
IMAGE/SQL and TPI

Gerry Johnson
M. B. Foster Associates

82 Main St
Chesterville Ontario

613-448-2333
613-448-2588

gerryj@mbfoster.com

Presentation #: 315

Tuesday, September 12, 2000

Introduction

The purpose of this presentation is to put forward the benefits of careful planning when creating an Allbase interface
to Image. In particular, the proper use of third party indexes (TPI) can have a major impact on the effectiveness of
your implementation.

Once you have connected an image database to Allbase through Image/SQL, queries will be checked by the
optimizer to set up the best possible method for processing that particular SQL: statement. The optimizer utilizes
several pieces of information including the various key information. The Image/SQL manual says,

“If the database is enabled for third-party indices (TPI), ATTACH enters definitions for all TPIs, excluding keyword
indices and the ones for which the third-party does not provide information. The TPIs are entered as unique or non-
unique based on the index configuration and information provided by the third-party for this index. While keys,
search items, and B-Tree indices are registered in the specified DBEnvironment, third-party indices are registered in
all attached DBEnvironments. Multiple index definitions on the same column can coexist and the SQL optimizer
derives the optimal access plan based on the statistics present in the system catalog. In other words, the key or
search item of the set can have a maximum of three index definitions. One will be a hash index definition entered
automatically at ATTACH time, another can be a B-Tree index definition, and the third can be a third-party index
definition. It is recommended that both B-Tree index and third-party index be not created on the same item as it will
have an unnecessary impact on the performance (Optimizer calculates cost for each index). The Optimizer decides
which index to use and the proper order of operations to ensure that the most efficient path is used. In the following
example, SALES is attached to PARTSDBE. The accompanying message summarizes the mapping that took place
during the attach.

Some history

Image is the major database component on most HPe3000s. It has been around since the first MPE operating
systems were developed. It is a very solid database that can allow a programmer to develop high quality
applications. The strength of Image along with the highly resilient operating system and hardware has made the
HPe3000 a great success. Allbase/SQL was Hewlett Packard’s entry into the SQL world. Allbase is a sophisticated
SQL standard DBMS that can support industry standard transaction and query processing utilizing standard SQL.

HP needed a method to make the power of SQL available to Image users, so they could take advantage of SQL
standard products such as the ODBC API. Originally a version of image was created that tried to add SQL
processing to Image. This proved to be very slow and was discarded. Image/SQL was created to allow an Image
database to be attached and handled by the powerful SQL processing provided by Allbase/SQL.

When you run Image/SQL and attach an image database to an Allbase DBE many things happen. A table created for
each data set in Image will have the image name as the owner. You can connect several Image databases to a DBE.
Each will be a unique database with its own owner name. Indexes are created in system tables that reflect Image
keys, B-trees and Third party indexes. It is the presence of these indexes that allow for fast retrieval of data when
criteria are used in select statements.

Third party indexing

Image was created to allow keyed reads on indexes with exact matches. You can read a master data set by its key
and you can chain through Image details by following the lists of entries attached to a master. Until the creation of
B-tree indexes, you could not do any partial key retrieval. Even then you could only do the partial retrieval on an
Image key. Folks tried many ways to improve this process, such as creating MPE keyed files, KSAM to get around
this problem. Dynamic Information Systems Corporation release their Omnidex product early on to address this
limitation of Image. They were very successful but you had to use non-standard Image calls to make it work. It
produced very fast access to sorted and key-worded keys. Bradmark Technologies released Superdex to address the
same problem.

Customers were asked for standard methods to access their Image data and still obtain the power of this third party
indexing systems without having to use the special calls. Hewlett Packard introduced the interface to third party
indexing as a result. This enhancement allowed applications that did not have knowledge of the third party indexing
system to use and update Image data without problem. It also allowed Image programmers to write code that would
work no matter which vendor’s indexing system was installed.

