
Page 1

Regular Expressions Revealed

David Totsch
Account Support Engineer
Hewlett-Packard Company

david_totsch@hp.com

Although regular expressions are renowned for their mystery and difficulty to
master, they are a very valuable asset to have in your UNIX tool kit. Using
regular expressions, anyone can perform powerful data queries, create
sophisticated edits and more easily manipulate large amounts of data.
Attend this session to allow the power and functionality of regular
expressions to be revealed to you.

RegularRegular
ExpressionsExpressions

RevealedRevealed

Page 2

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 2 of 32

Regular Expressions

• often feared by any normal(?) individual
• strange/complex as the name sounds
• name equivalent to idiomatic expression
• expression - not interpreted literally
• pattern matching
• “regular expression” is a term to describe a result
• describes a pattern or sequence of characters

There is nothing “regular” about regular expressions. Undertaking the task
of learning how to use them this is not a slight task; it will take much time
and practice. However, you can learn enough about regular expressions in
a short period of time to make it worthwhile.
If you read the manual page regexp(5), you may hurt your brain. However,
most of us under the section “Pattern Matching” because we use it every day
when we list or address files. So, you are starting beyond the beginning.
Just keep in mind that regular expressions is a language for specifying what
you want and you will do just fine. We are going to embark on a path to help
you specify what you want more succinctly.

Page 3

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 3 of 32

Why should I care about
Regular Expressions?

• It is a major strength of UNIX
• formulate powerful queries
• automate sophisticated text edits
• a valuable tool to include in your UNIX skill set

You should care about Regular Expressions because you care about
increasing your skill set. You should care about Regular Expressions
because you are interested in doing the best job you can in the shortest
amount of time. You should care about Regular Expressions because
elegant solutions are valued over brute strength algorithms. You should
care about Regular Expressions because they are fun and satisfying to
create.
No other operating system offers the strength of something similar to
Regular Expressions in the environment. Using Regular Expressions you
can be very specific about what you are looking for (and avoid a bunch of
noise to wade through). Since you can query very specifically, you can also
edit what was found in a fine-grained manner. I am sure that you will find
even more situations where minutes, even hours, of work can be avoided by
using more and more complex Regular Expressions.

Page 4

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 4 of 32

Where Would I Use
Regular Expressions?

• UNIX Editors
– ed, ex
– sed
– vi

• Paging Commands
– more
– pg

• Pattern Matching Commands
– grep (Global Regular Expression Print)
– awk
– expr
– perl

Above you see a list of commands that understand Regular Expressions. If
you can master Regular Expressions just for use in your favorite UNIX editor
and grep(1) you can realize benefits. If you already search for strings in the
pagination commands, you will find Regular Expressions useful.
I would like to see you go on to using Regular Expressions in more
sophisticated commands like awk(1) and perl(1). Awk(1) directives look for
Regular Expressions and then take actions based upon what they find. You
can say the awk(1) is Regular Expression driven. Perl is the same type of
tool; it looks for patterns and takes actions. Both of these tools require a
certain dedication to learning Regular Expressions. If you do not have a firm
grasp on Regular Expressions, you can improve your chances of success
with Perl by using awk(1) first. Perl uses Regular Expressions, but it allows
an expanded set of operators that can be very imposing and difficult to
master when you have no exposure.

Page 5

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 5 of 32

Pattern Matching Notation
AKA File Name Generation (globbing)

? Match any single character
[] Bracket notation
* Anything or nothing

Can be used within case statements!

If you take the time to read regexp(5), you will see it starts out with “Pattern
Matching Notation”. You also know this concept as File Name Generation.
If you have been around UNIX long enough (from the very beginning), you
may also know the concept as “globbing”. In any event, this is how we
specify files for commands to work with. Be very careful. This syntax is
similar, yet very different, from the remainder of this discussion.

