
Server Consolidation with HP-UX Workload Manager (WLM)
Raja Daoud, Tom Turicchi

Hewlett-Packard Company
3000 Waterview Parkway

Richardson, TX 75080

Tel: (972) 497-4731, (972) 497-4410
Fax: (972) 497-4245

Email: raja@rsn.hp.com, turicchi@rsn.hp.com

Abstract
To guarantee a timely response from mission-critical applications, data centers often
assign a dedicated server to each workload. This provides each application the resources
it needs to handle peak demand and allows enough room for growth. However, it also
results in a large number of servers that need to be managed, with resources that remain
idle for significant time periods.

HP-UX Workload Manager (WLM) enables the consolidation of workloads on a smaller
number of servers while maintaining the service level objectives (SLOs) of the business.
It manages the allocation of system resources to the applications and dynamically reacts
to changes in service levels in order to maintain consistent performance. SLOs are
prioritized and can be configured to be active only at certain time periods. This gives
HP-UX WLM the configuration flexibility to adapt to the data center's schedule.

This paper gives an overview of HP-UX WLM and its operation and presents examples
of its use to meet various business objectives.

Introduction
Over the last two decades, data centers that adopted the open systems model grew their
capabilities by adding new servers when new functionality was deployed. To guarantee
performance, these servers were dedicated to the new applications. They were also sized
to provide the extra capacity to handle unplanned peak demand and allow room for future
growth. This approach worked well but eventually resulted in a proliferation of servers,
increasing the complexity and the cost of managing the data center. In addition, the spare
capacity built into the data center was fragmented between the various servers, making it
hard to exploit. Often, these spare resources were not utilized.

The recent availability of large or high-end servers provides companies the opportunity to
consolidate multiple applications onto a smaller number of servers. This promises to
reduce the cost and complexity of managing the data center, and to yield higher resource
utilization by reducing the fragmentation of the spare resources. However, for such a
deployment to be successful, a mechanism is needed to guarantee that each application
receives its appropriate share of the resources, and does not impede on the performance
of the other workloads on the server. As an application's load changes throughout the
day, its resource allocation also needs to be adjusted in order to maintain the required
level of performance. HP-UX Workload Manager (WLM) provides this functionality to
enable workload consolidation.

HP-UX WLM Overview
HP-UX WLM is a software product, part of the system management suite for HP 9000
servers. It works in conjunction with HP Process Resource Manager (PRM) to enhance
the manageability of the servers and control the allocation of resources among the
workloads consolidated on a server.

HP-UX WLM automatically distributes system resources among applications to achieve
the performance goals defined by the system administrator. When goals are not being
met, the user is notified via an alarm. The user provides HP-UX WLM a configuration
file, listing the applications to be monitored, the desired performance goals, their relative
importance (priority), and the tools to monitor each application's performance. Each goal
may be configured to be actively managed only during specific time periods. A goal is
referred to as a Service Level Objective (SLO). In addition to the configuration file, the
user provides an executable that measures an application's performance and reports it
through API calls. These executables–referred to as performance monitors, or more
generically as data collectors–enable HP-UX WLM to determine if workloads are
meeting, exceeding, or missing their stated goals. The separate monitors provide users
with the flexibility and freedom to define the appropriate performance metrics specific to
each application. Periodically, HP-UX WLM reads the recent data provided by the
monitors, compares it to the goals specified, and adjusts the distribution of CPU
entitlements among workloads accordingly, relying on the goal priorities to resolve
excess demand. Figure 1 illustrates how HP-UX WLM operates.

At startup, the HP-UX WLM daemon reads the configuration file that specifies the
applications monitored and the SLOs attached to them. It then spawns the appropriate
instances of data collectors for each application performance measure, also referred to as
a metric. While the applications are running, the data collectors gather the performance
statistics for their metrics and provide them to the WLM daemon. The metric used
depends on the type of application and the user's needs. For example, a metric may be a
running average of database transaction response times, or job completion times for a
collection of batch jobs. At periodic time intervals, the WLM daemon reads the metric
values provided by the data collectors and forwards them to their corresponding
controllers. A controller instance is created, at startup time, for each SLO goal. The
controller compares the metric values read to the goal specified in the configuration file.
If the application is under-performing, the controller determines the increase in CPU
entitlement to request for it in order to rectify the situation. Likewise, if the application is
over-achieving, the controller determines the decrease in CPU entitlement to request for
it. The requests generated by all controllers are sent to an arbiter. The arbiter attempts to
satisfy as many requests as possible, based on the priority of each SLO goal. If there are
not enough resources to satisfy all the requests, some low priority goals receive less than
requested by the controller. The arbiter updates the allocation of CPU resources and
activates a new PRM configuration. These actions are repeated by the WLM daemon at
the next time interval.