The popularity of client server applications and web-based applications that expose Image databases to users who
may have no experience with the HPe3000 has made a profound difference. It becomes even more vital that the
most efficient methods of retrieving data be utilized. In the old days when a user running QUERY.PUB.SYS, would
issue a query, it became apparent very quickly that he was not using keys. The message ‘USING SERIAL READ’
was quite obvious. Now the user may not even be aware if an item is an index or even that they are communicating
with an HPe3000. Tools like Impromptu, from Cognos or Crystal Reports, make producing reports very easy.
Producing a well design index structure for your data becomes very critical to the success of your client server
application. It is not enough to index every item, but the database administrator must pay careful attention to the
types of keys he is installing. My favorite bad choice for an index is item sex in a human resources system. Since the
item can have only two values and since they will be spread evenly in the data, this is a very bad choice. Careful
thought is key to success.

Not all TPI indexes are exported to Image/SQL. The DBA can view all indexes associated with a database by
examining SYSTEM.TPINDEX. Other users can view the TPIs to which they have access by examining
CATALOG.TPINDEX. The manual states that only non-keyword indexes are exported. These indexes are stored in
the system table SYSTEM.TPINDEX. This implies that you need to carefully consider the types of keys that you
install on an Image database that will be used with Image/SQL.

Indexing systems

Omnidex uses three types of keys. Sorted or generic keys, no-parse key-word keys and regular key word keys.
Sorted keys are treated much like Ksam where the b-tree is returned in sorted order. You can do a read on an
individual key, or you can do generic lookups including ranges. These keys are exported to Allbase. No-parse keys
are not returned in sorted order and are handled like regular key-word keys, accept that the whole item in indexed,
not broken up into key-words. Key-word items have all the values in the item stored as individual indexes. Only
keyword keys are not exported.

Superdex also supports multiple key types. You can purchase Superdex model I or model II. Model I utilize sorted
keys and they should be exported to Allbase. Superdex model II supports both non-keyword keys and key-word
keys. Key-word keys are not exported.

Now in many cases where key wording is not important to the application, it is better to select a sorted or no parse
key type. If for example you are looking up a code or a date, key wording is of no particular value.

I have used the image database, TOYDB, as an example. I have created indexes for both Superdex and Omnidex. In
both cases the entire third party index have been exported when I attached the database to a DBE.

I have used ISQL to list the indexes in the DBE TOYDBE to view the indexes.

Select * from system.tpindex;
--------------------+--------------------+--------------------+------+-----
INDEXNAME |TABLENAME |OWNER |UNIQUE|CLUST
--------------------+--------------------+--------------------+------+-
SI_PNAME_PLINE_T1 |PRODUCTS |TOYDB | 0|
SI_PNAME_T2 |PRODUCTS |TOYDB | 0|
SI_NAME_CITY_ST_T3 |CUSTOMERS |TOYDB | 0|
SI_NAME_T4 |CUSTOMERS |TOYDB | 0|
SI_CITY_T5 |CUSTOMERS |TOYDB | 0|
SI_STATE_T6 |CUSTOMERS |TOYDB | 0|
SI_INV_AMT_T7 |INVOICES |TOYDB | 0|

Below is the SIMAINT output from the Image base TOYDB showing the keys that
have been created.

Dataset
 Path# Path Name Item Name Typ Length/Offset
PRODUCTS
 10001 SI-PNAME-PLINE/B PRODUCT-NAME X 8
 PRODUCT-LINE X 1
 10002 SI-PNAME/B PRODUCT-NAME X 8
CUSTOMERS
 10003 SI-NAME-CITY-ST/B CUSTOMER-NAME X 15
 CITY X 15
 STATE X 15
 10004 SI-NAME/B CUSTOMER-NAME X 15
 10005 SI-CITY/B CITY X 15
 10006 SI-STATE/B STATE X 15
INVOICES
 10007 SI-INV-AMT/B INVOICE-NO X 3
 PAID-AMOUNT R 4

I have use ODBCLink/SE ODBCUTSE to show the tables that have keys and how they will appear to an
application.

:odbcutse.odbcse.sys toydbe
MB Foster ODBC Utility Version E.58.03
Connecting to DBEnvironment toydbe...

