
Shared Memory in the HP-UX 32-bit Environment

by
Jeff Kleckley

Hewlett-Packard Company

20 Perimeter Summit Blvd., MS 907
Atlanta, GA 30319-1417

Jeff_Kleckley@hp.com

Introduction

This paper will describe the flexibility of virtual memory in the HP-UX 32-bit
environment. Specifically, how this flexibility relates to shared memory.
Various 32-bit virtual memory limitations will be discussed as well as the
methods used to overcome them. However, before these methods are discussed, a
description of the HP-UX 32-bit virtual memory addressing is necessary.

Each process in HP-UX views a 4Gb address space which is divided into 4 1Gb
quadrants. HP-UX accomplishes this with virtual memory addressing. Each
process has its own view of how virtual memory is laid out independent of the
underlying physical memory. HP-UX creates a mapping of a process’ view of
virtual memory and the actual physical memory. This mapping is managed by HP-
UX and implemented in the underlying hardware so it can handle the address
translation from virtual memory adresses to physical memory addresses.

The upper bound for all the virtual memory on the system is the amount of total
swap space (pseudo swap + device swap + filesystem swap). The virtual address
space layout for HP-UX uses 4 quadrants which observe several kernel
parameters. For a 32-bit address space, each quadrant has a hard limit of 1Gb
regardless of available virtual memory (swap space). Depending on their memory
needs, many 32-bit applications will find the standard virtual address layout
to be restrictive. However, HP-UX allows for flexibility in regards to the
virtual address space for 32-bit processes.

While HP-UX always adhere to the 4 quadrant model, how these quadrants are used
can be changed by a process's magic number. The magic numbers we will discuss
are:

EXEC_MAGIC
SHARE_MAGIC
DEMAND_MAGIC
SHMEM_MAGIC

When an executable is linked using any of these magic numbers, this tells the
kernel to select a different memory map.

How do you use these magic numbers? Better yet, how do you check to see if you
did it correctly? Before answering these questions, a little background on HP-
UX memory addressing is in order.

Background

The process address space is first limited by the amount of available virtual
memory (total swap space) which is observed with swapinfo –tam. The address
space layout for HP-UX uses 4 quadrants which observe several kernel parameters
that act as soft limits:

PID x PID y PID z

For a 32-bit address space, each quadrant has a hard limit of 1Gb regardless of
available virtual memory (swap space). For a 64-bit address space, each
quadrant is hard limited to 4Tb. With 64-bit addressing, programs will be able
to access a maximum of 4Tb of text, 4Tb of private data, and 8Tb of shared
objects. Current 64-bit programs use nowhere near 4Tb in any of the four
quadrants in a 64-bit address space; however, many programs using the 32-bit
address space find the 1Gb quadrants to be a limitation. Therefore, the rest
of this document refers to a 32-bit address space and ways to work around its
limitations.

HP-UX allows for flexibility in regards to the virtual address space for 32-bit
processes.

While HP-UX always adhere to the 4 quadrant model, how these quadrants are used
can be changed by a process's magic number.

GLOBAL
SHARED
OBJECT
area 1

GLOBAL
SHARED
OBJECT
area 2

DATA
(private)

TEXT

DATA
(private)

TEXT

DATA
(private)

TEXT

Soft Limits

shmmax

maxdsiz

 maxdsiz_64

maxssiz

maxssiz_64

maxtsiz

maxtsiz_64

If you check the magic(4) man page, you will see the following table
documenting these magic numbers among others:

 #define EXEC_MAGIC 0x107 /* normal executable */
 #define SHARE_MAGIC 0x108 /* shared executable */
 #define DEMAND_MAGIC 0x10B /* demand-load executable */

SHARE_MAGIC Executables

With HP-UX, the magic numbers for SHARE_MAGIC and DEMAND_MAGIC executables have
the same meaning. The address space for a process is laid out with a maximum
of 1Gb of text, 1Gb of data, 1.75Gb of shared items (shared libraries and
shared memory). The last .25Gb is reserved for IO. So the memory map looks
like this:

I/O

SHARED
OBJECT
area 1

SHARED
OBJECT
area 2

DATA
(private)

TEXT

Code Example

It is important to remember that the cc(1) compiler will call the linker ld(1)
and assign a magic number of 108 or SHARE_MAGIC by default.

