI warnings. CIERROR = abs(hpcierr)

3/4/03

68

March 4 , 2003 P a g e 68

hp e3000

strategy

new loca t i on (g roup , CWD)

• CD sc r ip t

PARM dir=“”

setvar d “!dir”

“ - ” means go to pr io r CWD

if d = ‘ - ’ and bound(save_chdir) then

 se t va r d save_chd i r

elsei f fsyntax(d) = “MPE” then # MPE s yn t a x ?

 if finfo(“./”+d, “exists”) then # HFS dir?

 setvar d “./” + d

 elseif finfo(“. ./”+ups(d), “exists”) then # M P E g r o u p ?

 setvar d “. ./” + ups(d)

 elseif f info(ups(d), “exists”) then # M P E d i r n a m e ?

 setvar d ups(d)

 endif

endif

s e t v a r s a v e _ c h d i r H P C W D

chdir !d

•The HPCWD variable contains your current working directory in POSIX syntax. Your current directory is the same
as your logon group until you explicitly change it via the CHDIR CI command.

•CD script hierarchy is: 1) dirname as is, 2) ./+dirname, 3) group name (“../”+dirname) 4) uppercase MPE dirname
Note: the CHGROUP command also changes your CWD; whereas, the CHDIR command does not alter your logon
group. CHGROUP has security implications since it can give you GU (group user) file access. There are no security
implications with CHDIR.

•cd - changes your current directory to the previous directory you’ve CD’d to.
• CD examples:

(assume CWD = /SYS/PUB)
:cd ../NET # CWD=NET.SYS
:cd - #

CWD=PUB.SYS
:cd /TELESUP/PRVXL # CWD=PRIVXL.TELESUP
:cd #

CWD=PUB.SYS
:cd foo # CWD=/SYS/PUB/foo
:cd .. #

CWD=PUB.SYS
:cd net # CWD=NET.SYS

3/4/03

69

March 4 , 2003 P a g e 69

hp e3000

strategy

• A N Y P A R M i n f o = ! [" "] # “anyrun” script
run voluti l .pub.sys; info=”: ! in fo"

• :anyrun echo "H i there !”
run volutil.pub.sys;info=”:echo "Hi there!""

^
Expected semicolon or carriage return. (CIERR 687)

• A N Y P A R M i n f o = ! [" "]

setvar _inf repl(' ! info', ' " ' , ' " " ') # double up quotes in :RUN
run volutil.pub.sys;info=”:!_inf "

• :anyrun echo "H i there !”
Volume Utility A.02.00, (C) Hewlett-Packard Co.,
1987. All Rights...
volutil: :echo "Hi there!”
"Hi there!”

• i s t h i s c o r r e c t n o w ?

INFO= example

•Shows how to set an ANYPARM parameter to null, which is not intuitive! If an ANYPARM parameter is defaulted
to “” the quotes are accepted literally as its default value.

•This example does not handle both kinds of quotes in the info= string.
•This example does not handle single quote mark in the REPL function call.

3/4/03

70

March 4 , 2003 P a g e 70

hp e3000

strategy
• A N Y P A R M i n f o = ! [" "]

setvar _ inf anypa rm (! info) # note info parm is not quoted
setvar _inf repl(_inf , ' " ' , ' " " ')

run volutil.pub.sys;info=”:_!inf ”

• :anyrun echo "Hi there, ‘buddy’ !”
Volume Utility A.02.00, (C) Hewlett-Packard Co., 1987.
All Rights...
volutil: :echo "Hi there, ‘buddy’!”
"Hi there, ‘buddy’!”

INFO= example (cont)

•Do not quote the parameter being passed to the anyparm() function.

•Note: the anyparm() function has some special considerations:

•it cannot be nested inside other functions, e.g.
lft(anyparm(!parm), x) is NOT supported

•it cannot be combined with other expressions, e.g.
anyparm(!parm) + chr(x) is NOT supported.

•anyparm() must be the only function in the expression
•:help anyparm has more details; :help functions shows all of the CI functions.

3/4/03

71

March 4 , 2003 P a g e 71

hp e3000

strategy

random names

• PARM varname, minlen=4, maxlen=8
This script returns in the variable specified as "varname" a `random’
name consisting of letters and numbers - cannot start with a number.
At least "minlen" characters long and not more than "maxlen" chars.

expression for a `random' letter:
setvar letter "chr((hpcpumsecs mod 26) + ord('A'))”

expression for a `random' number:
setvar number "chr((hpcpumsecs mod 10) + ord('0 '))"
first character must be a letter
setvar !varname !letter

now fill in the rest, must have at least "minlen" chars , up to "maxlen"
setvar i 1
setvar limit min((hpcpumsecs mod !maxlen) + !minlen, !maxlen)
while setvar(i,i+1) <= limit do
 if odd(hpcpumsecs) then
 setvar !varname !varname + !letter
 else
 setvar !varname !varname + !number
 endif
endwhile

•Script on jazz at: http://jazz.external.hp.com/src/scripts/randname.txt

•This example shows a script returning a value via a passed in variable.

•Shows using HPCPUMSECS to get a sort of pseudo random number.
•Breaking down the line: setvar letter "chr((hpcpumsecs mod 26) + ord('A'))”

•HPCPUMSECS returns some large number

•mod 26 returns a number in the range of 0..25
•ord(“A”) is 65 and is the decimal number of the letter “A” (uppercase)

•chr(0..25 + 65) is chr(65..90), which is one of the letters A..Z

•The same logic applies to the “number” line above.
•The LIMIT line is evaluated as (using the parameter default values):

• (hpcpumsecs mod 8) is a number in the range of 0..7

• + minlen makes the number in the range 4..11
• min(4..11, 8) returns a pseudo random number in the range of 4..8, which is exactly what is desired.

•The WHILE loop iterates “limit-1” times, filling in the 2nd through “limit” characters in the name. If the
HPCPUMSECS value is odd at this moment we append to the name a “random” letter, else a “random” number is
appended.
•It would be nice to have a pseudo random number and name generator in the CI core, IMO!

