IMAGE/SQL and TPI

Gerry Johnson M. B. Foster Associates 82 Main St Chesterville Ontario

613-448-2333 613-448-2588 gerryj@mbfoster.com

Presentation #: 315

Tuesday, September 12, 2000

Introduction

The purpose of this presentation is to put forward the benefits of careful planning when creating an Allbase interface to Image. In particular, the proper use of third party indexes (TPI) can have a major impact on the effectiveness of your implementation.

Once you have connected an image database to Allbase through Image/SQL, queries will be checked by the optimizer to set up the best possible method for processing that particular SQL: statement. The optimizer utilizes several pieces of information including the various key information. The Image/SQL manual says,

"If the database is enabled for third-party indices (TPI), ATTACH enters definitions for all TPIs, excluding keyword indices and the ones for which the third-party does not provide information. The TPIs are entered as unique or non-unique based on the index configuration and information provided by the third-party for this index. While keys, search items, and B-Tree indices are registered in the specified DBEnvironment, third-party indices are registered in all attached DBEnvironments. Multiple index definitions on the same column can coexist and the SQL optimizer derives the optimal access plan based on the statistics present in the system catalog. In other words, the key or search item of the set can have a maximum of three index definitions. One will be a hash index definition entered automatically at ATTACH time, another can be a B-Tree index definition, and the third can be a third-party index definition. It is recommended that both B-Tree index and third-party index be not created on the same item as it will have an unnecessary impact on the performance (Optimizer calculates cost for each index). The Optimizer decides which index to use and the proper order of operations to ensure that the most efficient path is used. In the following example, SALES is attached to PARTSDBE. The accompanying message summarizes the mapping that took place during the attach.

Some history

Image is the major database component on most HPe3000s. It has been around since the first MPE operating systems were developed. It is a very solid database that can allow a programmer to develop high quality applications. The strength of Image along with the highly resilient operating system and hardware has made the HPe3000 a great success. Allbase/SQL was Hewlett Packard's entry into the SQL world. Allbase is a sophisticated SQL standard DBMS that can support industry standard transaction and query processing utilizing standard SQL.

HP needed a method to make the power of SQL available to Image users, so they could take advantage of SQL standard products such as the ODBC API. Originally a version of image was created that tried to add SQL processing to Image. This proved to be very slow and was discarded. Image/SQL was created to allow an Image database to be attached and handled by the powerful SQL processing provided by Allbase/SQL.

When you run Image/SQL and attach an image database to an Allbase DBE many things happen. A table created for each data set in Image will have the image name as the owner. You can connect several Image databases to a DBE. Each will be a unique database with its own owner name. Indexes are created in system tables that reflect Image keys, B-trees and Third party indexes. It is the presence of these indexes that allow for fast retrieval of data when criteria are used in select statements.

Third party indexing

Image was created to allow keyed reads on indexes with exact matches. You can read a master data set by its key and you can chain through Image details by following the lists of entries attached to a master. Until the creation of B-tree indexes, you could not do any partial key retrieval. Even then you could only do the partial retrieval on an Image key. Folks tried many ways to improve this process, such as creating MPE keyed files, KSAM to get around this problem. Dynamic Information Systems Corporation release their Omnidex product early on to address this limitation of Image. They were very successful but you had to use non-standard Image calls to make it work. It produced very fast access to sorted and key-worded keys. Bradmark Technologies released Superdex to address the same problem.

Customers were asked for standard methods to access their Image data and still obtain the power of this third party indexing systems without having to use the special calls. Hewlett Packard introduced the interface to third party indexing as a result. This enhancement allowed applications that did not have knowledge of the third party indexing system to use and update Image data without problem. It also allowed Image programmers to write code that would work no matter which vendor's indexing system was installed.

