
Migrating to Linux
with NetCOBOL and
PostgreSQL
Duane Percox

Quintessential School Systems

duane@qss.com
03/28/2003 © Quintessential School Systems

Introduction

n Team: Craig Davies, Duane Percox, Jeff
Woods

n A report on our on-going investigations
and discoveries

n Get a PDF or PPS of this presentation:
¨qwebs.qss.com/ss3epdf.prsnt8tn.pdf
¨qwebs.qss.com/ss3epps.prsnt8tn.pps
¨qwebs.qss.com/ss3wpdf.prsnt8tn.pdf
¨qwebs.qss.com/ss3wpps.prsnt8tn.pps

Background

n Vertical market ISV
n Cost sensitive customer base: Education
n 65% turnkey installations
n MPE/iX software library mostly HP COBOL II/iX,

V/Plus, TurboIMAGE, some pascal, c, spl, ksam/xl,
flat files

n Migrating software in two phases: (I) UI Migration to
GUI/Web and (II) server (back-end) migration to
open systems (Linux/HP-UX)

n ~ 4 million lines of cobol source that we would like to
preserve (app servers, reports, computational
processes, data mgt processes, utilities)

QSS UI Modules Installed on DesktopServed by WTS - QSS UI Modules Installed on WTS Server

Ethernet

QSS/OASIS and STUDENT/3000
New Platform Definition

2003 CPUG Annual Conference
Session 1, 25, 61 - QSS Future Plans

Application Server

HP 9000 f rom HP

PA-RISC or IA-64
HP-UX Operat ing System

OR

IA-32/IA-64 System
from

HP, Dell, IBM

Linux Operating System

Application Programs

Presentation Reference
Chart #6

Windows Desktop

System Printer

Database Server

HP 9000 f rom HP
PA-RISC or IA-64

HP-UX Operat ing System

OR

IA-32/IA-64 System

from
HP, Dell, IBM

Linux Operating System

Open Source

SQL Relat ional DB

Web Server

HP 9000 f rom HP

PA-RISC or IA-64
HP-UX Operat ing System

OR

IA-32/IA-64 System
from

HP, Dell, IBM

Linux Operating System

Apache

Windows Terminal
Services Server

IA-32 / IA-64 System
from

HP, Dell, IBM

Windows 2000 Server
WTS

Mac w/RDP Cl ient

Winterm
Thin Cl ient / RDP

Linux Desktop

w/ RDP cl ient

Windows Desktop

Database Evaluation

n Evaluate Linux open source RDBMS options
and viability for QSS applications

n Evaluate creation of RDBMS versions of existing
TurboIMAGE DB

n Evaluate / Determine database interface

n Establish standard data type usage

n Establish methodology for moving data

n Evaluate how to access data once it has been
relocated in the RDBMS

n Evaluate the need and feasibility of creating an
abstracted SQL interface for RDBMS portability

DB Evaluation Results

n Open Source RDBMS can work for QSS
applications and target market

n PostgreSQL chosen as primary RDBMS

n Customer feed-back indicated a desire to have
support for additional (and in a few cases
commercial) RDBMS

n Decided to create an abstracted SQL interface.
Our early pilot projects used a version we called
DBLIB, but recently decided to name it QDBI –
QSS Database Interface

PostgreSQL References

n www.postgresql.org

n PostgreSQL Essential Reference – New Riders,
Stinson, 2002

n PostgreSQL Developers Handbook – SAMS,
Geschwinde and Schonig, 2002

n Practical PostgreSQL – O’Reilly, Worsley & Drake,
2002

n PHP and PostgreSQL –SAMS, Geschwinde and
Schonig, 2002

n PostgreSQL – A comprehensive guide to building,
programming, and administering PostgreSQL
databases – SAMS, Douglas and Douglas, 2003

The Case for QDBI

n Want more than an illusion of portability
¨ Be able to influence performance

¨ Account for DB unique SQL syntax between different DB
and different versions of same DB

¨ Avoid different implementations of standard interfaces

¨ No changes to COBOL source

n Avoid COBOL compiler “lock-in”

n Avoid database vendor embedded SQL “lock-in”

n Allow programmers to use a COBOL friendly API

n Avoid complexity of implementing ‘standards’

n Simplify COBOL source code migration

n Simplify post migration COBOL development

RDBMS Access from COBOL

n Embedded SQL (compiler generates CALL)
¨ Specific DB vendor(s) API – either because the COBOL

vendor supports a limited set of DB or you use a specific
DB vendor pre-compiler l ike Oracle Pro*COBOL