3/4/03

72

March 4 , 2003 P a g e 72

hp e3000

strategy

• :setvar a “ ! !b” # B is not referenced, 2!’s fold to 1

• :setvar b “123”

• : showvar a , b A = “!b” B=123

• :echo b is !b, a is !a b is 123, a is 123

• :setvar a123 “xyz”

• : echo Compound va r " a ! !b " : !" a !b” C o m p o u n d v a r " a !b " : xyz

• :setvar J 2
:setvar VAL2 “bar”
:se tvar VAL3 “ foo”

• :ca lc VAL!J b a r

• :ca lc VAL! [J] b a r

• :ca lc VAL! [d e c i m a l(J)] b a r

• :ca lc VAL! [s e t v a r (J ,J+1)] foo

compound variables

•The CI allows two or more variable names to be concatenated to form a new variable name, and to reference the value of this
derived variable.

•A common application of compound names is variable arrays, discussed next.
•The value of a variable can reference another variable, e.g..

:setvar color “red”
:setvar bg “!!color”
:showvar bg
BG = !colorBG = !color
:echo 123 !bg 456
123 red 456123 red 456

•Explicit variable referencing resolves all levels of recursion; thus :showvar X and :echo !X will not produce the same result
when X is set to “!!name” of another variable.

3/4/03

73

March 4 , 2003 P a g e 73

hp e3000

strategy

• s imple convention us ing s tandard CI var iab les

• va rname0 = number o f e lements in the array

v a r n a m e 1 … v a r n a m e N = array e lements , 1 . . !v a r n a m e 0

v a r n a m e!J = n a m e of element J

! ”varname !J” = va lue of element J

• :showvar buf fer@

BUFFER0 = 6
BUFFER1 = aaa
BUFFER2 = bbb
BUFFER3 = ccc
BUFFER4 = ddd
BUFFER5 = eee
BUFFER6 = fff

variables arrays

•CI does not formally support arrays, but this simple convention works well. The technique also support heterogeneous arrays.

•Max number of CI variables depends on the length of the variable name and the size of its value.

•In 7.5 an approximate maximum number of user variables is 10,800 unique variables. This is derived as follows:
deletevar @
setvar z 0
while true do
 setvar z z+1
 setvar zz 0
 while setvar(zz,zz+1) <= 26 do
 setvar ![chr(ord(“A”)+zz-1)]!z true # A1, B1, C1… Z1 followed by
 endwhile

A2, B2, C2…Z2 etc.
endwhile

Executing this script fills the variable table, evident by the CI error reported below:
Symbol table full: addition failed. To continue, delete some variables, or start aSymbol table full: addition failed. To continue, delete some variables, or start a
new session. (CIERR 8122)new session. (CIERR 8122)
:calc ((z-1)*26)+zz+2 (the +2 is for the two local vars z, zz)
1080410804, $2A34, %25064

•An approximate more typical maximum number of user variables on 7.5 is: 8,347 unique variables, derived as:
deletevar @
setvar z 0
setvar name ‘!![rpt(chr((hpcpumsecs mod 26)+ord("A")),(hpcpumsecs mod 14)+2)]’
 # var names begin w/ A-Z, from 2..15 chars long
setvar value ‘!![rpt(chr((hpcpumsecs mod 26)+ord("A")),(hpcpumsecs mod 60)+1)]’
 # var values begin w/ A-Z, from 1 to 60 chars long
while true do

 setvar !name![setvar(z,z+1)] “!value”
endwhile

:calc z+3 # + 3 for local variables: z, name, and value
 83478347, $209B, %20233

3/4/03

74

March 4 , 2003 P a g e 74

hp e3000

strategy

• center ing output:

PARM count=5 “C e n t e r” script
setvar cnt 0
while setvar(cnt,cnt+1) <= !count do

 setvar str ing!cnt ,input("Enter string ! cnt: ")
endwhile

setvar cnt 0
while setvar(cnt,cnt+1) <= !count do

 echo ![rpt(" ",39-len(string!c n t))]!"string!c n t”
endwhile

:center

Enter string 1: The great thing about Open Source
Enter string 2: software is that you can
Enter string 3: have any color
Enter string 4: "screen of death”
Enter string 5: that you want.

The great thing about Open Source
 software is that you can
 have any color
 "screen of death”
 that you want.

variable array example

•The “center” script shows generically the following:

•how to create a CI variable “array”

•how to access a variable “array”
•the !”literal!name1” construct, which allows compound variable names to be referenced. If literal = FOO,
name1 = FUM and FOOFUM = 23 then

!”literal!name1” = !”FOO!name1” = !”FOOFUM” = !FOOFUM = 23

•![rpt(“ “, fieldWidth - lenOfVar)] puts the correct number of blanks before echoing the field’s value.
•Specifically, the “count” parameter is the number of elements in the “array”.

•string!cnt, where cnt is from 1..5, defines each element in the “array”.

•!”string!cnt” references the value of each element in the “array”.
•The rpt() function places the correct number of spaces before each line is echoed.

(The Open Source quote comes from Gavin Scott, Allegro Consultants, June ‘01 from the HP3000-L list.)

3/4/03

75

March 4 , 2003 P a g e 75

hp e3000

strategy

filling variables arrays -- wrong!

• e x a m p l e 1 : # array name is “ rec”

setvar j 0
setvar looping true
whi le looping do
 input name, “Enter name “
 i f name = “” then
 setvar looping false
 else
 setvar j j+1

 setvar rec !j n a m e
 endif
endwhi le
setvar rec0 j

• :xeq exmpl1

• in f in i te loop! , won’t end until <b r e a k >

•The previous “center” example had the size (or number of elements) of the array defined and thus hard-coded. This example is more
general, in that, the size of the “array” is determined based on user input. In this case, when the user just presses <return>, meaning
no more input, that defines the size of the array. These arrays can be very dynamic, limited only by the maximum number of
variables supported by the CI – defined elsewhere in these slides.