0>show toydb.products
Field ODBC-Datatype HP-Datatype Length Offset
Nullable
PRODUCT_NO CHAR(6) 6 0 0
PRODUCT_NAME CHAR(16) 16 6 0
PRICE DOUBLE 8 24 0
PRODUCT_LINE CHAR(2) 2 32 0
QUANTITY SMALLINT 2 34 0
Indexed field Index Type Index Name

PRODUCT_NAME+PRODUCT_LINE TPI SI_PNAME_PLINE_T1
PRODUCT_NAME TPI SI_PNAME_T2
PRODUCT_NO IMAGE PRIMARY PRODUCT_NO_M1
0>show customers
Field ODBC-Datatype HP-Datatype Length Offset
Nullable
CUSTOMER_NO CHAR(6) 6 0 0
CUSTOMER_NAME CHAR(30) 30 6 0
CITY CHAR(30) 30 36 0
STATE CHAR(30) 30 66 0
ZIPCODE CHAR(6) 6 96 0
ADDRESS CHAR(30) 30 102 0
SALES_AREA CHAR(16) 16 132 0
TURNOVER_1 DOUBLE 8 152 0
TURNOVER_2 DOUBLE 8 160 0
TURNOVER_3 DOUBLE 8 168 0
TURNOVER_4 DOUBLE 8 176 0
TURNOVER_5 DOUBLE 8 184 0
TURNOVER_6 DOUBLE 8 192 0
TURNOVER_7 DOUBLE 8 200 0
TURNOVER_8 DOUBLE 8 208 0
TURNOVER_9 DOUBLE 8 216 0
TURNOVER_10 DOUBLE 8 224 0
TURNOVER_11 DOUBLE 8 232 0
TURNOVER_12 DOUBLE 8 240 0
TURNOVER_PY DOUBLE 8 248 0
TURNOVER_MTD DOUBLE 8 256 0
Indexed field Index Type Index Name
CUSTOMER_NAME+CITY+STATE TPI SI_NAME_CITY_ST_T3
CUSTOMER_NAME TPI SI_NAME_T4
CITY TPI SI_CITY_T5
STATE TPI SI_STATE_T6
CUSTOMER_NO IMAGE PRIMARY CUSTOMER_NO_M1
0>show invoices
Field ODBC-Datatype HP-Datatype Length Offset
Nullable
INVOICE_NO CHAR(6) 6 0 0
CUSTOMER_NO CHAR(6) 6 6 0
ORDER_NO CHAR(8) 8 12 0
AMOUNT DOUBLE 8 24 0
PAID_AMOUNT DOUBLE 8 32 0
INVOICE_DATE CHAR(4) 4 40 0
DUE_DATE CHAR(4) 4 44 0
Indexed field Index Type Index Name
INVOICE_NO+PAID_AMOUNT TPI SI_INV_AMT_T7
CUSTOMER_NO IMAGE CUSTOMER_NO_D1
ORDER_NO IMAGE ORDER_NO_D2
0>

I have used ISQL to list the indexes in the DBE TOYDBE to view the indexes.

SELECT * FROM SYSTEM.TPINDEX;
--------------------+--------------------+--------------------+------+-----
INDEXNAME |TABLENAME |OWNER |UNIQUE|CLUST
--------------------+--------------------+--------------------+------+-----
PNAME_PLINE_T1 |PRODUCTS |TOYDB | 0|
PRODUCT_NAME_T2 |PRODUCTS |TOYDB | 0|
NAME_CITY_ST_T3 |CUSTOMERS |TOYDB | 0|
CUSTOMER_NAME_T4 |CUSTOMERS |TOYDB | 0|
CITY_T5 |CUSTOMERS |TOYDB | 0|
STATE_T6 |CUSTOMERS |TOYDB | 0|
INV_AMT_T7 |INVOICES |TOYDB | 0|

Below is the install script to add indexes to the Image base TOYDB showing
the keys that have been created using Omnidex.