The popularity of client server applications and web-based applications that expose Image databases to users who may have no experience with the HPe3000 has made a profound difference. It becomes even more vital that the most efficient methods of retrieving data be utilized. In the old days when a user running QUERY.PUB.SYS, would issue a query, it became apparent very quickly that he was not using keys. The message 'USING SERIAL READ' was quite obvious. Now the user may not even be aware if an item is an index or even that they are communicating with an HPe3000. Tools like Impromptu, from Cognos or Crystal Reports, make producing reports very easy. Producing a well design index structure for your data becomes very critical to the success of your client server application. It is not enough to index every item, but the database administrator must pay careful attention to the types of keys he is installing. My favorite bad choice for an index is item sex in a human resources system. Since the item can have only two values and since they will be spread evenly in the data, this is a very bad choice. Careful thought is key to success.

Not all TPI indexes are exported to Image/SQL. The DBA can view all indexes associated with a database by examining SYSTEM.TPINDEX. Other users can view the TPIs to which they have access by examining CATALOG.TPINDEX. The manual states that only non-keyword indexes are exported. These indexes are stored in the system table SYSTEM.TPINDEX. This implies that you need to carefully consider the types of keys that you install on an Image database that will be used with Image/SQL.

Indexing systems

Omnidex uses three types of keys. Sorted or generic keys, no-parse key-word keys and regular key word keys. Sorted keys are treated much like Ksam where the b-tree is returned in sorted order. You can do a read on an individual key, or you can do generic lookups including ranges. These keys are exported to Allbase. No-parse keys are not returned in sorted order and are handled like regular key-word keys, accept that the whole item in indexed, not broken up into key-words. Key-word items have all the values in the item stored as individual indexes. Only keyword keys are not exported.

Superdex also supports multiple key types. You can purchase Superdex model I or model II. Model I utilize sorted keys and they should be exported to Allbase. Superdex model II supports both non-keyword keys and key-word keys are not exported.

Now in many cases where key wording is not important to the application, it is better to select a sorted or no parse key type. If for example you are looking up a code or a date, key wording is of no particular value.

I have used the image database, TOYDB, as an example. I have created indexes for both Superdex and Omnidex. In both cases the entire third party index have been exported when I attached the database to a DBE.

I have used ISQL to list the indexes in the DBE TOYDBE to view the indexes.

Select * from system.tpindex;

+	+		
I NDEXNAME	TABLENAME	OWNER	UNI QUE CLUST
	.+		
SI_PNAME_PLI NE_T1	PRODUCTS	TOYDB	0
SI_PNAME_T2	PRODUCTS	TOYDB	j oj
SI_NAME_CITY_ST_T3	CUSTOMERS	TOYDB	j oj
SI_NAME_T4	CUSTOMERS	TOYDB	0
SI_CITY_T5	CUSTOMERS	TOYDB	0
SI_STATE_T6	CUSTOMERS	TOYDB	0
SI_INV_AMT_T7	I NVOI CES	TOYDB	0

Below is the ${\sf SIMAINT}$ output from the Image base ${\sf TOYDB}$ showing the keys that have been created.

Dataset				
Path#	Path Name	Item Name	Тур	Length/Offset
PRODUCTS			٠.	· ·
10001	SI-PNAME-PLINE/B	PRODUCT-NAME	Χ	8
		PRODUCT-LI NE	Χ	1
10002	SI-PNAME/B	PRODUCT-NAME	Χ	8
CUSTOMER	S			
10003	SI-NAME-CITY-ST/B	CUSTOMER-NAME	Χ	15
		CITY	Χ	15
		STATE	Χ	15
10004	SI-NAME/B	CUSTOMER-NAME	Χ	15
10005	SI -CI TY/B	CITY	Χ	15
10006	SI -STATE/B	STATE	Χ	15
I NVOI CES				
10007	SI-INV-AMT/B	I NVOI CE-NO	Χ	3
		PAI D-AMOUNT	R	4