•To fix the infinite loop bug the variable “name” needs to be cleared or deleted inside the while loop. Recall that the INPUT
command does not change the value of the variable if it times out or if the input value is null (“”). Thus we need to :deletevar name
each iteration, or set it to “”, or use the input() function. Recall that the input() function returns an empty string, “”, if it times out or
if the user just presses <return>.

•Syntax: INPUT [NAME=]varname
 [[;PROMPT=]prompt] [[;WAIT=]seconds]
 [[;READCNT=]chars] [[;DEFAULT=]default_str]
 [;CONSOLE]

•The variable, , will always be created by INPUT if it does not yet exist.
Varname's value is typically the exact value entered as a response by the user;
however, if the user enters no response (either by just pressing the enter key, or via
the INPUT read expiring) varname's value is determined as follows:

 - if a DEFAULT= value is provided that becomes the value for varname.
 - if no DEFAULT= is specified and varname already exists it is not changed.

 - if no DEFAULT= is specified and varname does not exist it is created with a
value of "" (empty string).

3/4/03

76

March 4 , 2003 P a g e 76

hp e3000

strategy

filling variables arrays (cont)

• e x a m p l e 2 :
setvar j 0
setvar looping true
whi le looping do

 se t va r NAME “”
 input name, “Enter name “
 if name = “” then
 setvar looping false

 else
 setvar j j+1

 setvar rec !j n a m e
 endif
endwhile
setvar rec0 j

• :xeq exmpl2 <datafi le (dataf i le has 20 text records)

(“enter name” prompt shown 20 t imes sn ipped…)

End of f i le on input. (CIERR 900)

 input name, "enter name “

Error execut ing commands in WHILE loop. (CIERR 10310)

•Script as written works fine interactively!

•Works correctly if a line in DATAFILE is empty (but it must be variable width file)

•Otherwise, if datafile is fixed ASCII, you will see the “Enter name” prompt 20 times (no crlf) and get eof error on INPUT, as shown
in the slide.

•The next slide shows how to modify this script to work correctly when $STDIN is redirected and still function as expected when
invoked interactively.

3/4/03

77

March 4 , 2003 P a g e 77

hp e3000

strategy

filling variables arrays (cont)

• e x a m p l e 3 ;
setvar j 0
i f H P I N T E R A C T I V E t h e n
 setvar prompt “’Name = ‘”
 setvar limit 2^30

 setvar test ‘name= “” ‘
e l se
 setvar prompt “”
 setvar l imit F INFO (HPSTDIN, ”eof”)

 setvar test “false”
endif

 whi le (j < l imit) do
 setvar name “”
 input name , !prompt
 i f ! test then
 setvar limit 0 # exi t interact ive input
 else
 setvar j j+1
 s e t v a r r e c!j n a m e
 endif
endwhile
setvar rec0 j

•Don’t want blank lines in datafile to stop while loop, so we don’t test for “” in the redirected case.

•Each variable, rec!j, is 80 bytes long -- no blanks were stripped. This may be fine, or you can use the rtrim() function to remove the
trailing spaces.
•Shows how you can make a dynamic CI command line, e.g.. if !test then ...

•Shows finfo(), HPINTERACTIVE and HPSTDIN.

3/4/03

78

March 4 , 2003 P a g e 78

hp e3000

strategy

filling variables arrays (cont)

• :xeq exmpl3 <datafi le

• : showvar rec@
REC1 = line1
REC2 = line2
…
REC20 = line20
REC0 = 20

• per fo rmance :

• Script as is: 100 records: 530 millisecs530 millisecs

• Script modif ied for f i le input only (shown in notes):

100 records : 380 millisecs380 millisecs

•The script as written works correctly for both interactive and redirected environments; however, the most common usage is when
input is redirected to a file. The next slide shows the script optimized for file input.

•Here is the modified version of example 3 to handle only file input:

setvar j 0
setvar limit FINFO (HPSTDIN, ”eof”)
while (j < limit) do
 setvar name “”
 input name , !prompt
 setvar j j+1
 setvar rec!j name
endwhile
setvar rec0 j

3/4/03

79

March 4 , 2003 P a g e 79

hp e3000

strategy

filling variables arrays (cont)

• can we f i l l arrays (and read f i les) faster?

• e x a m p l e 4 :

setvar rec0 0
setvar l imi t F INFO (HPSTDIN, ”eof”)
while setvar(rec0, rec0+1) <= l imit and &
 se tvar (rec! [rec0+1] , input()) <> chr(1) do
endwhi le
setvar rec0 rec0-1

• per formance (:xeq exmpl4 <datafi le) :

• 100 records: 185 mi l l i secs (twice as fast!)

• Is rec0 being incremented TWICE in the while loop?

• No. Explicit referencing, ![rec0+1], is performed by the CI before the command name is even known to be “WHILE”. Thus, the
command actually processed by the WHILE CI code is:

setvar(rec0, rec0+1) <= limit and setvar(!rec1, input()) <> chr(1)
Note: if rec![rec0+1] was replaced with rec!rec0, as I originally wrote the test script, then the loop counter and array high water mark
(rec0) would be overwritten by the first record in the input file.

• This version of the script is twice as fast with just a little thought.

• Shows the input() function.
• Shows empty WHILE body.

• The test against chr(1) is arbitrary but needed to have an empty while body.