Construct a simple c program source:
$ more test.c
main(){}

Compile using defaults:
$ cc test.c

0 Gb

2 Gb

3 Gb

4 Gb

1 Gb

IO

Shared Memory

Shared Libraries

Shared MMFs

DATA

TEXT

Use chatr to see the characteristics of the resulting a.out file:
$ chatr a.out |more
a.out:
 shared executable

Check the resulting a.out file with odump and see that the magic number is 108:
$ /usr/contrib/bin/odump a.out |head
Header record for : a.out

version: 85082112
system id: 0210 (PA-RISC 1.1) magic number: 0108

Many applications will have some problems with this layout. There is only one
quadrant available for the private data of a process and it is limited to 1Gb.
Also, there is only ~1.75Gb of shared space available for the whole system.
These limitations are further magnified by today's large memory systems.
Imagine buying a system with 4Gb of memory and having the operating system
limit several Oracle database instances to only ~1.75Gb total shared memory.
Because applications were limited to only 1Gb of private data space, a magic
number, EXEC_MAGIC, was introduced to allow for larger data areas....

EXEC_MAGIC Executables

When an executable uses the EXEC_MAGIC magic number, this tells the kernel to
select a different memory map. Since the text of a program does not change at
runtime and it probably does not use anywhere near the full 1Gb of the text
quadrant, then it is safe to start the private data area immediately on top of
the program's text in the text area. This allows the data area to make use of
the normally wasted virtual address space above the process text in the first
quadrant. Given a small text area, an EXEC_MAGIC executable data space can
reach about 1.9Gb. So the memory map for an EXEC_MAGIC executable will look
like this:

I/O

SHARED
OBJECT
area 1

SHARED
OBJECT
area 2

DATA
(private)

DATA
(private)

&
TEXT

4 Gb

3 Gb

2 Gb

0 Gb

1 Gb

IO

Shared Memory

Shared Libraries

Shared MMFs

DATA

TEXT

Code Example

How to set the magic number to EXEC_MAGIC?

The program must be recompiled with an option passed to the linker (ld) to
specify the magic number to EXEC_MAGIC. The ld(1) man page states that this is
done with the -N option:

 -N Generate an executable output file with file type
 EXEC_MAGIC.

Now let’s recompile our example program and pass this option to the linker:
$ cc -Wl,-N test.c

What does chatr(1) say about the resulting a.out file?
$ chatr a.out |more
a.out:
 normal executable

The a.out file is further checked with odump:
$ /usr/contrib/bin/odump a.out |head
Header record for : a.out

version: 85082112
system id: 0210 (PA-RISC 1.1) magic number: 0107

SHMEM_MAGIC Executables

Because a 32-bit HP-UX system is further limited to only 1.75Gb of total shared
memory space, applications that rely on shared memory (ie: databases) are
further restricted. Conversely, 64-bit processes running on 64-bit HP-UX do
not see this restriction since they have approximately 8Tb of space available
for shared objects. So another magic number, SHMEM_MAGIC, was introduced to
allow for a larger shared memory space for 32-bit processes. The following
patches are required to use this magic number on 10.20 systems:

PHKL_16751 (s800)
PHKL_16750 (s700)
PHSS_17903

Since many applications that use large amounts of shared memory rarely use
large amounts of private memory they are likely to see large amounts of wasted
address space in both of the first two quadrants. The SHMEM_MAGIC magic number
causes all of the program's text and data to be fitted into the first quadrant.
The second quadrant now becomes a third area for holding shared memory and is
only available for programs compiled using SHMEM_MAGIC. Using SHMEM_MAGIC it
is then possible for a program to access ~2.75Gb of shared memory. The memory
map for an SHMEM_MAGIC executable will look like this:

I/O

SHARED
OBJECT
area 1

SHARED
OBJECT
area 2

SHARED
OBJECT
area 3

DATA
(private)

&
TEXT

Shared memory usage can be checked with ipcs –mob. A process will request a
shared memory segment with the shmget(2) function call. Two things to
remember:
1) shared memory segments must be made of contiguous memory pages.
2) no single shared memory segment can be larger than a quadrant boundary or

1Gb.