¨ Compiler DB API which calls DB vendor(s) API

¨ ODBC API

n CALL API directly in COBOL
¨ DB specific API

¨ ODBC API

¨ Your own API which calls DB vendor(s) or ODBC API

n Embedded SQL with vendor neutral syntax
¨ Your own pre-processor (l ike Pro*COBOL)

¨ Generate COBOL for your choice of API

Practical Considerations

n COBOL compiler embedded SQL
¨ Some don’t support embedded SQL

¨ Possible syntactical differences between compilers

¨ DB portability is usually qualified

¨ ODBC drivers are not created equal

¨ Giving up control where you might need it the most

n CALL API directly
¨ Most API are designed to be called by ‘c’

¨ DB vendor API are unique or they use ODBC

¨ ODBC is a complex API

¨ API changes occur over t ime

COBOL Evaluation

n Evaluate availabil i ty of Linux (open systems) COBOL
compiler(s) to compile and execute QSS COBOL code
with acceptable performance

n Evaluate compatibil ity with hp-ux COBOL and abil i ty to
maintain single source code base

n Evaluate compatibi l i ty with QSS develop. IDE (WTPS)

n Evaluate effort to move to Linux/hp-ux COBOL

n Evaluate RDBMS interface provided by COBOL
compilers

n Evaluate run-time environment and issues with code
generation as it relates to interfaces with QSS library
routines

n Evaluate development and deployment costs

COBOL Evaluation Results

n Currently working with Fujitsu NetCOBOL

n Native compilation for Linux ia-32, no run-time
costs

n Has command line compilation / l ink facility so
don’t have to use their IDE

n Have support for hp-ux/pa-risc

n COBOL language standards give the freedom to
make a change if we discover issues with this
choice during the early stages of our migration

Linux Development Environment

n Dell PowerEdge 500SC server – PIII 1ghz,
.5gbM, 20gbD (IDE)

n SuSe Professional 7.3

n PostgreSQL version 7.1.3 and 7.2.4

n gnu ‘c’ 2.95

n Standard Linux tools: vi, bash, ld, ar, man…

n NetCOBOL for Linux v7

n WhisperTech Programmer Studio

n Windows 2000 desktops with WRQ/Telnet and
VNC/X-Windows (KDE)

Basic HP COBOL to NetCOBOL

n FTP ascii source to Linux

n ‘$CONTROL’ à ‘ @OPTIONS’

n $PAGE à /

n $VERSION à no equivalent

n $COPYRIGHT à no equivalent

n PIC … COMP à PIC … COMP-5
¨ COMP is always big-endian

¨ COMP-5 is native format for platform

n WHEN- COMPILED à WHEN-COMPILED (yes!)

n CALL … GIVING à CALL … RETURNING

n Inl ine comments (f ind out how…)

More HP COBOL to NetCOBOL

n Copy library containing multiple entries à
individual fi le for each referenced COPY

n <> à NOT =

n VALUE %nn (octal) à VALUE X”nn” (hex)

n Concatenation in MOVE

¨ MOVE “MY TEXT” && X”00” TO WS-TEXT

More HP COBOL to NetCOBOL

n Open systems are case sensitive and this impacts
COBOL fi le names, COPY names, and CALL “….”
names.

n SELECT MY-FILE ASSIGN TO “XFILE”
¨ Accesses the f i le XFILE

¨ No fi le change at run time because there are no fi le
equations

n SELECT MY-FILE ASSIGN TO XFILE
¨ At run time the variable XFILE is used to determine

the location of MY-FILE.

¨ This can be an internal variable in working storage or
an exported variable set in the shell: export
XFILE=./xfile.mulder

Makefile for Simple Programs

prime : prime.o

cobol -dy -o prime prime.o

prime.o : prime.cob

cobol -dy -M -c -o prime -WC,"SRF(FIX)“ pr ime.cob

primebe : primebe.o

cobol -dy -o primebe primebe.o

pr imebe.o : pr imebe.cob

cobol -dy -M -c -o primebe -WC,"SRF(FIX)" primebe.cob

Makefile for Building Shared Lib

libqss.so : libqss.a

ld -m elf_i386 -shared -o libqss.so --whole-archive libqss.a

libqss.a : module1.o module2.o proctime.o modulec.o

ar cr libqss.a module1.o module2.o proctime.o modulec.o

module1.o : module1.cob

cobol -shared -c -o module1.o module1.cob

module2.o : module2.cob

cobol -shared -c -o module2.o module2.cob

proctime.o : proctime.c

gcc -fPIC -c -o proctime.o proctime.c

modulec.o : modulec.c

gcc -fPIC -c -o modulec.o modulec.c

modtst : libqss.so modtst.cob

cobol -dy -M -o modtst -L. -lqss modtst.cob

TurboIMAGE vs PostgreSQL

n TurboImage access is direct with global
structures used to control access

n RDBMS is through a connection to a DB
engine in a client/server fashion

n Flexibility in DB access topology is
provided natively in RDBMS and must be
engineered for TurboIMAGE