3/4/03

80

March 4 , 2003 P a g e 80

hp e3000

strategy

CI grep
• PARM pattern, f i le, entry=main

This script implements unix $grep - in <pat te rn> < f i le>.

se t va r savecpu hpcpumsecs

if ' !entry' = 'main' then

 e r rc lear

 s e t va r _g rep_matches 0

 if not finfo('!file', 'exists') then

 echo Fi le " ! f i le " not found.

 return

 endif

 cont inue

 xeq !HPFILE !pattern ! f i le entry=read_match <! f i le

 echo ! [hpcpumsecs -savecpu] msecs …

 echo ! _grep_eo f records read - - ! _grep_matches l ines match " !pat te rn”

 d e l e t e v a r _ g r e p _ @

 return

 . . . (continued on next slide)

3/4/03

81

March 4 , 2003 P a g e 81

hp e3000

strategy

elseif ' !entry' = 'read_match' then

 # f inds each "pat te rn " in " f i l e " and echoes the record + l ine num

 # input redirected to " ! f i le”

 setvar _grep_eof f in fo(" ! f i le " , "eof ")

 se tvar _grep_recno 0

 setvar _grep_pat ups(" !pat tern ")

 whi le se t var (_grep_recno ,_grep_recno+1) <= _grep_eo f and &

 setvar(_grep_rec, rtr im(i npu t ())) <> chr(1) do

 i f pos(_grep_pat ,ups(_grep_rec)) > 0 then

 e cho ! _g r ep_ recno) ! _ g r ep_ rec

 s e t va r _g rep_matches _g rep_matches+1

 endif

 endwhi le

 return

endi f

• 4667 msecs …

1669 records read -- 18 lines match "version”

• 4627 msecs …
1669 records read -- 0 lines match "foo"

CI grep (cont)

•It takes approximately 4.6 seconds to read, upshift and find a string literal in a 1669 record ascii file, and
approximately 123 seconds to so the same in a 45,149 record file.

•xeq grep.hpbin.sys “-in pattern file” is much faster for large files! The GREP program in HPBIN.SYS does not
support CI or shell wildcarding. If you need to grep a pattern on a set of files start grep from the shell.

3/4/03

82

March 4 , 2003 P a g e 82

hp e3000

strategy

where is a “cmd”?

PARM cmd=“”, entry=main
This script finds all occurrences of "cmd" as a UDC, script or program in
HPPATH. Wildcards are supported for UDC, program and command fi le names.
Note: a cmd name like "foo.sh" is treated as a POSIX name, not a qualified
MPE name.
if "!entry" = "main" then
 errclear
 setvar _wh_cmd " !cmd”
 if del impos (_wh_cmd,”/.") = 1 then
 echo WHERE requires the POSIX cmd to be unqualif ied.
 return
 endif

 # see if the command could be a UDC (wildcards are supported)
 setvar _wh_udc_ok (del impos (_wh_cmd,'._') = 0)
 # see if the command could be an MPE filename (wildcards ok, and
 # MPE names cannot be qualified at all)
 setvar _wh_mpe_ok (de l impos(_wh_cmd,'._') = 0)
 ## Al l command values are assumed to be ok as a POSIX f i lename.
 ## The dash (-) char is excluded above since it could be in a [a-z] pattern

 . . . continued . . .

The where script combines many CI programming ideas: multiple entry points are used with input redirection, two
forms of file I/O are used, several newer CI function are called, output is aligned in columns, and several more
complex CI expressions are encountered. Plus, this script has proven valuable to me and others in CSY numerous
times. The next few slide notes will go over some of the more salient points of the where script.
where can be found on Jazz at: http://jazz.external.hp.com/src/scripts/where.txt

•the PARM line allows the “cmd” argument to default to “”, in which case a usage statement is displayed. The by-
convention “entry=main” argument is used to handle alternate entry points, with the default entry being named “main”.
The user of where will never specify this parameter.
•the ERRCLEAR command is invoked to set CIERROR, HPCIERROR, FSERROR, and HPCIERRCOL predefined
variables to 0.

•the delimpos() function is invoked several times and is better than using pos() when two or more characters are being
checked. For instance, it is more efficient to code:

if delimpos(var,”abc”) > 0
which tests if an “a” or “b” or “c” appears in var, than to code:

if pos(“a”,var) > 0 or pos(“b”,var) > 0 or pos(“c”,var) > 0

•intentionally, there are separate tests to see if the “cmd” parameter could potentially be a UDC and/or a MPE named
file. Currently, these tests are identical; however, over time the rules may change and this script will be easier to
maintain in that event.
•all values of “cmd”, at this point, are assumed to be a legal POSIX filename. Later, the fsyntax() function will be
called to ensure that “cmd” is a legal filename.

3/4/03

83

March 4 , 2003 P a g e 83

hp e3000

strategy

where (cont)

. . .
 # check for UDCs first
 i f _wh_udc_ok then

 continue
 showcatalog >whereudc

 if cierror = 0 then
 xeq !hpf i le !_wh_cmd entry=process_udcs <whereudc

 endif
 endif

 # Now check for command/program files

 i f word(setvar(_wh_syn,f s yn t a x (“./”+_ w h _ c m d))) = “ERROR” then
 # il legal name, could be a longer UDC name, in any event there

 # no need to check for command/program files.
 deletevar _wh_@

 return
 endif
 setvar _wh_wild pos("WILD",_wh_syn) > 0

 . . . continued . . .

•now, assuming “cmd” could be a UDC name, the SHOWCATALOG command is executed with output redirected to a
TEMP file named “whereudc”.

•If SHOWCATALOG worked without error, the where script invokes itself recursively, via the XEQ command, to
display relevant UDC information. The predefined HPFILE variable contains the fully qualified name of the current
script, and is used here in case the next author decides to use a different filename. This allows the script filename to
not be hard-coded into the script.

•the XEQ command invokes, via HPFILE, the script again, passing the same “cmd” value as the first argument. An
alternate entry point is passed as the second parameter, via the by-convention usage of “entry=“. Input to where is
redirected from the file that the SHOWCATALOG command created.
•the fsyntax() function is called after processing UDCs since a UDC name can be longer than a valid MPE filename.
Also, the where script expects that all names, even POSIX command names, to be passed in unqualified. There are not
explicit checks for qualified MPE names (f.g.a) since it is ambiguous if a name such as “foo.sh” is the name of a shell
script, or a partially qualified MPE name. Since the user of this script is not expected to use the “MPE-escaped”
syntax for POSIX names, a “./” is prepended to the “cmd” name that is parsed by fsyntax().
•if there is a syntax error the script exits via the RETURN command.