Page 6

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 6 of 32

Basic Regular Expressions
[] collating sequence
[^] non-collating sequence
[a-z] collating sequence specified as range
[: :] character class (eg. [:upper:])
* zero or more
. any single character
() grouping (subexpression)
^ $ anchoring (^ = beginning of line, $ = end of line)
\n n’th subexpression n = 0-9
\{m,n\} repetition m = minimum, n=max m/n 0-255

We are familiar with collating sequences -- that is, a list of characters that
can be matched by a single character. You can think this syntax as “a
character in this position can be any one of these”. The non-collating
sequence says “a character in this position can be any character except one
of these”.
When you use a character class, you may need to use double-square
brackets. We will see some examples.
The repetition character “*” is slightly different than the meaning it has for file
name generation. Now, it modifies the preceding pattern.
Pay attention. We will see some very interesting uses for grouping patterns.
One of the most handy features of Regular Expressions is that of anchoring.
We can specify that what we are looking for is at the beginning of the line,
end of the line, or is the entire line.
Still paying attention? We can ask for a specific sub-expression to be
recalled (used again) without typing it all out again -- very handy when
looking for something that should appear more than once on a line.
Besides asking for a patter to exist multiple times or not, we can ask for
minimum, maximum and specific numbers of repetitions. Sounds sort of like
recalling sub-expressions, but this syntax specifies the number of times we
expect the preceding pattern to appear.

Page 7

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 7 of 32

Extended Regular Expressions
+ one or more occurrences of preceding RE
? zero or one occurrences of preceding RE
| alternation

When you read regexp(5) you will see a section on Extended Regular
Expressions. Not all commands that understand Regular Expressions
understand Extended Regular Expressions. For instance, you have to call
grep(1) with a specific option or use egrep(1) to get the extended
capabilities.
The first two characters modify the preceding pattern. A plus sign says that
a least one instance of the pattern must exist, but more are allowed. A
question mark says that the preceding pattern does not have to exist, but, if
it does, only one instance is allowed. Later, we will see that both of these
can be emulated with Basic Regular Expressions.
Alternation is the additional capability gained with Extended Regular
Expressions. What alternation allows us to do is specify more than one
pattern to choose from in the given position. Better understand will come
with examples.

Page 8

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 8 of 32

GREP BRE Examples
$ grep [123] data
234
825.
Man-Year: 730 people working feverishly until noon.
157.26
+50.8992
The above line consists of two (2) spaces
.7257
187,472.66

Your handout titled “Regular Expressions Revealed: Data” is the contents of
the data file we will be working on.
Lets start near the beginning and work with some Basic Regular Expression
examples. Here we see a grep(1) with a simple bracket notation. Every line
matched should have a “1”, “2” or “3” on it. I would like to point out what the
grep(1) statement missed: lines 16 and 17. Neither of those two lines
contain any of the number characters in the list.

Page 9

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 9 of 32

grep [0-9] data
234
825.
Man-Year: 730 people working feverishly until noon.
157.26
-88.5
-66
+50
+50.8992
The above line consists of two (2) spaces
.7257
187,472.66

Here we wanted to match any line with a single number character on it.

Page 10

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 10 of 32

grep th[aeiouAEIOU] data
Words are the voice of the heart
Every Program is part of some other program, and rarely fits.
Writing free verse is like playing tennis with the net down.
She sells C-Shells by the C-Shore.
Love the Sea? I dote upon it - from the beach.
Line printer paper is strongest at the perforations.
What was that?
Helping Others ==> we all benefit
She sells sea shells by the sea shore.
No one can feel as helpless as the owner of a sick goldfish.

Here we have a BRE that is looking for “th” followed by any of the vowels.
Most of the lines have “the” in them somewhere. The second line of output
is matching “the” within the word “other”. Beware of situations like that. The
grep(1) is scanning for a character sequence. Unless you tell it to, it will not
be looking for words.

Page 11

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 11 of 32

grep th[^eiouEIOU] data
An Elephant is a mouse with an operating system.
Writing free verse is like playing tennis with the net down.
What was that?

Do you see why this BRE yields this output? That first two lines are very
puzzling. OK, I have tricked you a bit. I left “a” out of the bracket notation,
so the “tha” in “that” on the last line of output is matched. But, why do the
first two lines match? Did it match “with” on both lines? Close, but not quite.
It was the “th” in “with” that was matched. Since a space is not in the
bracket notation, is is allowed as a match. Therefore, we matched “th”
followed by a space. Is that what you expected? I will remind you that this
is what we asked grep(1) to look for.