PostgreSQL Basics

n Connection from client to db is transparent regardless if same
system (shared memory) or different system (tcp/ip). X-
system can use SSL for secure transmission.

n Server engine is called ‘postmaster’

n Separate process created for each connection. Good
performance on unix style o/s since was written for unix

n DB are organized into clusters. Each instance of postmaster
provides access to all DB within the cluster

n Normal installation root dir is /usr/local/pgsql

n Default cluster root is /usr/local/pgsql/data ($PGDATA)

n Databases are stored in $PGDATA/base with a separate
directory for each DB and individual fi les for each table

n The directory structure and fi les (DB) owned by postgres user
and not viewable/accessible by ordinary users

PostgreSQL Versioning

n Versions are formatted as x.y.z ; x is major, y is minor, z is fix
level

n Current major version is 7 and base versions found since
2001 are 7.1, 7.2 and 7.3

n Usually require a DB conversion between base versions as
the DB structure could change

n Pre-built PostgreSQL found on distributions will be installed in
/usr/local/pgsql root with directories like bin, lib, include, data
for specific components and database fi les

n QSS initially installed 7.1.3 and just recently converted to
7.2.4

n Conversion to 7.2.4 was painless and no software changes
were required

Managing Multiple Versions

n We wanted 7.1.3 and 7.2.4 installation and data available for
testing and review

n Multiple versions of PostgreSQL can be installed and running
at the same time. At run t ime your $PGDATA, $PATH, and
$LD_LIBRARY_PATH can be used to define the version

n We de-installed the original 7.1.3 version which was installed
in the default directory and built from the source cvs tree 7.1.3
and 7.2.4 with the root directory set as /usr/local/pgsql/7_1_3
and /usr/local/pgsql/7_2_4

n We defined the db clusters as ~postgres/data-7_1_3 and
~postgres/data-7_2_4

n When building PostgreSQL from source you can set these
locations as defaults which is then used by the postmaster
and util ity programs

Accessing Specific Version

n We setup soft l inks which would refer to the current and
previous versions of PostgreSQL

n /usr/local/pgsql/current à /usr/local/pgsql/7_2_4

n /usr/local/pgsql/prevsious à usr/local/pgsql/7_1_3

n By sett ing $PGDATA

¨ export PGDATA=~postgres/current

¨ export PGDATA=~postgres/previous

n Use $PGLOC for root of version

¨ export PGLOC=/usr/local/pgsql/current

¨ export PGLOC=/usr/local/pgsql/previous

Making QDBI

l ibqdbi.so : l ibqdbi.a

ld -m elf_i386 -shared -o libqdbi.so --whole-archive libqdbi.a

libqdbi.a : qdbi.o

ar cr libqdbi.a qdbi.o

qdbi .o : qdbi.c

gcc -fPIC -I${PGLOC}/include -c -o qdbi.o qdbi .c

Making COBOL that Calls QDBI

fastpg : fastpg.cob

cobol -dy -M -o fastpg -L. -lqdbi -L ${PGLOC}/lib -lpq fastpg.cob

Make sure the following vars are set:

#

COBCOPY=./

this defines the directory where the 'copy' modules are found

#

COB_LIBSUFFIX

if NOT defined the copy members will be found using .cbl/.cob

set if you want to use something other than .cbl/.cob (cpy or CPY)

PostgreSQL Client Access

n psql – character mode DB utility

n pg_access – graphical (x-windows) DB
utility

n pgadmin –graphical (win 9x/nt) DB utility

PostgreSQL Programmatic
Access

n libpq – ‘c’ library for access to DB

n libpq++ - ‘c++’ library for access to DB

n libpgeasy – higher level/simpler access ‘c’
library (resolves to libpq)

n libpsqlodbc – unix style ODBC driver
(resolves to libpq)

n jdbc – java DB driver

Notes on Programmatic Access

n PostgreSQL doesn’t use the prepare/execute model

n You can return the entire result set to the client or you
can define a cursor and fetch rows in blocks from the
server. Each fetch will return metadata so be careful how
much you fetch

n With l ibpq you don’t bind the columns to a memory
address (ODBC does this) but you access through l ibpq
functions each column of the row as a null terminated
ascii string

n You can use binary cursors which return raw data but
you have to know how to decode (be very, very
careful…)