INSTALL TOYDB.OESC READONLY
;
TABLE PRODUCTS
CREATE PNAME-PLINE SORTED FROM PRODUCT-NAME PRODUCT-LINE
CREATE PRODUCT-NAME SORTED
;
TABLE CUSTOMERS
(24/46) Continue?
CREATE NAME-CITY-ST SORTED FROM CUSTOMER-NAME CITY &
 STATE
CREATE CUSTOMER-NAME SORTED
CREATE CITY SORTED
CREATE STATE SORTED
;
TABLE INVOICES
CREATE INV-AMT SORTED FROM INVOICE-NO PAID-AMOUNT OPTIONS NT
;
ACTIVATE
EXIT

I have use ODBCLink/SE ODBCUTSE to show the tables that have keys and how they will appear to an
application.

ODBCUTSE.ODBCSE.SYS TOYDBE

MB Foster ODBC Utility Version E.58.03
Connecting to DBEnvironment TOYDBE...
0>SHOW PRODUCTS
Field ODBC-Datatype HP-Datatype Length Offset
Nullable
PRODUCT_NO CHAR(6) 6 0 0
PRODUCT_NAME CHAR(16) 16 6 0
PRICE DOUBLE 8 24 0
PRODUCT_LINE CHAR(2) 2 32 0
QUANTITY SMALLINT 2 34 0
Indexed field Index Type Index Name
PRODUCT_NAME+PRODUCT_LINE TPI PNAME_PLINE_T1
PRODUCT_NAME TPI PRODUCT_NAME_T2
PRODUCT_NO IMAGE PRIMARY PRODUCT_NO_M1
0>SHOW CUSTOMERS
Field ODBC-Datatype HP-Datatype Length Offset
Nullable
CUSTOMER_NO CHAR(6) 6 0 0
CUSTOMER_NAME CHAR(30) 30 6 0
CITY CHAR(30) 30 36 0
STATE CHAR(30) 30 66 0
ZIPCODE CHAR(6) 6 96 0
ADDRESS CHAR(30) 30 102 0
SALES_AREA CHAR(16) 16 132 0
TURNOVER_1 DOUBLE 8 152 0
TURNOVER_2 DOUBLE 8 160 0
TURNOVER_3 DOUBLE 8 168 0
TURNOVER_4 DOUBLE 8 176 0
TURNOVER_5 DOUBLE 8 184 0
TURNOVER_6 DOUBLE 8 192 0
TURNOVER_7 DOUBLE 8 200 0
TURNOVER_8 DOUBLE 8 208 0
TURNOVER_9 DOUBLE 8 216 0
TURNOVER_10 DOUBLE 8 224 0
TURNOVER_11 DOUBLE 8 232 0
TURNOVER_12 DOUBLE 8 240 0
TURNOVER_PY DOUBLE 8 248 0
TURNOVER_MTD DOUBLE 8 256 0
Indexed field Index Type Index Name
CUSTOMER_NAME+CITY+STATE TPI NAME_CITY_ST_T3
CUSTOMER_NAME TPI CUSTOMER_NAME_T4
CITY TPI CITY_T5
STATE TPI STATE_T6
CUSTOMER_NO IMAGE PRIMARY CUSTOMER_NO_M1
0>SHOW INVOICES
Field ODBC-Datatype HP-Datatype Length Offset
Nullable
INVOICE_NO CHAR(6) 6 0 0
CUSTOMER_NO CHAR(6) 6 6 0
ORDER_NO CHAR(8) 8 12 0
AMOUNT DOUBLE 8 24 0
PAID_AMOUNT DOUBLE 8 32 0
INVOICE_DATE CHAR(4) 4 40 0
DUE_DATE CHAR(4) 4 44 0

Indexed field Index Type Index Name
INVOICE_NO+PAID_AMOUNT TPI INV_AMT_T7
CUSTOMER_NO IMAGE CUSTOMER_NO_D1
ORDER_NO IMAGE ORDER_NO_D2
0>

	Tuesday, September 12, 2000
	Some history
	Indexing systems