Page 12

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 12 of 32

grep L.ve data
Love the Sea? I dote upon it - from the beach.
I Live! I Live!
The password is: L@vek[;'../bck

Lets take a look a saying “match any single character in this space”. Nope it
is not a question mark like file name generation -- it is a period. In the above
example, we have asked for “L”, any single character, then “ve”. Notice that
the dot notation matched the at-sign in the last line of output.

Page 13

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 13 of 32

grep ^The data
The future isn't what it used to be!
The above line is a single CR
The above line consists of two (2) spaces
The password is: L@vek[;'../bck
The End

Lets test out anchoring. Here we are looking for “The” at the beginning of
the line. Why didn’t our BRE match line 15? It has “The” on it. Well, we
asked for “The” to be the very first thing on the line by starting our BRE with
a carat.

Page 14

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 14 of 32

grep !$ data
Disk Crisis, please clean up!
The future isn't what it used to be!
I Live! I Live!

OK, another anchoring example. This time, we are looking for lines that end
with an exclamation mark. Be very careful with syntax like this -- what if the
line ends with an exclamation mark, then a space and finally an End-of-
Line?

Page 15

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 15 of 32

grep "[0-9][0-9]*\." data
825.
157.26
-88.5
+50.8992
187,472.66

Now it is time to get a bit more complicated. This time, lets look for lines that
have numbers and a decimal point.
Again we will start with what was not matched: why didn’t we get line 17 or
33 in the output? Line 17 is a miss because it lacks the required decimal
point. Hey! Wait a minute! Doesn’t a dot mean to match any character in
this position? Well, we escaped the special meaning of the dot by preceding
it with a back-slash (a universal UNIX convention). So, we are looking for a
literal dot. Now, why doesn’t line 33 match? It is number characters we are
looking for are before the the dot, not after -- line 33 does not have any
number characters before the dot.

Page 16

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 16 of 32

grep "\(the\).*\1" data
Words are the voice of the heart
Love the Sea? I dote upon it - from the beach.

Getting a bit more complicated with BREs, lets explore sub-expressions.
Notice that we escaped the parenthesis -- you don’t have to do that for all
commands. And, didn’t I just get through saying that back-slashes escape
the special meaning of the next character? Don’t you just love UNIX
consistency? Anyhow, what we are looking for are lines that have the
sequence “the” on them twice. This BRE says “look for the string ‘the’ (and
remember it as a sub-expression) followed by any number of various
characters (not just the same character repeated) and then the first sub-
expression again”. This can be very handy when needing to match
complicated expressions more than once.

Page 17

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 17 of 32

grep "[0-9]\{3,4\}" data
234
825.
Man-Year: 730 people working feverishly until noon.
157.26
+50.8992
.7257
187,472.66

In contrast, we have syntax that is looking for multiple occurrences of
characters that are number characters. In this case, at least three number
characters, but no more than four. Just why was that last line of output
matched? The comma and period interrupt the sequence of numbers.

Page 18

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 18 of 32

egrep ERE Examples
$ egrep 8+ data
825.
-88.5
+50.8992
187,472.66

Now that we have explored BREs, lets take a look at some Extended
Regular Expressions.
Here we see an ERE that is asking for at least one and possibly more eights
in sequence. That was easy and fairly harmless.

Page 19

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 19 of 32

egrep "(C-)?[Ss]hells" data
She sells C-Shells by the C-Shore.
She sells sea shells by the sea shore.

Lets take a leap and decompose a fairly complicated ERE. The sub-
expression “C-” is modified by a question mark, yielding that “C-” appears
only once or not at all. The bracket notation “[Ss]” is a simple way of
requesting either the upper- or lower-case version of a single letter.
Is this syntax any different that just asking for “[Ss]hells”. No, it is not.
However, consider the situation where we were looking for strings to perform
edits upon. Then, pulling the “C-” into the ERE will be quite different.

Page 20

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 20 of 32

egrep "[hH]elp(less|ing)" data
Helping Others ==> we all benefit
No one can feel as helpless as the owner of a sick goldfish.

Here is another complicated ERE. This time, alternation has been thrown
into the mix. This matches “help” or “Help” following by either “less” or “ing”.
We could have also used “[hH]elp(less|ing|full)”. This would have added
“full” as an option to the alternation illustrating that alternation is not
restricted to a two-way selection.