I have use ODBCLink/SE ODBCUTSE to show the tables that have keys and how they will appear to an application.

```
: odbcutse.odbcse.sys toydbe
MB Foster ODBC Utility Version E.58.03
Connecting to DBEnvironment toydbe...
```

0>show toydb.products						
Field	ODBC-Datatype	HF	P-Datatype	Length	0ffset	
Nul I abl e						
PRODUCT_NO	CHAR(6)			6	0	0
PRODUCT_NAME	CHAR(16)			16	6	0
PRI CE	DOUBLE			8	24	0
PRODUCT_LI NE	CHAR(2)			2	32	0
QUANTI TY	SMALLI NT			2	34	0
Indexed field		I ndex	Type	I ndex	Name	

PRODUCT_NAME+PRODUCT PRODUCT_NAME PRODUCT_NO 0>show customers	T_LI NE	TPI TPI IMAGE PRIMARY	SI _PNAME_PLI NE_T [.] SI _PNAME_T2 PRODUCT_NO_M1			
Field Nullable	ODBC-Datatype	HP-Datatype	Length	0ffset		
CUSTOMER_NO	CHAR(6)		6	0	0	
CUSTOMER_NAME	CHAR(30)		30	6	0	
CITY	CHAR(30)		30	36	0	
STATE	CHAR(30)		30	66	0	
ZI PCODE	CHAR(6)		6	96	0	
ADDRESS	CHAR(30)		30	102	0	
SALES_AREA	CHAR(16)		16	132	0	
TURNOVER_1	DOUBLE		8	152	0	
TURNOVER_2	DOUBLE		8	160	0	
TURNOVER_3	DOUBLE		8	168	0	
TURNOVER_4	DOUBLE		8	176	0	
TURNOVER_5	DOUBLE		8	184	0	
TURNOVER_6	DOUBLE		8	192	0	
TURNOVER_7	DOUBLE		8	200	0	
TURNOVER_8	DOUBLE		8	208	0	
TURNOVER_9	DOUBLE		8	216	0	
TURNOVER_10	DOUBLE		8	224	0	
TURNOVER_11	DOUBLE		8	232	0	
TURNOVER_12	DOUBLE		8	240	0	
TURNOVER_PY	DOUBLE		8	248	0	
TURNOVER_MTD	DOUBLE		8	256	0	
Indexed field	DOODLL	Index Type	Index Name		Ü	
CUSTOMER_NAME+CITY+	STATE	TPI		ME_CITY	ST T3	
CUSTOMER_NAME	017112	TPI	SI _NAI		_00	
CITY		TPI	SI_CI			
STATE		TPI		ATE_T6		
CUSTOMER_NO		IMAGE PRIMARY		MER_NO_	M1	
0>show invoices		1 111 102 1 111 111 1111	000.0			
Field	ODBC-Datatype	HP-Datatype	Length	0ffset		
Nul I abl e	obbo batatypo	Jatatyps	201.911.			
I NVOI CE_NO	CHAR(6)		6	0	0	
CUSTOMER_NO	CHAR(6)		6	6	0	
ORDER_NO	CHAR(8)		8	12	0	
AMOUNT	DOUBLE		8	24	0	
PAI D_AMOUNT	DOUBLE		8	32	0	
I NVOI CE_DATE	CHAR(4)		4	40	0	
DUE_DATE	CHAR(4)		4	44	0	
Indexed field	0111111(1)	Index Type	I ndex		Ü	
I NVOI CE_NO+PAI D_AMO	UNT	TPI		I_I NV_AMT_T7		
CUSTOMER_NO	= :::	IMAGE	CUSTOMER_NO_D1			
ORDER_NO		I MAGE		_NO_D2		
0>		· 				
-						

I have used ISQL to list the indexes in the DBE TOYDBE to view the indexes.