Figure 1: HP-UX WLM Diagram

Application X

Application Y

Application Z

Data Collector

Data Collector

Data Collector

Configuration File EMS

Controller

Controller

Controller

Arbiter PRM

WLM daemon

This iterative process adapts the allocation of CPU entitlements to the needs of the
workloads, tracking the changes throughout the day, always attempting to satisfy the
highest priority business goals first. The status of the SLOs, along with configuration and
performance information, is periodically sent to the HP Event Monitoring System (EMS).
The user can configure EMS–using the System Administrator Manager (SAM)–to select
how to be notified when an SLO goal fails to be met. The current version of HP-UX
WLM allows users to set fixed memory and disk bandwidth entitlements for workloads,
however it does not dynamically modify them.

SLO goals can be configured to be active at selected times or dates. This gives the
system administrator the flexibility of adapting the WLM configuration to the schedule of
the data center. For example, a performance goal may be specified for a mission-critical
application on weekdays, between 7am and 9pm, and a less stringent goal activated at
night or on weekends to give more resources to batch jobs. When an SLO goal is not
active, it is ignored.

SLO Types
HP-UX WLM supports two SLO types:
• Goal-based SLO: This SLO specifies a performance goal for the workload. The user

defines a performance metric for the application, and provides a data collector that
continuously gathers statistics on this metric and sends the data to the WLM daemon.
The daemon automatically changes the CPU allocation for the workloads on the
system based on their performance and the priority of their SLOs. For example, a
goal-based SLO may specify that average database transactions must complete in less
than 3 seconds.

• Entitlement-based SLO: This SLO allows the user to specify a fixed CPU
entitlement for the workload, and not monitor the performance of some metrics. This
SLO does not require a data collector to be provided by the user. However, it implies
that the user knows the CPU entitlements sufficient for the workload. This SLO type
is suitable for discretionary or optional workloads that coexist on a server.

Both types of SLOs can coexist in a single HP-UX WLM configuration, allowing system
administrators to consolidate mission-critical applications that have strict performance
requirements, with optional workloads or workloads that are satisfied with fixed resource
entitlements. The user may also specify multiple SLOs for the same application, on any
number of metrics.

Data Collector API
HP-UX WLM exports a simple API to be used by data collectors to send the metric
statistics to the WLM daemon. Figure 2 lists the three functions and the header file to
include. The API provides a low-latency mechanism to send data to the daemon.
However, it requires that data collectors be developed in C or C++. A future release will
include a scripting interface, allowing system administrators to develop data collectors in
their favorite scripting language, at the cost of a slightly higher latency for the data
transfer.

For each metric used in one or more goal-based SLOs, the WLM daemon spawns an
instance of the data collector specified by the user. The data collector starts by calling
wlm_mon_attach() to establish a communication channel to the WLM daemon. The
metric name is found in the WLM_METRIC_NAME environment variable, set by the
WLM daemon. Following that, and for the duration of its operation, the data collector
gathers statistics on the metric for the workload it monitors, and calls wlm_mon_write()
to send the data to the daemon. The first version of HP-UX WLM only accepts metric
data of type double. Before it exits, the data collector calls wlm_mon_detach() to close
its communication channel. Figure 3 shows a code fragment for a data collector.

Configuration File
The HP-UX WLM configuration is specified in an ASCII text file. HP-UX WLM relies
on the PRM product to enforce the resource allocation it specifies. PRM allocates
resource shares to groups of processes referred to as PRM groups. PRM groups are
independent of the UNIX process groups used for job control. This grouping mechanism
allows users the flexibility of controlling multiple application processes as a single entity.
However, it requires the user to plan the mapping of application processes to PRM
groups and to describe this mapping in the WLM configuration file. Applications are
typically specified by the name, or pathname, of their executables. Once a configuration
file is created, the wlmd(1) command can be used to check its validity before activating it.
Figure 4 lists the command lines used to check then activate a configuration.

#include <wlm.h>

int wlm_mon_attach (const char *metric_name); Start WLM communication

ssize_t wlm_mon_write (int handle, const void *buf, size_t nbytes); Send metric data to WLM

int wlm_mon_detach (int handle); End WLM communication

Figure 2: WLM API

int handle;
double metric_val;

handle = wlm_mon_attach (getenv ("WLM_METRIC_NAME"));

while (! is_done ()) {
 metric_val = gather_workload_stats ();
 wlm_mon_write (handle, &metric_val, sizeof (metric_val));
}

wlm_mon_detach (handle);

Figure 3: Data Collector Code Fragment

To present the syntax of the configuration file, several examples are given below for
different user-case scenarios.