Page 21

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 21 of 32

Spanning
\{M\} Exactly M occurrences
\{M,\} Exactly M or more occurrences
\{M,N\} At least M occurrences but no more than N

* Abbreviation for \{0,\}
+ Abbreviation for \{1,\}
? Abbreviation for \{0,1\}

It is time to make good on my promise to break down EREs into BREs.
When using spanning, you can omit the maximum to mean unlimited. Of
course, you can always ask for a minimum or maximum of zero. What I
want to get at is that “{0,}” says zero or more (longhand for “*”). Similarly,
“{1,}” says at least one but possibly more (longhand for “+”). Finally, we see
that “{0,1}” says none or just one (longhand for “?”). One item to fully
understand from this information is that BREs can do everything EREs can
do (except alternation), you just have to do much more typing.

Page 22

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 22 of 32

^(\+|-)?[0-9]+\.?[0-9]*$

!

Yikes! Is this really a Regular Expression, or is it supposed to mean that a
cartoon character is cursing? Well, it is an ERE. Look at it for a moment and
then we will break it down.
It starts and ends by anchoring to the front and end of the line. Whatever it
is, this comprises the entire line.
After anchoring to the beginning of a line there is a sub-expression. This
sub-expression is an alternation between either a literal plus-sign or a dash.
This sub-expression is modified by a question mark -- either a plus sign, a
minus sign, or nothing. This is followed by a bracket notation on the number
characters. This bracket notation is modified by a plus sign, indicating at
least one, but possibly more. After this, we have an escaped dot, so it
requires a literal dot. Well, requires is too strong because our escaped dot is
followed by a question mark (which means the dot is optional and only one
may appear). This is followed by another bracket notation on number
characters, but this time it is modified by an asterisk.
Care to guess what this ERE matches? How about signed and unsigned
floating point numbers on a line by themselves. Well, almost. This ERE
requires a number before the decimal point, but not after. For example, this
ERE matches “25.” but not “.25”. Better syntax would be to switch the
bracket notation modifications to require a number after the decimal point.

Page 23

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 23 of 32

Removing Blank Lines Using Grep(1)
First Attempt

grep -v ^$

What does it mean to be a “blank line”?

Removing blank lines is a fairly common task. The grep(1) statement shown
will remove all lines that consist of nothing but a end-of-line. Nifty. But, what
about lines that might have a single space (or maybe several).

Page 24

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 24 of 32

Removing Blank Lines (Continued)

grep -v "^[]*$"

There is a space inside the bracket notation.

OK, this grep(1) takes care of blank lines that might contain one or more
spaces. Is that all? How about tabs?

Page 25

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 25 of 32

Removing Blank Lines (Continued)

grep -v "^[]*$"

Uh, just what is different this time? There is a space
and a tab inside the bracket notation.

Now we have a bit of improvement. The line can contain spaces and tabs.
However, it is not very self-evident that there is a space and a tab when you
look at the code.

Page 26

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 26 of 32

Removing Blank Lines (Continued)

grep -v "^[[:space:]]*$"

Much better documentation!

Here are the other character classes you may find useful:

[:alpha:] letters
[:upper:] upper-case letters
[:lower:] lower-case letters
[:digit:] decimal digits
[:xdigit:] hexadecimal digits
[:alnum:] letters or decimal digits
[:space:] characters producing white-space in displayed text
[:print:] printing characters
[:punct:] punctuation characters
[:graph:] characters with a visible representation
[:cntrl:] control characters

Page 27

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 27 of 32

Lets Make A Simple Substitution
===
===
EQUAL=SIGN
===
===

sed s/=*/test/g
test
test
testEtestQtestUtestAtestLtesttestStestItestGtestNtest
test
test

Yikes! What went wrong here? One would have expected the lines of equal
signs to be replaced, but our substitution was made between each character
that was not an equal sign! Remember how the asterisk modifes -- is says
several or none, which matches the gaps between characters. Lets try this
again.

Page 28

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 28 of 32

Second Attempt At A Simple
Substitution

===
===
EQUAL=SIGN
===
===

sed "s/==*/test/g" equals
test
test
EQUALtestSIGN
test
test

Ahh, this is more like what we expected. The key was to specify at least one
equal sign followed by any number of others.

