Shared Menory in the HP-UX 32-bit Environnment

by
Jeff Kl eckl ey
Hew ett - Packard Conpany

20 Perineter Sunmmt Blvd., M 907
Atl anta, GA 30319-1417

Jeff Kl eckl ey@p. com

I nt roducti on

This paper will describe the flexibility of virtual menmory in the HP-UX 32-bit
environnent. Specifically, howthis flexibility relates to shared nenory.
Various 32-bit virtual menory limtations will be discussed as well as the

net hods used to overconme them However, before these nmethods are discussed, a
description of the HP-UX 32-bit virtual menory addressing is necessary.

Each process in HP-UX views a 4Gb address space which is divided into 4 1Gb
qgquadrants. HP-UX acconplishes this with virtual menory addressing. Each
process has its own view of how virtual nenory is |laid out independent of the
under | yi ng physical nenory. HP-UX creates a mapping of a process’ view of
virtual nenmory and the actual physical nenmory. This mapping is managed by HP-
UX and i npl enmented in the underlying hardware so it can handl e the address
translation fromvirtual menory adresses to physical nenory addresses.

The upper bound for all the virtual menory on the systemis the amount of tota
swap space (pseudo swap + device swap + filesystem swap). The virtual address
space | ayout for HP-UX uses 4 quadrants which observe several kerne

parameters. For a 32-bit address space, each quadrant has a hard linmt of 1Gb
regardl ess of available virtual nenory (swap space). Depending on their nenory
needs, many 32-bit applications will find the standard virtual address |ayout
to be restrictive. However, HP-UX allows for flexibility in regards to the
virtual address space for 32-bit processes.

Wi | e HP- UX al ways adhere to the 4 quadrant nodel, how these quadrants are used
can be changed by a process's nmagic nunber. The magi c nunbers we will discuss
are:

EXEC_MAG C
SHARE_MAGI C
DEMAND MAG C
SHVEM MAGI C

When an executable is |inked using any of these nmamgic nunbers, this tells the
kernel to select a different nmenory nap

How do you use these magi ¢ nunbers? Better yet, how do you check to see if you
did it correctly? Before answering these questions, a little background on HP-
UX menory addressing is in order

Backgr ound

The process address space is first limted by the anount of available virtua
menory (total swap space) which is observed with swapinfo —tam The address
space | ayout for HP-UX uses 4 quadrants which observe several kernel paraneters
that act as soft limts:

Soft Limits
G_OBAL
SHARED
OBJECT
area 1
shmmax
G_OBAL
SHARED
OBJECT
area 2
maxdsiz
DATA DATA DATA .
(private) (private) (private) maxdsiz_64
maxssiz
maxssiz_64
TEXT TEXT TEXT
maxtsiz
maxtsiz_64
PID x PIDy PID z

For a 32-bit address space, each quadrant has a hard limt of 1Go regardl ess of
avai l abl e virtual menory (swap space). For a 64-bit address space, each
quadrant is hard limted to 4Tb. Wth 64-bit addressing, prograns will be able
to access a maxi mum of 4Th of text, 4Thb of private data, and 8Tb of shared
objects. Current 64-bit prograns use nowhere near 4Th in any of the four
gquadrants in a 64-bit address space; however, nany prograns using the 32-bit
address space find the 1G quadrants to be a limtation. Therefore, the rest
of this docunent refers to a 32-bit address space and ways to work around its
[imtations.

HP-UX allows for flexibility in regards to the virtual address space for 32-bit
processes.

Wi | e HP- UX al ways adhere to the 4 quadrant nodel, how these quadrants are used
can be changed by a process's nmagi c nunber.

If you check the magic(4) man page, you will see the follow ng table
docunenting these magi ¢ nunbers anong ot hers:

#defi ne EXEC MAG C 0x107 /* normal executable */
#def i ne SHARE MAG C 0x108 /* shared executable */
#defi ne DEMAND MAG C 0x10B /* demand-| oad executable */

SHARE MAQ C Execut abl es

Wth HP-UX, the nagi c nunbers for SHARE MAG C and DEMAND MAG C execut abl es have
the sane neaning. The address space for a process is laid out with a maxi num
of 1Gb of text, 1CGb of data, 1.75CGh of shared itenms (shared libraries and
shared menory). The last .25CGh is reserved for 10 So the menmory map | ooks

l'i ke this:

4 Gb
1/0O 10
SHARED
OBJECT Shared Memory
area 1
3Gb))
Shared Libraries
SHARED
OBJECT
area 2 Shared MMFs
2Gb
DATA DATA
(private)
1Gb
TEXT TEXT
0Gb

Code Exanpl e

It is inmportant to renenber that the cc(1l) conpiler will call the Iinker 1d(1)
and assign a magi ¢ nunmber of 108 or SHARE MAG C by defaul t.