Fixed CPU Entitlements
It is possible to use HP-UX WLM to set up a configuration with a fixed CPU distribution,
and date-driven SLO activation. In this example, the system runs multiple applications,
two of them must be guaranteed some CPU shares. The /opt/stocks/bin/trading
application runs during the workweek and handles stock trading. It has the highest
priority and requires a minimum of 60% CPU share. The /opt/stocks/bin/histdata
application runs all the time and handles requests for historical stock data. It has a lower
priority and requests a minimum of 50% CPU share. To control them separately, each
application is mapped to a different PRM group, stocks and history respectively. Other
applications on the system are mapped to the default OTHERS group, created
automatically by HP-UX WLM.

Figure 5 shows the configuration file for this scenario. It defines two slo structures,
specifying the priority, PRM group, and minimum and maximum CPU shares requested
for the two controlled applications. The stock trading application is given the higher
priority of 1, and restricted to be active between Monday and Friday. The PRM groups
and application executables are defined in the prm structure. The groups are given the
IDs 2 and 3 because group IDs 0 and 1 are reserved by PRM. Note that neither mincpu
nor maxcpu need to sum up to 100%.

During the workweek, both SLOs are active. Because they do not have a goal defined,
HP-UX WLM treats them as if they were each requesting their mincpu values. Thus
stock_trading requests 60% and, being the highest priority SLO, it is granted the 60 CPU
shares. The historical_data SLO requests 50%, but can only be given 39 shares, because
the default OTHERS group must be given at least 1 CPU share. On weekends,
stock_trading is inactive and gets a nominal 1 CPU share. The historical_data SLO gets
the 50 shares requested. The remaining 49 shares are given to the OTHERS group.

The maxcpu value is not currently used by entitlement-based SLOs. However, its
specification enables future enhancements to the resource distribution algorithm to make
better use of this information.

% wlmd –c config_file Check validity of configuration file (any user)

% wlmd –a config_file Activate the configuration (requires root permissions)

Figure 4: Main WLM Daemon Command Options

Independent Goal-Based SLOs
Figure 6 extends the previous case by adding performance-driven goals to the SLOs. In
this version of HP-UX WLM, only user-defined goals are supported, thus the udef goal-
type specifier. The highest priority goal is for stock trading transactions to complete
within 3 seconds. The second goal is for historical data requests to complete within 10
seconds. In this example, we assume that the data collectors for both SLOs are reporting
transaction times in seconds. For each metric used in a goal expression, a tune structure
is defined, specifying the value of the coll_argv tunable. This tunable gives HP-UX
WLM the command-line of the data collector to spawn for each metric.

During the workweek, the performance data collected for the stock trading SLO
determines how many CPU shares its application gets. The data collected for the
historical data SLO determines how many of the remaining shares its application gets.
The OTHERS group gets any shares left beyond its nominal 1 CPU share. On weekends,
the stock trading SLO gets 1 CPU share, and OTHERS gets the shares left after satisfying
the requests of the active SLO.

Configuration for two applications with fixed CPU shares.
Condition used to activate one application Mon-Fri only.

slo stock_trading {
 pri = 1;
 entity = PRM group stocks;
 mincpu = 60;
 maxcpu = 90;
 condition = Mon - Fri;
}

slo historical_data {
 pri = 2;
 entity = PRM group history;
 mincpu = 50;
 maxcpu = 80;
}

prm {
 groups = stocks : 2, history : 3;
 apps = stocks : /opt/stocks/bin/trading, history : /opt/stocks/bin/histdata;
}

Figure 5: Fixed CPU Entitlements

Stretch Goal SLO
Figure 7 extends the previous case by adding a stretch goal to the stock trading SLO. The
stretch goal is given a lower priority than the historical data SLO. It is also active in the
workweek between 8AM and 4PM (until the end of the 15:59 minute). While active, any
CPU shares unused by the historical data SLO are given to the stretch goal in an attempt
to improve the performance of the stock trading transactions from 3 seconds down to 1
second. HP-UX WLM makes it possible to define stretch goals by allowing multiple
SLOs to be specified using the same metric.

Configuration for two applications with user-defined performance goals.

slo stock_trading {
 pri = 1;
 entity = PRM group stocks;
 goal = udef stock_trans < 3;
 mincpu = 60;
 maxcpu = 90;
 condition = Mon - Fri;
}

slo historical_data {
 pri = 2;
 entity = PRM group history;
 goal = udef hist_trans < 10;
 mincpu = 50;
 maxcpu = 80;
}

tune stock_trans {
 coll_argv = /opt/stocks/bin/perf_trading -o logfile;
}

tune hist_trans {
 coll_argv = /opt/stocks/bin/perf_histdata -f 20;
}

prm {
 groups = stocks : 2, history : 3;
 apps = stocks : /opt/stocks/bin/trading, history : /opt/stocks/bin/histdata;
}