Code Example

We use chatr(1) instead of a recompile/relink to set SHMEM_MAGIC for an
executable. However, its important to remember: an executable must have a
magic number of EXEC_MAGIC before using chatr(1) to change it's magic number
further to SHMEM_MAGIC.

Let’s try granting our example program set with the default SHARE_MAGIC the
ability to access 2.75Gb shared memory.
$ cc test.c
$ chatr -M a.out
....
chatr:(error) - only EXEC_MAGIC files can be made SHMEM_MAGIC

4 Gb

3 Gb

2 Gb

0 Gb

1 Gb

IO

Shared Memory

Shared Libraries

Shared MMFs

DATA

TEXT

Shared Memory

So the error simply confirms that the executable has a magic number of 108
(SHARE_MAGIC) when it needs to have a magic number of 107 (EXEC_MAGIC).

Let’s follow the previous code example and recompile our program again using
EXEC_MAGIC.
$ cc -Wl,-N test.c

Now use chatr to further change the magic number to SHMEM_MAGIC:
$ chatr -M a.out

Checking the a.out file now with chatr(1) and odump:
$ chatr a.out |more
a.out:
 normal SHMEM_MAGIC executable

$ /usr/contrib/bin/odump a.out |head
Header record for : a.out

version: 85082112
system id: 0210 (PA-RISC 1.1) magic number: 0109

This indicates that the executable is set correctly to take advantage of 2.75Gb
shared memory!

HP-UX 11.x Memory Windows

All 32-bit applications in the system are limited to a total of 1.75Gb of
global shared memory, 2.75Gb if compiled with SHMEM_MAGIC. This limitation
applies to 32-bit applications running in either 32-bit or 64-bit HP-UX 11.0.
Many sites running multiple instances of popular 32-bit database applications
found this global space used for shared resources to be limiting. Even with
SHMEM_MAGIC exectuables that allow up to 2.75Gb of shared memory, applications
on systems with extremely large amounts of memory found this a restriction.
Memory windows is an 11.x only feature that allows 32-bit applications to get
around the 1.75Gb/2.75Gb limitation for global shared memory.

A 32-bit process can create a unique memory window for shared objects such as
shared memory. Other 32-bit processes can attach to this window to access
these shared objects. This allows each cooperating process to create 1-2
gigabytes of shared resources without exhausting the system-wide global space.
The 4th quadrant still remains globally visible to all processes for shared
libraries and shared objects requiring access by all processes, no matter what
memory window they are in. The ability to create a unique memory window
removes the system-wide 1.75Gb/2.75Gb global shared memory limitation. So the
memory layout for SHARE_MAGIC processes using memory windows will look like
this:

SHARED
OBJECT
Area 2

SHARED
OBJECT
Area 2

 PID x PID y PID z

DATA
(private)

TEXT

DATA
(private)

TEXT

DATA
(private)

TEXT

I/O

GLOBAL
SHARED
OBJECT
area 1

The memory layout for SHMEM_MAGIC processes using memory windows:

SHARED
OBJECT
area 2

SHARED
OBJECT
area 3

SHARED
OBJECT
area 2

SHARED
OBJECT
area 3

DATA
(private)

&
TEXT

DATA
(private)

&
TEXT

DATA
(private)

&
TEXT

PID x PID y PID z

While memory windows allow for more than 1.75Gb/2.75Gb of system-wide global
shared memory, it does not extend how much shared resources a single process can
create! SHARED_MAGIC executables are still limited to 1.75 gigabytes and
SHMEM_MAGIC executables are limited to 2.75 gigabytes themselves. But different
applications, or distinct instances of a single application, can attach to
different memory windows and consume more than than 1.75Gb/2.75Gb of system-wide
global shared memory.