Construct a sinple ¢ program source:
$ nmore test.c

mai n(){}

Conpi l e using defaults:
$ cc test.c

Use chatr to see the characteristics of the resulting a.out file:
$ chatr a.out |nore
a.out:

shared execut abl e

Check the resulting a.out file with odunp and see that the nagic nunber is 108:
$ /usr/contrib/bin/odunp a.out |head
Header record for : a.out

version: 85082112
systemi d: 0210 (PA-RISC 1.1) magi ¢ nunber: 0108
Many applications will have some problens with this layout. There is only one

guadrant available for the private data of a process and it is limted to 1Gh.
Also, there is only ~1.75Gh of shared space avail able for the whol e system
These limtations are further magnified by today's |arge nmenory systens.

| magi ne buying a systemw th 4G of menory and having the operating system
limt several Oracle database instances to only ~1.75G total shared nmenory.
Because applications were limted to only 1Gb of private data space, a magic
nunber, EXEC MAA C, was introduced to allow for |larger data areas....

EXEC MAG C Execut abl es

When an execut abl e uses the EXEC MAG C nagi ¢ nunber, this tells the kernel to
select a different nenmory map. Since the text of a program does not change at
runtine and it probably does not use anywhere near the full 1G of the text
guadrant, then it is safe to start the private data area i Mmediately on top of
the program s text in the text area. This allows the data area to make use of
the normally wasted virtual address space above the process text in the first
gquadrant. Gven a snall text area, an EXEC MAG C executabl e data space can

reach about 1.9CGb. So the menory map for an EXEC MAG C executable will | ook
like this:
4Gb
/0 10
SHARED
OBJECT Shared Memory
area 1
3Gb Shared Libraries
SHARED
OBJECT
area 2 Shared MMFs
2Gb
DATA
(private)
DATA
1Gb
DATA
(private)
TEXT TEXT
0Gb

Code Exanpl e
How to set the nmagic nunber to EXEC MAG C?

The program nmust be reconpiled with an option passed to the linker (l1d) to
specify the magi ¢ nunber to EXEC MAG C. The Id(1) man page states that this is
done with the -N option:

-N CGenerate an executable output file with file type
EXEC_MAG C.

Now |l et’s reconpil e our exanple programand pass this option to the Iinker:
$cc -W,-Ntest.c

What does chatr(1l) say about the resulting a.out file?
$ chatr a.out |nore
a.out:

nor mal execut abl e

The a.out file is further checked with odunp:
$ /usr/contrib/bin/odunp a.out |head
Header record for : a.out

ver si on: 85082112
systemi d: 0210 (PA-RISC 1.1) magi ¢ nunber: 0107

SHVEM MAGQ C Execut abl es

Because a 32-bit HP-UX systemis further limted to only 1.75G of total shared
nmenory space, applications that rely on shared nmenory (ie: databases) are
further restricted. Conversely, 64-bit processes running on 64-bit HP-UX do
not see this restriction since they have approxi mately 8Tb of space avail able
for shared objects. So another nagic nunber, SHVEM MAG C, was introduced to
allow for a larger shared nenory space for 32-bit processes. The follow ng
patches are required to use this magi c nunber on 10.20 systens:

PHKL_16751 (s800)
PHKL_16750 (s700)
PHSS 17903

Since many applications that use |arge anmbunts of shared nmenory rarely use

| arge anpbunts of private menory they are likely to see | arge anpbunts of wasted
address space in both of the first two quadrants. The SHVEM MAG C nagi ¢ nunber
causes all of the program s text and data to be fitted into the first quadrant.
The second quadrant now becones a third area for holding shared nenory and is
only avail able for prograns conpiled using SHVEM MMAJ C. Using SHVEM MAG C i t
is then possible for a programto access ~2. 75Gh of shared nenory. The nenory

map for an SHVEM MAG C executable will ook like this:
4Gb
/0 10
SHARED
OBJECT Shared Memory
area 1
3Gb Shared Libraries
SHARED
OBJECT Shared MMFs
area 2
2Gb
SHARED Shared Memory
OBJECT
area 3
1Gb
DATA
(private) DATA
TEXT TEXT
0Gb
Shared nenory usage can be checked with ipcs —nbb. A process will request a
shared nmenory segnent with the shnget(2) function call. Two things to
r emenber :

1) shared nenory segnents nust be made of contiguous nmenory pages.
2) no single shared nenory segnent can be larger than a quadrant boundary or
1&.