•a variable is set to true if there are any wildcard characters in the “cmd” value. In general, if an expression evaluates
to a boolean (true or false) it can be used to directly set the value of a variable. For example:

setvar x (a > b)
is more efficient than:

if (a > b) then
 setvar x true
else
 setvar x false
endif

3/4/03

84

March 4 , 2003 P a g e 84

hp e3000

strategy

where (cont)

. . .
 # loop through hppath
 setvar _wh_i 0
 while setvar(_wh_tok,word(hppath ,”,; “,setvar(_wh_i ,_wh_i+1)))<>”” do
 if delimpos(_wh_tok,”/.”) = 1 then
 # we have a POSIX path e lement
 setvar _wh_tok " !_wh_tok/!_wh_cmd”
 elseif _wh_mpe_ok then
 # we have an MPE syntax HPPATH element with an unqualif ied _tok
 setvar _wh_tok " !_wh_cmd. !_wh_tok”
 endif
 errclear
 i f _wh_wild then
 continue
 listfile !_wh_tok,6 >prntlf
 elseif finfo(_wh_tok,'exists') then
 # write to same output file as listfile uses above
 echo ![fquali fy(_wh_tok)] >prntlf
 else
 setvar hpcierr -1
 endif
 if hpcierr = 0 then
 xeq !hpf i le !_wh_tok entry=process_listf <prntlf
 endif
 endwhi le
 deletevar _ w h _ @
 return

 . . . continued. . .

•this slide shows the end of the “main” entry code in the where script.

•here is the loop that parses each element in HPPATH, tests to see if a file exists based on the “cmd” value and the
extracted element from HPPATH, and invokes an entry “subroutine” to display the filename and other file attributes.
•the word() function extracts a token from HPPATH based on the defined delimiters of a comma, semicolon or a space.
The word counter/index (_wh_i) is incremented inside the argument to word(), which is not necessary, but more
convenient and slightly more efficient.

•the delimpos() function is used to see if the extracted HPPATH element is an MPE name or a POSIX name. POSIX
elements are prepended to the “cmd” value and MPE path elements are appended to “cmd”.
•if the “cmd” value was wildcarded, e.g. “grep@”, then the LISTFILE command lists the full filenames to disk.
Otherwise, the non-wildcard name is qualified by calling the fqualify() function, and written to the same output file
used by LISTFILE. This allows a single entry routine to do all of the formatted output for a file.

•XEQ and HPFILE are used again to invoke the script recursively, this time passing the “process_listf” entry name,
and redirecting input to a file that contains the equivalent of a LISTFILE,6 output.

•regardless of success or failure, all _wh_@ variables are deleted and control returns to the invoker of the script. In
this script the two TEMP files are not purged and the file equation, seen later, is not reset. For scripts with more
complex cleanup, I often use an alternate entry point specifically for doing all of the cleanup. This entry is invoked in
place of executing a simple RETURN.

3/4/03

85

March 4 , 2003 P a g e 85

hp e3000

strategy

where (cont)
 …

elsei f " !entry" = "process_udcs" then
 # input redirected from the output of showcatalog

 setvar _wh_udcf rtrim(input())
 setvar _wh_eof finfo(hpstdin,”eof”) -1
 while setvar(_wh_eof,_wh_eof-1) >= 0 do

 if lft(setvar(_wh_rec,rtrim(input())),1) = " " then
 # a UDC command name l ine

 if pmatch(ups(_wh_cmd),setvar(_wh_tok,word(_wh_rec))) then
 # display: UDC_command_name UDC_level UDC_f i lename
 echo !_wh_tok ![rpt(" ",26-len(_wh_tok))] &

 ![setvar(_wh_tok2,word(_wh_rec,,-1))+rpt(" ",7-len(_wh_tok2))] &
 UDC in !_wh_udcf

 endif
 else

 # a UDC filename line
 setvar _wh_udcf _wh_rec
 endif

 endwhi le
 return

•this is the “process_udcs” entry routine. It is invoked with input redirected to the output of a simple
SHOWCATALOG command.

•it primes the variable _wh_udcf by reading the first record of the input file, which, in this case, is the name of the first
cataloged UDC file.
•setting a counter to the “EOF” value of the input file and decrementing it to zero is a common method of processing
the entire file. The HPSTDIN predefined variable contains the name of the $STDIN input file. In this case, it is the
name of the file input was redirected to (which is the name of the file the SHOWCATALOG output was redirected to).
HPSTDIN is used so that the I/O file name is not hard-coded throughout the script -- only where it is first created.
•the while loop decrements the eof counter, reads a record from the input file, trims trailing spaces from the record,
decides if the record is a UDC filename (leftmost byte <> “ “) or a UDC command name record.

•if the record is a UDC command name that matches the “cmd” parameter value, a line of output is generated,
containing: the UDC command name, the UDC level (user, account or system), and the UDC filename.
•All output is “tabularized” via the rpt() function by prepending or appending the appropriate number of spaces before
or after the echoed value.

•The pmatch() function is an easy way to add pattern matching power to your scripts. HELP pmatch provides more
information. Since “cmd” could also be the name of a POSIX file, its value is not permanently upshifted. Local
upshifting is needed since all UDC names reported by SHOWCATLOG are in uppercase.
•the entry routine exits, via RETURN, back to its caller, which is the “main” entry code. The RETURN command
closes the file (where) and resets I/O redirection back to its state prior to the invocation of the entry point -- in this case
input is back to the terminal $STDIN.

3/4/03

86

March 4 , 2003 P a g e 86

hp e3000

strategy

where (cont)
 …

elseif "!entry" = "process_listf" then
 # input redirected from the output of listfile,6 or a simple filename
 setvar _wh_eof finfo(hpstdin,'eof')
 while setvar(_wh_eof,_wh_eof-1) >= 0 do
 setvar _wh_fc "”
 if setvar(_wh_fc, finfo(setvar(_wh_tok,ltrim(rtrim(input()))),'fmtfcode')) = ””
 setvar _wh_fc 'script’
 elseif _wh_fc <> 'NMPRG' and _wh_fc <> 'PROG' then
 setvar _wh_fc "”
 endif
 if _wh_fc <> "" and finfo(_wh_tok,'eof') > 0 then
 setvar _wh_lnk “”
 if _wh_fc = “script” and finfo(_wh_tok,'filetype') = 'SYMLINK' then
 setvar _wh_fc 'symlink’
 # get target of the symlink
 f i le lf7tmp;msg
 continue
 listfile !_wh_tok,7 >*lf7tmp
 if hpcierr = 0 then
 # discard first 4 records
 input _wh_lnk <*l f7tmp
 input _wh_lnk <*lf7tmp
 input _wh_lnk <*lf7tmp
 input _wh_lnk <*lf7tmp
 input _wh_lnk <*lf7tmp
 setvar _wh_lnk " - - !> " + word(_wh_lnk,,-1)
 endif
 endif

•this is the “process_listf” entry routine. It is invoked with input redirected to the output of a LISTFILE,6 command.