For more information on the concepts and implementation of memory windows, see
the memory windows white paper found at /usr/share/doc/mem_wndws.txt on 11.0
systems. Also, it is a good idea to consult with your application vendor for
any known issues with HP-UX memory windows before attempting to use them.

I/O

GLOBAL
SHARED
OBJECT
area 1

What is required to run memory windows?
1) HP-UX 11.x 32-bit or 64-bit installation
2) Two patches were released to enable memory windows:

PHKL_13810
PHKL_13811

These two patches have since been superseded. The current list is:
PHKL_18543
PHCO_19047
PHCO_20179
PHKL_20995
PHCO_20443

3) The kernel tunable, max_mem_window, must be set to the desired number of
virtual memory windows. The default value is 0. max_mem_window represents
the number of memory windows beyond the global default window. Setting
max_mem_window to one creates a single memory window to accompany the
existing global memory window. With a value of one there are a total of two
memory windows, one default and one user defined. Setting max_mem_window to
two would produce a total of three memory windows, the default and two user
defined. Setting max_mem_window to 0 leaves only one memory window, the
default or global memory window.

4) The /etc/services.window file must be created. A group of processes wishing
to use a common memory window must associate themselves with the unique key
for that window. The file /etc/services.window is a centrally located file
used so applications can avoid hard coding id's in startup or control
scripts. This file will have entries in the format of “<associated string>
<window key>”. Each string/key pair must be unique. A sample
/etc/services.window file:

#
/etc/services.window format:
#
Name <user_key>

informix 20
oracle 30
sybase 40
database1 50
database2 60
database3 70

How do we start a process in a memory window?

The getmemwindow(1) command was introduced to extract name/window_key from the
/etc/services.window file. The setmemwindow(1) command is used to change the
window id of a running process or start a process in a specific memory window.
The startup for an application would use getmemwindow to identify the window id
for the application to use and setmemwindow to execute the application within
that window. For example, the startup script may read something like this:

$ cat startDB1.sh
WinId=$(getmemwindow database1)
setmemwindow –i $WinId /home/user/executable

So based on our /etc/services.window file, the startDB1 executable will be
started using a memory window with an ID of 50.

How can we tell if the memory window was declared and what shared memory
segments are found in that window?

The memwin_stats is the command to display information about shared memory
segments and the memory window being used.

./memwin_stats -m
Shared Memory:
T ID KEY MODE OWNER GROUP UserKey KernId
m 0 0x2f100002 --rw------- root sys Global 0
m 1 0x411c36c1 --rw-rw-rw- root root Global 0
m 2 0x4e0c0002 --rw-rw-rw- root root Global 0
m 3 0x412041c9 --rw-rw-rw- root root Global 0
m 5 0x06347849 --rw-rw-rw- root root Global 0
m 19806 0x52140128 --rw-r—-r-- root sys 50 1

In this example, we see the shared memory segments associated with the global
default memory window. We also see there is a shared memory segment associated
with a user defined memory window which has a window ID of 50.

Code Example

Our program creates and attaches to a 1K shared memory segment. It takes a user
string as an argument and writes this string to the shared memory segment.
Also, the key that is generated to assign to the shared memory segment is sent
to stdout.

We execute our program using a startup script to implement memory windows:
cat startDB1.sh
WinId=$(getmemwindow database1)
setmemwindow –i $WinId /home/user/startDB1 “Hello World!”

./startDB.sh
writing to segment: "Hello World!"
Key is 1377042553

./memwin_stats -m
Shared Memory:
T ID KEY MODE OWNER GROUP UserKey KernId
m 0 0x2f100002 --rw------- root sys Global 0
m 1 0x411c36c1 --rw-rw-rw- root root Global 0
m 2 0x4e0c0002 --rw-rw-rw- root root Global 0
m 3 0x412041c9 --rw-rw-rw- root root Global 0
m 1204 0x52140079 --rw-r--r-- root sys 50 1

We see a shared memory segment with a key of 0x52140079 (1377042553 decimal)
using a memory window with ID 50.