Page 29

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 29 of 32

Technique
• DEVELOP AN ALGORITHM: Know what you want to

match and how it might appear in the text.
• CODE: Write the pattern to describe what you want to

match.
• TEST: Try the pattern out.

Borrowing from “UNIX Power Tools”, you develop Regular Expressions from
both ends. You have to stop and carefully consider what it is that you want
to match and how it might appear in the input. Then, you create your
Regular Expression. This Regular Expression is then tested against
example data and fine tuned.

Page 30

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 30 of 32

TESTING (HIT OR MISS)
• HITS that should be MISSES
• HITS
• MISSES
• MISSES that should be HITS

Work both ends to the middle!

Here we see more about what I meant by developing Regular Expressions
from “both ends”. When you test, you will receive matches that should not
have been matched. You will get some of what you want, too. You will miss
some of the items you intended to match. Concentrate on the matches that
should not have been and the data you did not match that you should have,
thereby working from both ends.

Page 31

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 31 of 32

Why should I care about REs?

$ cat sample

printf("ENTER YOUR NAME: ");

printf ("OPENING FILE: %s\n", file);

printf ("CAN'T OPEN FILE: %s\n", "/usr/data");

fprintf(stderr,"CAN'T OPEN %s\n",errfile);

/* comment */ fprintf(stderr,"CAN'T OPEN %s\n",errfile);

value=2;

$ sed '1,$ s/\(.*[^f]\)printf.*"\(.*\)",\(.*\)/\1fprintf(stderr,"\2",\3/p' sample

printf("ENTER YOUR NAME: ");

printf ("OPENING FILE: %s\n", file);

printf ("CAN'T OPEN FILE: %s\n", "/usr/data");

fprintf(stderr,"CAN'T OPEN %s\n",errfile);

/* comment */ fprintf(stderr,"CAN'T OPEN %s\n",errfile);

value=2;

Here is a quick example of why you might want to become familiar with
Regular Expressions. Pretend with me for a minute that you have recently
become the owner of several thousand (maybe hundreds of thousands) of
lines of “c” code. The new boss, that knows nothing about “c” code (of
course) has discovered that this code uses both “printf” and “fprintf”. This
boss has decided to standardize on only “printf”. Pointy-Hair asks you to
single-handedly change every line of source code, converting “printf” to
“fprintf”.
After you panic (imagine days upon days with vi(1) and cc(1) -- gasp!), you
realize that you could use a simple edit to convert all instances of “printf” to
“fprintf”. Then, depression sets in because you realize that “fprintf” requires
an additional argument in the list (the file to print to: e.g. stdout or stderr).
After a few experiments, you also notice that your simple edit yields “ffprintf”
when the original string is “fprintf” (you need to leave these alone).
After this short-lived frustration, you ask someone who knows Regular
Expressions better than you for help. Together, you compose the sed(1)
shown. This sed(1) leverages EREs to carefully edit all of the files of source
code. After some time with cc(1) to make sure everything is OK, you realize
that you accomplished what could have been months of droll, demeaning
work, in just a few hours…then you faint. When you wake up, you inform
the boss that the effort will take several weeks of hard effort (and spend
those weeks on the golf course).

Page 32

David Totsch

Regular Expressions Revealed HPWorld 2000

Page 32 of 32

Resources
Aho, Alfred V., et al: The AWK Programming Language
 Addison-Wesley Publishing Company

Dougherty, Dale: sed & awk
 O’Reilley & Associates, Inc.

Parrett, William A.: UNIX For Application Developers
 McGraw-Hill, Inc

Peek, Jerry et al: UNIX Power Tools
 O’Reilley & Associates, Inc.

Jeffrey E.F. Friedl Mastering Regular Expressions
O’Reilly & Associates, Inc.

Make sure you get the second edition of “sed & awk” -- otherwise, your
understanding of all the examples will be predicated on your understanding
of nroff(1) and troff(1).
“Mastering Regular Expressions” is a very in-depth discussion that covers
multiple versions of Regular Expressions. You may find yourself wading
through some esoteric discussions to get at what you really need. However,
the book is worth your money if you are serious about leveraging Regular
Expressions.