Code Exampl e

We use chatr (1) instead of a reconpile/relink to set SHVEM MAG C for an
execut able. However, its inportant to renenber: an executabl e nust have a
magi ¢ nunber of EXEC MAG C before using chatr(1l) to change it's magi ¢ number
further to SHVEM MAG C.

Let’s try granting our exanple programset with the default SHARE MAG C t he
ability to access 2. 75CGh shared nenory.

$ cc test.c

$ chatr -M a. out

chat r:(error) - only EXEC MAG C files can be nade SHVEM MAG C

So the error sinply confirms that the executable has a magi ¢ number of 108
(SHARE_MAG C) when it needs to have a magi ¢ number of 107 (EXEC MAG C).

Let’s follow the previous code exanple and reconpil e our program again using
EXEC_MAG C.
$cc-W,-Ntest.c

Now use chatr to further change the magi c nunber to SHVEM MAG C.
$ chatr -M a. out

Checking the a.out file noww th chatr(1) and odunp:
$ chatr a.out |nore
a.out:

nor mal SHVEM MAGQ C execut abl e

$ /usr/contrib/bin/odunp a.out |head
Header record for : a.out

ver si on: 85082112
systemi d: 0210 (PA-RISC 1.1) magi ¢ nunber: 0109

This indicates that the executable is set correctly to take advantage of 2.75Gh
shared nenory!

HP- UX 11.x Menory W ndows

Al 32-bit applications in the systemare limted to a total of 1.75CG of

gl obal shared nmenory, 2.75Go if conmpiled with SHVEM MAG C. This linitation
applies to 32-bit applications running in either 32-bit or 64-bit HP-UX 11.0.
Many sites running nultiple instances of popular 32-bit database applications
found this gl obal space used for shared resources to be limting. Even with
SHVEM MAG C exectuables that allow up to 2. 75CGh of shared menory, applications
on systenms with extrenmely |arge anbunts of nermory found this a restriction.
Menory wi ndows is an 11.x only feature that allows 32-bit applications to get
around the 1.75Gh/2.75CGh |imtation for global shared nenory.

A 32-bit process can create a unique nenory wi ndow for shared objects such as
shared menory. Qher 32-bit processes can attach to this wi ndow to access

t hese shared objects. This allows each cooperating process to create 1-2

gi gabytes of shared resources wi thout exhausting the systemw de gl obal space.
The 4th quadrant still remains globally visible to all processes for shared
libraries and shared objects requiring access by all processes, no matter what
menory wi ndow they are in. The ability to create a unique menory w ndow
renoves the systemw de 1.75CGh/2.75CGh gl obal shared nenory linmtation. So the

nmenory | ayout for SHARE MAG C processes using nenory wi ndows will |ook |ike
this:
__________________________________ O
GLOBAL
SHARED
OBJECT
area 1
SHARED SHARED
OBJECT OBJECT
Area 2 Area 2
| -—_ | |
o T . | |
T ! !
| ~~a_ | |
1 | |
| S~—. | |
DATA DATA DATA
(private) (private) (private)
TEXT TEXT TEXT

PID x PIDy PID z

The menory | ayout for SHVEM MAG C processes using nenory w ndows:

__________________________________ O
GLOBAL
SHARED
OBJECT
area 1
SHARED SHARED
OBJECT OBJECT
area 2 area 2
SHARED SHARED
OBJECT OBJECT
area 3 area 3
) ~~o]]
~~o	
=<	
S~<o	
S~	
~~o	
et | i
DATA DATA DATA
(private) (private) (private)
TEXT TEXT TEXT
PID x PIDy PID z

VWil e menory wi ndows allow for nore than 1.75G/ 2. 75Gh of systemw de gl oba
shared nmenory, it does not extend how nuch shared resources a single process can
create! SHARED MAG C executables are still linmted to 1.75 gi gabytes and

SHVEM MAG C executables are limted to 2.75 gigabytes thensel ves. But different
applications, or distinct instances of a single application, can attach to

di fferent menory wi ndows and consune nore than than 1.75CGh/ 2. 75Gh of systemw de
gl obal shared nenory.

For more information on the concepts and inplenmentation of menory w ndows, see
the menory wi ndows white paper found at /usr/share/doc/memwndws.txt on 11.0
systenms. Also, it is a good idea to consult with your application vendor for
any known issues with HP-UX nenory wi ndows before attenpting to use them

VWhat is required to run nmenory w ndows?