SELECT * FROM SYSTEM. TPI NDEX;

I NDEXNAME	TABLENAME	OWNER	UNI QUE CLUST
PNAME_PLI NE_T1	PRODUCTS	TOYDB	0
PRODUCT_NAME_T2	PRODUCTS	TOYDB	j oj
NAME_CITY_ST_T3	CUSTOMERS	TOYDB	j oj
CUSTOMER_NAME_T4	CUSTOMERS	TOYDB	0
CI TY_T5	CUSTOMERS	TOYDB	0
STATE_T6	CUSTOMERS	TOYDB	0
I NV_AMT_T7	I NVOI CES	TOYDB	0

Below is the install script to add indexes to the Image base TOYDB showing the keys that have been created using Omnidex.

I have use ODBCLink/SE ODBCUTSE to show the tables that have keys and how they will appear to an application.

MB Foster ODBC Utility Version E.58.03 Connecting to DBEnvironment TOYDBE... O>SHOW PRODUCTS Field ODBC-Datatype HP-Datatype Length 0ffset Nul I abl e 6 0 0 PRODUCT_NO CHAR(6) PRODUCT NAME 16 0 CHAR (16) 6 8 24 0 **PRICE DOUBLE** 2 PRODUCT_LI NE 32 CHAR(2)0 QUANTI TY **SMALLI NT** 2 34 0 Indexed field Index Type Index Name PRODUCT_NAME+PRODUCT_LINE TPI PNAME_PLI NE_T1 PRODUCT_NAME TPI PRODUCT_NAME_T2 IMAGE PRIMARY PRODUCT_NO_M1 PRODUCT NO O>SHOW CUSTOMERS Field ODBC-Datatype HP-Datatype Length 0ffset Nullable 0 0 CHAR(6) 6 CUSTOMER NO 0 CUSTOMER_NAME CHAR(30) 30 6 30 36 0 CI TY CHAR (30) **STATE** CHAR(30) 30 66 0 ZI PCODE CHAR(6) 6 96 0 30 102 0 **ADDRESS** CHAR(30) SALES AREA CHAR(16) 16 132 0 8 152 0 TURNOVER_1 **DOUBLE** TURNOVER_2 DOUBLE 8 160 0 TURNOVER_3 **DOUBLE** 8 168 0 TURNOVER_4 **DOUBLE** 8 176 0 8 184 0 TURNOVER_5 **DOUBLE** TURNOVER 6 **DOUBLE** 8 192 0 TURNOVER_7 8 200 DOUBLE 0 TURNOVER_8 DOUBLE 8 208 0 8 216 0 TURNOVER_9 **DOUBLE** TURNOVER_10 **DOUBLE** 8 224 0 8 TURNOVER 11 **DOUBLE** 232 0 TURNOVER_12 8 240 0 DOUBLE TURNOVER PY **DOUBLE** 8 248 0 TURNOVER_MTD **DOUBLE** 8 256 0 Indexed field Index Type Index Name CUSTOMER_NAME+CI TY+STATE TPI NAME_CITY_ST_T3 CUSTOMER_NAME TPI CUSTOMER_NAME_T4 TPI CITY CI TY_T5 STATE TPI STATE_T6 CUSTOMER_NO_M1 CUSTOMER_NO I MAGE PRI MARY O>SHOW INVOICES Field ODBC-Datatype HP-Datatype Length Offset Nullable 0 0 I NVOI CE_NO CHAR(6) 6 CUSTOMER_NO CHAR(6) 6 6 0 ORDER_NO CHAR(8) 8 12 0 8 **AMOUNT** 24 0 DOUBLE PAID AMOUNT **DOUBLE** 8 32 0 I NVOI CE_DATE 4 40 0 CHAR(4)

4

44

0

DUE_DATE

CHAR(4)

Indexed field
INVOICE_NO+PAID_AMOUNT
CUSTOMER_NO
ORDER_NO
O>

Index Type TPI IMAGE IMAGE Index Name INV_AMT_T7 CUSTOMER_NO_D1 ORDER_NO_D2