•the while loop reads each record in the input file, tests to ensure the file could be a legitimate script or program file,
and symbolic links are resolved.
•the input() function reads each filename in the input file, after which, trailing and leading blanks are trimmed. The
_wh_tok variable is set to this trimmed value. The finfo() function is called, passed this same trimmed name, to obtain
the formatted file code, which is stored in the _wh_fc variable. If the file code is blank (“”) it is arbitrarily set to
“script”. All of this is done is a single command line.

•if the EOF is positive and the file code is “script” then the script tests to see if the name might be the name of a
symbolic link.

•if FINFO returns “symlink” for the file type then the target of the link is retrieved. This is done using a small MSG
file and I/O redirection, as follows: 1) a LISTFILE,7 is written to the MSG file, 2) if the LISTFILE is successful the
MSG file is read (all reads are destructive), 3) the first four records in the MSG file can be discarded, done by reading
them and ignoring the input, 4) the last word/token in the fifth record contains the name of the target of the symlink,
which is extracted, and has “-->” prepended to enhance the final output. The “-->” strings need a “!” to escape the
meaning of “>”, which if not done, causes the following ECHO statement to perform output redirection.

3/4/03

87

March 4 , 2003 P a g e 87

hp e3000

strategy

where (cont)
 …

 # display: qualified_filename file_code or "script" and link if any
 echo !_wh_tok ![rpt(" ",max(0,26-len(_wh_tok)))] !_wh_fc &

 ![rpt(" ",7-len(_wh_fc))] !_wh_lnk
 endif
 endwhi le

 return
 endif

• : w h e r e @ s h @

SHOWME USER UDC in SYS52801.UDC.SYS
SH SYSTEM UDC in HPPXUDC.PUB.SYS
SH.PUB.VANCE NMPRG
SHOWVOL.PUB.VANCE script
BASHELP.PUB.SYS PROG
HSHELL.PUB.SYS script
PUSH.SCRIPTS.SYS script
RSH.HPBIN.SYS NMPRG
SH.HPBIN.SYS NMPRG
/bin/csh NMPRG
/bin/ksh symlink --> /SYS/HPBIN/SH
/bin/remsh symlink --> /ENM/PUB/REMSH
/bin/rsh symlink --> /SYS/HPBIN/RSH
/bin/sh symlink --> /SYS/HPBIN/SH

•this concludes the “process_listf” entry and the where script.

•the ECHO command displays qualified (MPE or POSIX) filename, the file code (which can be set to a non-MPE
value of “script”, and symbolic link info, if pertinent. Note again that the rpt() function is used to left justify the file
code string and any symlink display.
•as should be done for all entry routines, RETURN exits back to the “main” entry, where cleanup is done.

•Example:

HPPATH = !HPGROUP,PUB,PUB.SYS,ARPA.SYS,scripts.sys,hpbin.sys,/bin
:where @sh@

S H O W M E U S E R U D C i n
S Y S 5 2 8 0 1 . U D C . S Y S
SH S Y S T E M U D C i n

H P P X U D C . P U B . S Y S
S H . P U B . V A N C E N M P R G
S H O W V O L . P U B . V A N C E s c r i p t

B A S H E L P . P U B . S Y S P R O G
H S H E L L . P U B . S Y S s c r i p t

P U S H . S C R I P T S . S Y S s c r i p t
R S H . H P B I N . S Y S N M P R G
S H . H P B I N . S Y S N M P R G

/ b i n / c s h N M P R G
/ b i n / k s h s y m l i n k - - > / S Y S / H P B I N / S H
/ b i n / r e m s h s y m l i n k - - > / E N M / P U B / R E M S H

/ b i n / r s h s y m l i n k - - > / S Y S / H P B I N / R S H
/ b i n / s h s y m l i n k - - > / S Y S / H P B I N / S H

3/4/03

88

March 4 , 2003 P a g e 88

hp e3000

strategy

stream UDC - overview

• S T R E A M
A N Y P A R M s t reamparms = ! [“”]

O P T I O N n o h e l p , r e c u r s i o n
. . .
if m a i n e n t r y po in t then
 # initialize …
 - i f “ jobq=“ not specif ied then read job f i le for job “card”
 - i f sti l l no “jobq=“ then read config f i le matching “[jobname,]user.acct”
 - s t ream job in HPSYSJQ (de fau l t) o r der i ved job queue
 - c lean up
e lse
 # alternate entries
 separate ent ry name f rom remain ing arguments
 . . .
 if entry is r e a d _ j o b c a r d then read job f i le looking for “ :JOB”, concatenate
 cont inuat ion l ines (&) and remove user .acct passwords
 . . .
 elseif entry is r e a d _ c o n f i g then

read config f i le, match on “[jobname,]user.acct”
 . . .
 endif

•http://jazz.external.hp.com/src/scripts/stream.txt

•Shows entry points used with UDC. ANYPARM requires more parsing and a convention for the entry specification.
In my example, the entry is always specified as “entry=name” and is the last argument in the command line.

•Shows how to default an ANYPARM value to nothing, ![“”]. Quotes by themselves don’t work, and, in fact, cause
the value to default to the quote marks literally.

•OPTION NOHELP chosen since this UDC overrides a built-in CI command. If a user enters “help stream” they will
not see the contents of this UDC; instead, they will see the HELP text for the real STREAM command.