1) HP-UX 11.x 32-bit or 64-bit installation

2) Two patches were rel eased to enable nenory w ndows:
PHKL_13810
PHKL_13811

These two pat ches have since been superseded. The current list is:
PHKL_18543
PHCO 19047
PHCO 20179
PHKL_20995
PHCO 20443

3) The kernel tunable, max_nem w ndow, nmust be set to the desired nunber of
virtual nenory windows. The default value is 0. nax_mem w ndow represents
t he nunber of nenory wi ndows beyond the gl obal default wi ndow. Setting
max_mem wi ndow to one creates a single nenory wi ndow to acconpany the
exi sting global nmenmory window. Wth a value of one there are a total of two
menory wi ndows, one default and one user defined. Setting max_nmem wi ndow to
two woul d produce a total of three nenory wi ndows, the default and two user
defined. Setting max_memw ndow to O | eaves only one menory w ndow, the
default or global nmenory w ndow.

4) The /etc/services.w ndow file must be created. A group of processes w shing
to use a common nenory w ndow nust associate thenselves with the uni que key
for that window The file /etc/services.windowis a centrally located file
used so applications can avoid hard coding id's in startup or control
scripts. This file will have entries in the format of “<associated string>
<wi ndow key>". Each string/key pair must be unique. A sanple
/etc/services.w ndow file:

#

[etc/services.w ndow format:
#

Nanme <user_key>

i nform x 20

oracl e 30

sybase 40

dat abasel 50
dat abase2 60
dat abase3 70

How do we start a process in a nenory w ndow?

The get memni ndow(1) conmand was i ntroduced to extract nane/w ndow key fromthe
/etc/services.window file. The setmemn ndow 1) conmand is used to change the
wi ndow id of a running process or start a process in a specific nmenory w ndow.
The startup for an application would use get memwi ndow to identify the wi ndow id
for the application to use and setnmemii ndow to execute the application within
that wi ndow. For exanple, the startup script may read something like this:

$ cat startDBI1.sh
W nl d=$(get mremni ndow dat abasel)
set memmi ndow —i $W nl d / hone/ user/ execut abl e

So based on our /etc/services.wi ndow file, the startDBl executable will be
started using a menory wi ndow with an I D of 50.

How can we tell if the nenory wi ndow was decl ared and what shared nenory
segnents are found in that w ndow?

The memnmi n_stats is the comand to display information about shared nenory
segnents and the nmenory wi ndow bei ng used.

./memnn_stats -m
Shared Menory:

T I D KEY MODE OMNNER GROUP User Key Kernl d
m 0 0x2f100002 --rw------ r oot Sys d obal 0
m 1 0x411c36C1l --rwWrwrw r oot r oot d obal 0
m 2 0x4e0c0002 --rwrwrw r oot r oot d obal 0
m 3 0x412041Cc9 --rwWrwrw r oot r oot d obal 0
m 5 0x06347849 --rwrwrw r oot r oot d obal 0
m 19806 0x52140128 --rwr—r-- r oot Sys 50 1

In this exanple, we see the shared nmenory segnents associated with the gl obal
default nmenmory window. W also see there is a shared nenory segnent associ at ed
with a user defined menmory wi ndow which has a wi ndow I D of 50.

Code Exanpl e

Qur program creates and attaches to a 1K shared nmenory segnent. It takes a user
string as an argunent and wites this string to the shared nenory segnent.

Al so, the key that is generated to assign to the shared nmenory segnent is sent
to stdout.

We execute our programusing a startup script to inplenment nmenory w ndows:
cat startDBLl. sh

W nl d=$(get memni ndow dat abasel)

set memni ndow —i $Wnld /hone/user/startDBl “Hello Wirld!”

./startDB. sh
witing to segnment: "Hello World!"
Key is 1377042553

./memn n_stats -m
Shared Menory:

T I D KEY MODE OMNNER GROUP User Key Kernl d
m 0 0x2f100002 --rw------ r oot Sys d obal 0
m 1 0x411c36C1 --rwWrwrw r oot r oot d obal 0
m 2 0x4e0c0002 --rwrwrw r oot r oot d obal 0
m 3 0x412041Cc9 --rwWrwrw r oot r oot d obal 0
m 1204 0x52140079 --rwr--r-- r oot Sys 50 1

We see a shared nenory segnent with a key of 0x52140079 (1377042553 deci nmal)
using a menory wi ndow with | D 50.