PostgreSQL Examples

n Creating a DB

n Sample psql Session

n Sample pgAdmin Session

n Sample Data Import

Create a DB

Define a Sample Table

Sample Table Script

Load Test Data

Sample Load Script

Sample psql Session

More Sample psql Session

And More psql …

Sample pgAdmin Session

More Sample pgAdmin

And More pgAdmin

Sample Data Import

Data Import Script

Pilot Migration Project

n Asset Database

n Detail Set (FIXED-ASSET) with 70 fields

n 2-character path (DI-NO) and a 12-char
path (ASSET-ID)

n Test programs to mirror find/get of large
sets of records

TurboImage Set Definition

PostgreSQL Table Definition

TI Record Layout

TI Record Layout cont.

Pg Record Layout

Pg Record Layout cont.

Sample Code (1 of 3)

Sample Code (2 of 3)

Sample Code (3 of 3)

SQL Results Discussion

n Memory table on client or server (server
side cursor) contains results

n Return n-rows of column data into local
memory, one column (field) at a time

n Data is ascii readable null terminated
(think ‘c’ string) and must be converted to
COBOL fields before use in COBOL code

Mapping SQL Data to Buffer

n Characters are simple byte moves

n Date/Time must convert date/time format

n Numeric data must convert numbers like
“123.45” to standard COBOL pictures

Making it Possible

n We chose standard data types – Fixed length
Char, Date, Time, Numeric

n We decided to avoid binary pictures

n Metadata is programmatically available

n We added our own additional metadata structure
for persistence across similar table access (note:
we rarely use TurboImage item lists). This
structure is filled in by QDBI the first time a table
is accessed

n QDBI uses metadata to map from SQL results to
COBOL record buffer

Performance Issues

n Converting each field’s ascii SQL result to a COBOL
buffer is a lot of overhead - 10,000 rows with 70 columns
results in 700,000 conversions!

n Typical COBOL report programs for TurboIMAGE will
DBGET and then select records by testing selection
criteria

n Drop-in replacement of DBFIND with a select that
selects all records and stil l contains logic to select
records by testing selection criteria gives you a double
performance hit and eliminates the SQL “select” feature
of the RDBMS

Mitigating Performance Issues

n Don’t return all columns – return a subset
to significantly reduce the number of field
conversions

n Move the logic to select records into your
SQL select to reduce the number of
returned rows

n Run linux on a system with more CPU
than your HP e3000

QDBI - Architecting a Migration
Solution

n Provide for ‘drop-in’ replacement called routines
with extensions to subset the returned columns

n Provide for ‘drop-in’ with the ability to include the
selection criteria in the Select instead of in the
COBOL logic. Provide for dynamic build of SQL
by QDBI by passing appropriate
field/criteria/operator values.

n Design ‘drop-in’ to make migration easy

n Use build-in extensions when performance
improvements are required (after basic migration
has been performed)

Test Results from Pilot

n General feeling is that SQL access takes about 10-12
times more cpu time than similar access using TI

n But… you don’t spend all your t ime in the DB

n Single SQL process accessing 73,000+ rows in mult iple
selects was slightly faster than same TurboIMAGE
process. SQL was P-III with .5gb,IDE; TI was A400-110
(55) with 2gb, SCSI

n Multiple simultaneous tests came out equivalent
indicating either MPE or a system configuration
(memory, disk) inf luence on improved performance

n When migrating to linux/ ia-32 you will have a
substantially faster CPU and this will help mitigate
performance issues

PostgreSQL Server Control

n initdb – prepare directory area and template db for new

PostgreSQL system

n initlocation – initialize secondary db storage location

n ipclean – clean up orphaned semaphores and shared

memory after db server crash

n pg_ctl – control functions (start/stop/etc)

n pg_passwd – manage pwd when using PostgreSQL

authentication

n postgres /postmaster – db server engine

PostgreSQL DBA functions

n createdb – create new database

n createlang – register new language to DB

n createuser – add new user to PostgreSQL

n dropdb – delete specified DB

n droplang – removes a language from DB

n dropuser – remove user from PostgreSQL

n pg_dump/pg_dumpall/pg_restore – database export
backup and restore

n vacuumdb – reclaims wasted disk and updates profi le
data for query optimizer

The End…