•OPTION RECURSION is specified, since there are several recursive calls to the STREAM UDC, as a way to
process the various entry points. OPTION NORECURSION will be executed prior to invoking the real :stream
command.

•Sample job queue configuration file:
(All comments appear at the end of this file for search performance

reasons)
j@,usr1.acct jobqJ
usr1.acct jobq1
@.acct jobq2
@.@ mySysDefq
...

3/4/03

89

March 4 , 2003 P a g e 89

hp e3000

strategy # comments …

i f " ! s t r eamparms" = " " o r pos ("en t r y=" , " ! s t r eamparms") = 0 t hen

 # m a i n e n t r y p o i n t o f U D C

 setvar _str_ jobf i le word(" !s t reamparms") # extract 1st arg

 . . .

 # extract remaining stream parameters

 se t var _s t r_parms ups (&

 repl (rht(" !streamparms" , -del impos(" !streamparms")) , " " , " "))

 i f setvar(_str_pos, pos(“ ;JOBQ=“,_str_parms)) > 0 then

 setvar _str_ jobq word(_str_parms, ,2 , , _s t r _pos+5)

 endif

 i f _str_jobq = “” then

 # no jobq=name in s t ream command so look a t JOB “card”

 S T R E A M _str_ jobcard en t r y= read_ j obca rd <!_str_jobfile

 i f setvar(_str_pos,pos(" ;JOBQ=",_str_ jobcard)) > 0 then

 setvar _str_ jobq word(_str_ jobcard, ,2, ,_str_pos+5)

 endif

 endif

stream UDC - “main”

•The main entry point is detected by the absence of all parameters or by the lack of the “entry=“ keyword.

•The first parameter extracted is the name of the file to be streamed.

•The remaining parameters are captured in the variable _str_parms, after the command line has been upshifted and all
blanks have been removed.

•If the “;JOBQ=“ keywords is found in the command line the queue name is extracted. You might wonder why the
second word (instead of the default of 1), and why at a position that indexes the “=“ rather than the character
immediately right of the “=“? Using word(_str_parms,,,,_str_pos+6) works in all cases, including a null (empty)
jobq value. However, it fails when ;jobq= with no value is the last token on the command line. It fails in this case
since the index (_str_pos+6) is beyond the end of the _str_parms string length. Extracting the second word starting at
the “=“ works in all cases.

•If “jobq=“ is not present in the command line, the STREAM UDC invokes itself (highlighted in blue) using an
alternate entry point, with $STDIN redirected to the file being streamed. This method allows the stream file to be
read efficiently by the UDC.

3/4/03

90

March 4 , 2003 P a g e 90

hp e3000

strategy

 i f _str_jobq = ' ' and f info(_str_config_f i le, 'exists ') then
 # No jobq=name spec i f ied so far so use the conf ig f i l e .
 S T R E A M ! [word(_str_ jobcard, " ; ")] _str_ jobq e n t r y = r e a d _ c o n f i g &
 <!_str_config_fi le

 i f _str_jobq <> ' ' then
 # found a match in conf ig f i le , append jobq name to stream command l ine
 setvar _str_parms _str_parms + " ; jobq=!_str_ jobq"
 endif
 endif
 . . .
 # now f inal ly stream the job.
 if _str_jobq = ' ' then
 echo Job f i l e " ! _s t r_ job f i l e " s t reamed in de fau l t "HPSYSJQ" job queue .
 e l se
 echo Job f i le " !_str_ jobf i le " streamed in " !_str_ jobq" job queue.
 endif
 o p t i o n n o r e c u r s i o n
 cont inue

 s t r eam ! _ s t r _ j ob f i l e ! _ s t r _pa rms
 . . .

stream UDC - “main” (cont)

•If “jobq=“ is not found in the job “card” and if the simple configuration file exists, the STREAM UDC is again
invoked recursively to read the config file looking for a match. The config file has two fields: the first field is a
[jobname,]user.acct name, the second field is the corresponding job queue name. Wildcards are supported in the first
field. The code that processes the config file is shown later.

•Finally, the real STREAM CI command is invoked with an appended jobq=name if appropriate. To execute the real
STREAM command, OPTION NORECURSION is specified; otherwise the STREAM UDC would be invoked (and
in this case we would have an infinite loop -- eventually stopped by a CI limit that disallows UDC nesting beyond
100 levels.

3/4/03

91

March 4 , 2003 P a g e 91

hp e3000

strategy

e l se

 # a l ternate entry points for UDC.

 se t va r _ s t r _en t r y wo rd (" ! s t r eamparms" , , - 1)

 # remove entry=name from parm l ine

 se t va r _s t r _en t r y_parms l f t (' ! s t reamparms ' ,pos (' en t r y= ' , ' ! s t reamparms ') -1)

 i f _ s t r _ e n t r y = " r e a d _ j o b c a r d " then

 # Arg 1 is the *name* of the var to hold a l l o f the JOB card r ight o f "JOB" .

 # Input redirected to the target job f i le being streamed

 # Read f i le unt i l JOB card is found. Return, v ia arg1, th is record,

 # inc luding cont inuat ion l ines, but less the "JOB" token i tse l f . Remove

 # a l l passwords, i f any. Skip leading comments in job f i le .

 se tvar _s t r_arg1 word(_st r_entry_parms)

 whi le str(setvar(!_str_arg1,ups(i n p u t())) ,2,4) <> "JOB " do

 endwhi le

 # remove l ine numbers, i f appropriate

 i f setvar(_str_numbered, numeric(rht(!_str_arg1,8))) then

 setvar !_str_arg1 l f t (!_str_arg1, len(!_str_arg1)-8)

 endif

 ...

stream UDC - “read_jobcard”

•The next few slides detail the two alternate entry points for the STREAM UDC. If the entry is not “main” then it is
an alternate entry. The first step is to determine which entry is being called by extracting the entry name. By
convention the entry name is the last parameter passed to the UDC, and thus is extracted via word(…,-1).

•Next, the “entry=name” needs to be removed from the parameter line so that the alternate entry routines can freely
parse the arguments.