Now we edit several copies of the startup script and our program then execute
them. The copied programs will have a slight change so that it uses a different
key and therefore generates a new segment. We will also change the startup
script to specify different user ID’s of “database2” and “database3” for
getmemwindow(1) so that the new shared memory segments are attached to different
memory windows.

./startDB2.sh
writing to segment: "DB2 says Bon Jour!"
Key is 1377042733

./startDB3.sh
writing to segment: "DB3 says Ola!"
Key is 1377042734

./memwin_stats -m
Shared Memory:
T ID KEY MODE OWNER GROUP UserKey KernId
m 0 0x2f100002 --rw------- root sys Global 0
m 1 0x411c36c1 --rw-rw-rw- root root Global 0
m 2 0x4e0c0002 --rw-rw-rw- root root Global 0
m 3 0x412041c9 --rw-rw-rw- root root Global 0
m 1404 0x52140079 --rw-r--r-- root sys 50 1
m 205 0x5214012d --rw-r--r-- root sys 60 2
m 10206 0x5214012e --rw-r--r-- root sys 70 3

ipcs -mob
IPC status from /dev/kmem as of Fri May 5 16:09:24 2000
T ID KEY MODE OWNER GROUP NATTCH SEGSZ
Shared Memory:
m 0 0x2f100002 --rw------- root sys 8 1286144
m 1 0x411c36c1 --rw-rw-rw- root root 0 348
m 2 0x4e0c0002 --rw-rw-rw- root root 1 31040
m 3 0x412041c9 --rw-rw-rw- root root 1 8192
m 1404 0x52140079 --rw-r--r-- root sys 0 1024
m 205 0x5214012d --rw-r--r-- root sys 0 1024
m 10206 0x5214012e --rw-r--r-- root sys 0 1024

In our example, the three shared memory segments are 1K in size apiece, but each
of them could be 1Gb in size as long as they were created using memory windows.
The ipcs(1) output shows NATTCH as 0 for the three segements because our sample
program detaches from the segment after creating and writing to it.

The example program source:

/*
** startDB1 -- read and write to a shared memory segment
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define SHM_SIZE 1024 /* make it a 1K shared memory segment */

int main(int argc, char *argv[])
{

 key_t key;
 int shmid;
 char *data;
 int mode;

 if (argc > 2) {
 fprintf(stderr, "usage: startDB1 [data_to_write]\n");
 exit(1);
 }

 /* make the key: */
 if ((key = ftok("/home/user/startDB1.c", 'R')) == -1) {
 perror("ftok");
 exit(1);
 }
 printf("Key is \"%d\"\n", key);

 /* connect to (and possibly create) the segment: */
 if ((shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT)) == -1) {
 perror("shmget");
 exit(1);
 }

 /* attach to the segment to get a pointer to it: */
 data = (char *) shmat(shmid, 0, 0);
 if (data == (char *)(-1)) {
 perror("shmat");
 exit(1);
 }

 /* read or modify the segment, based on the command line: */
 if (argc == 2) {
 printf("writing to segment: \"%s\"\n", argv[1]);
 strncpy(data, argv[1], SHM_SIZE);
 } else
 printf("segment contains: \"%s\"\n", data);

 /* detach from the segment: */
 if (shmdt(data) == -1) {
 perror("shmdt");
 exit(1);
 }

 return 0;
}

The only change we make to the copies startDB2.c and startDB3.c is to specify a
different file name in the “make the key” function so that these programs create
a segment with a different segment ID. Note that if any of these programs are
run a second time and the filename is the same for the “make the key” function,
it will not create a new segment but instead it will attach and modify the
segment that already exists with the same key.

The startup scripts for the example programs:

more startDB1.sh

WinId=$(getmemwindow database1)
setmemwindow -i $WinId /home/user/startDB1 "Hello World!"

more startDB2.sh
WinId=$(getmemwindow database2)
setmemwindow -i $WinId /home/user/startDB2 "DB2 says Bon Jour!"

more startDB3.sh
WinId=$(getmemwindow database3)
setmemwindow -i $WinId /home/user/startDB3 "DB3 says Ola!"

	Introduction