Now we edit several copies of the startup script and our programthen execute
them The copied prograns will have a slight change so that it uses a different
key and therefore generates a new segnent. W will also change the startup
script to specify different user 1D s of “database2” and “database3” for

get memwi ndow(1) so that the new shared nenory segnents are attached to different
menory wi ndows.

| PC status from/dev/knmem as of Fr

./startDB2. sh
witing to segment:
Key is 1377042733

./startDB3. sh
witing to segment:
Key is 1377042734

./memnin_stats -m
Shared Menory:

T ID KEY

m 0 Ox2f 100002
m 1 Ox411c36cl
m 2 0x4e0c0002
m 3 0x412041c9
m 1404 0x52140079
m 205 0x5214012d
m 10206 0x5214012e
ipcs -nob

T I D KEY
Shared Menory:

m 0 O0x2f 100002
m 1 0x411c36¢cl
m 2 0x4e0c0002
m 3 0x412041c9
m 1404 0x52140079
m 205 0x5214012d
m 10206 0x5214012e
In our examnpl e,

S-S TWET W W
SSTWET W W
S S TWET WA W
SeTWr--T--
SeTWr--T--
S TWP--T--

MODE

S-S TWE W W
S-S TWE W W
S-S TV W W
S-TWr--T--
S-TWr--T--
S TWr--T--

t he three shared

"DB2 says Bon Jour!"

"DB3 says dal"

OMNNER
r oot
r oot
r oot
r oot
r oot
r oot
r oot

OWNER

r oot
r oot
r oot
r oot
r oot
r oot
r oot

nmenory segnents are 1K in size apiece

GROUP
sys
r oot
r oot
r oot
Sys
Sys
sys

sys
r oot
r oot
r oot
sys
sys
sys

User Key
d oba
d oba
d oba
d oba

50
60
70

May 5 16:09:24 2000
GROUP NATTCH

8
0
1 3
1
0
0
0

Ker nl d

SEGSZ

1286144

348
1040
8192
1024
1024
1024

WNPFPOOOO

but each

of themcould be 1G in size as long as they were created using nenory w ndows.
The ipcs(1l) output shows NATTCH as O for the three segenments because our sanple

program det aches fromthe segnment after creating and witing to it.

The exanpl e program sour ce:

/*

** startDBl --

*/

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/shm h>

#define SHM SI ZE 1024

i nt

{

mai n(

int argc,

/* nmake it a 1K shared nenory segnent

char *argv[])

read and wite to a shared nenory segnent

*/

key t key;
int shm d;
char *dat a;
i nt node;

if (argc > 2) {
fprintf(stderr, "usage: startDBl [data_to wite]\n");
exit(l);

/* nmake the key: */

if ((key = ftok("/hone/user/startDBl.c", 'R)) == -1) {
perror("ftok");
exit(1);

}
printf("Key is \"%l\"\n", key);

/* connect to (and possibly create) the segment: */

if ((shmid = shnget (key, SHM SIZE, 0644 | | PC _CREAT)) == -1) {
perror("shnget");
exit(1);

}

/* attach to the segnment to get a pointer to it: */
data = (char *) shmat (shmid, 0, 0);
if (data == (char *)(-1)) {

perror("shmat");

exit(l);

/* read or nodify the segment, based on the command line: */
if (argc == 2) {
printf("witing to segnment: \"%\"\n", argv[1]);
strncpy(data, argv[1l], SHM Sl ZE)
} else
printf("segment contains: \"%\"\n", data);

/* detach fromthe segnment: */
if (shrmdt(data) == -1) {
perror("shndt");
exit(l);
}

return O;

}

The only change we nake to the copies startDB2.c and startDB3.c is to specify a
different file nane in the “nake the key” function so that these prograns create
a segnment with a different segnent ID. Note that if any of these prograns are
run a second tine and the filenane is the sane for the “make the key” function
it will not create a new segnent but instead it will attach and nodify the
segnent that already exists with the sanme key.

The startup scripts for the exanpl e prograns:

nore startDBl. sh

W nl d=$(get mremni ndow dat abasel)
set memm ndow -i $Wnld /hone/user/startDBl "Hello World!"

nmore startDB2. sh
W nl d=$(get mremni ndow dat abase?2)
set memai ndow -i $Wnld /hone/user/startDB2 "DB2 says Bon Jour!"

nore startDB3. sh
W nl d=$(get mremni ndow dat abase3)
set memni ndow -i $Wnld /hone/user/startDB3 "DB3 says O a!"

	Introduction