•Now a test can be made for each individual entry name, and each entry point can be coded like a subroutine. All
entries have read and write access to all of the variables set by the UDC.

•The “read_jobcard” entry defines the first parameter (arg1) to be the name of a CI string variable that will contain
the full job “card” line minus the pseudo colon and the word “JOB” (“!JOB “).

•Input has been redirected to the stream job file, which the “main” entry verified exists.

•Since there can be comments preceding the JOB command line, these are skipped by the WHILE loop above. This
WHILE loop reads the JOB record, via the input() function, and stops.

•A simple test is made to determine if the stream file is numbered or unnumbered: if the last 8 characters of the JOB
card record are numeric then the entire file is considered numbered.

•continued...

3/4/03

92

March 4 , 2003 P a g e 92

hp e3000

strategy

 …
 # concatenate cont inuat ion (&) l ines

 while rht(setvar(!_str_arg1,rtrim(!_str_arg1)),1) = '&' do

 # remove & and read next input record

 setvar !_str_arg1 lft(!_str_arg1,len(!_str_arg1)-1)+ltrim(rht(i n p u t(), -2))

 i f _str_numbered then

 setvar !_str_arg1 l f t (!_str_arg1, len(!_str_arg1)-8

 endif

 endwhi le

 # remove passwords , i f any

 whi le setvar(_str_pos,pos('/ ' , !_str_arg1)) > 0 do

 setvar !_str_arg1 repl(!_str_arg1, "/ "+word(!_str_arg1, ' . , ; ' , , ,_str_pos+1), " ")

 endwhi le

 # return, upshifted, al l args r ight of "JOB", and str ip al l blanks.

 setvar !_str_arg1 ups(repl (xword(!_str_arg1) , " " , " "))

 return

stream UDC - “read_jobcard” (cont)

•If the JOB record is continued (ends with an ampersand) then the first WHILE loop above will read the remaining
continuation lines.

•Each continuation line is appended to the return variable (arg1) after numbers and leading spaces (ltrim) are
removed.

•!_str_arg1 is referenced, rather than simply “_str_arg1” since the contents of _str_arg1 is the name of a variable.
For instance, in the STREAM UDC arg1 is passed as “_str_jobcard”. After calling the read_jobcard entry the main
body of the UDC will test the value of _str_jobcard, looking for a JOBQ parameter. Using !_str_arg1 on the left side
of a SETVAR is like using “_str_jobcard”.

•Next, any user, account and/or group passwords, if present, are removed (not blanked over). If a password is found
(pos of “/” > 0) then the “/” and the password itself are replaced with “”.

•Finally, the concatenated, password filtered, de-numbered, de-blanked and upshifted JOB record is returned, via
arg1, to the caller. The “:JOB “ portion is also removed by the xword function.

3/4/03

93

March 4 , 2003 P a g e 93

hp e3000

strategy

e lse i f _ s t r _en t r y = " read_con f i g " t hen
 # Arg 1 is the " [jobname,]user .acct " name from the job card.

 # Arg 2 is the *name* of the var to return the jobQ name i f the acct name
 # Input redirected to the jobQ conf ig f i le .
 s e t v a r _ s t r _ a r g 1 w o r d (_ s t r _ e n t r y _ p a r m s , " ")
 s e t v a r _ s t r _ a r g 2 w o r d (_ s t r _ e n t r y _ p a r m s , " " , 2)
 setvar _str_eof f info (hpstdin, “eof”)
 …
 # read conf ig f i le and f ind [jobname,]user.acct match (wi ldcards are ok)
 while se t va r (_s t r _eo f , _s t r _eo f -1) >= 0 and &
 (setvar(_str_rec,ltrim(rtrim(input ()))) = “” or &
 l ft(_str_rec,1) = '#' or &
 not p m a t c h (ups(word(_str_rec, , -2)) ,_str_ua) or &
 (pos(' , ' ,_str_rec) > 0 and l f t (_str_rec,2) <> '@,’ and &
 not p m a t c h (ups(word(_st r_rec)) ,_s t r_ jname))) do
 endwhi le
 if _str_eof >= 0 then
 # [jobname,]user.acct match, return jobq name
 setvar !_str_arg2 word(_str_rec,,-1)
 endif
return

stream UDC - “read_config”

•The “read_config” entry reads the config file (verified by “main” to exist) looking for a user.acct match. This entry
defines the first parameter (arg1) to be the string “[jobname,]user.acct” from the JOB record returned by the
read_jobcard entry. The second parameter (arg2) is defined to be the name of a CI string variable the will hold “” or
the corresponding job queue name.

•These two arguments are easily extracted via word(…,1) and word(….,2). Note that one is the default parameter
number for word().

•Input has been redirected to the configuration file.

•The WHILE loop stops if the entire config file has been read or on the first match. Based on this implementation,
specific entries (specific [jobname,]user.acct) names should proceed generic, wildcarded names.

•The WHILE loop continues for empty (blank) records and comment (#) lines.

•A match is defined as: user.acct matches and if a jobname is present in the config file (and not simply “@”) the
jobnames must match too. Wildcard support is easy with pmatch()!

•Line by line evaluation of this WHILE loop:

•decrement a counter that initially contains the number of records in the config file. When this counter is
negative the file has been completely read.

•set the variable _str_rec to a record in the config file, after trimming all trailing and leading blanks, test if
the result is empty and if so continue the while loop.

•if the _str_rec record starts with “#” then skip it since it is a comment record.

•if the second-to-last word in the record (this is the user.acct token -- second-to-last is used rather than first
to handle an optional jobname which is terminated by a comma) doesn’t match the user.acct already
extracted from the JOB card then continue the loop.

•if user.acct matches and the config record has a jobname (pos comma > 0) and the jobname is not “@” and
the jobname doesn’t match the already extracted jobname from the JOB card then continue the loop.

•The loop ends when either all records have been read without a match, or there is a match. If the loop counter
(_str_eof) is >= 0 then there was a match and the corresponding job queue name (last word in the config file record)
is returned via arg2.