Figure 6: Independent Goal-Based SLOs

Fixed Disk Bandwidth Entitlements
Figure 8 extends the example in figure 6 by adding fixed disk bandwidth entitlements to
ensure that workloads receive appropriate shares of the disk bandwidth. The disks must
be under the control of the Logical Volume Manager (LVM). The disk bandwidth
entitlement of a group can be specified for a logical volume group. It must be specified
for all groups or for none, and the sum of the disk entitlements for a logical volume group

Configuration for two applications with user-defined performance goals.
The stock trading application has a stretch-goal defined.

slo stock_trading {
 pri = 1;
 entity = PRM group stocks;
 goal = udef stock_trans < 3;
 mincpu = 60;
 maxcpu = 90;
 condition = Mon - Fri;
}

slo historical_data {
 pri = 2;
 entity = PRM group history;
 goal = udef hist_trans < 10;
 mincpu = 50;
 maxcpu = 80;
}

slo stock_trading_stretch {
 pri = 3;
 entity = PRM group stocks;
 goal = udef stock_trans < 1;
 mincpu = 60;
 maxcpu = 90;
 condition = (Mon - Fri) && (8:00 - 15:59);
}

tune stock_trans {
 coll_argv = /opt/stocks/bin/perf_trading -o logfile;
}

tune hist_trans {
 coll_argv = /opt/stocks/bin/perf_histdata -f 20;
}

prm {
 groups = stocks : 2, history : 3;
 apps = stocks : /opt/stocks/bin/trading, history : /opt/stocks/bin/histdata;
}

Figure 7: Stretch Goal SLO

must equal 100%. Because HP-UX WLM creates the default group OTHERS if it is not
specified, this restriction requires the user to define OTHERS and assign it a share of the
disk bandwidth for each logical volume group used. The OTHERS group must be given
the reserved group ID of 1. HP-UX WLM also requires that any group named in the prm
structure be given an SLO. Thus an SLO is specified for OTHERS, and given a very low
priority, no goal, and unrestricted CPU values. The /dev/vg01 bandwidth is distributed
among the groups, giving the stock trading application 70 shares, the historical data
retrieval application 29 shares, and 1 share to applications running in the OTHERS group.

Configuration for two applications with user-defined performance goals and fixed disk
bandwidth entitlements. OTHERS must be defined as well to assign it a share of the disk.

slo stock_trading {
 pri = 1;
 entity = PRM group stocks;
 goal = udef stock_trans < 3;
 mincpu = 60;
 maxcpu = 90;
 condition = Mon - Fri;
}

slo historical_data {
 pri = 2;
 entity = PRM group history;
 goal = udef hist_trans < 10;
 mincpu = 50;
 maxcpu = 80;
}

slo others {
 pri = 1000;
 entity = PRM group OTHERS;
 mincpu = 1;
 maxcpu = 100;
}

tune stock_trans {
 coll_argv = /opt/stocks/bin/perf_trading -o logfile;
}

tune hist_trans {
 coll_argv = /opt/stocks/bin/perf_histdata -f 20;
}

prm {
 groups = OTHERS : 1, stocks : 2, history : 3;
 apps = stocks : /opt/stocks/bin/trading, history : /opt/stocks/bin/histdata;
 disks = OTHERS : /dev/vg01 1, stocks : /dev/vg01 70, history : /dev/vg01 29;
}

Figure 8: Disk Bandwidth Entitlements

Specifying Dates and Times
The optional condition and exception keywords specify logical expressions using dates
and date ranges. The SLO is active when the condition is TRUE and the exception is
FALSE. For example:

condition = Mon - Fri;

has the same effect as:

exception = Sat - Sun;

They can both be used in the same SLO, one restricting the scope of the other. For
example:

condition = 8:00 - 15:59;
exception = Sat - Sun;

has the same effect as:

condition = (Mon - Fri) && (8:00 - 15:59);

A date has 3 optional components:
• The day of the week: Mon, Tue, Wed, Thu, Sat, Sun.
• The date, in the form month/day/year. The year must be a 4-digit number.
• The time, in the form hour:minutes. The hour uses the 24-hour notation,

where 10:00 is 10am, and 22:00 is 10pm.

The month, day, year, hour, and minutes fields can also be set to the wildcard character *
(asterisk) to indicate that all values are accepted. Some examples are given below:

condition = Wed; # on Wednesdays
condition = 3/13/1999 - 4/15/1999; # March 13 to April 15, 1999
condition = Mon 8:00 - Fri 16:59; # from Mon @ 8am to Fri @ 5pm
condition = 4/*/1999; # all of April 1999
condition = */10/*; # the 10th of each month
condition = *:10; # at 10 min past the hour

Conclusion
HP-UX WLM is a new tool designed to help data centers consolidate workloads and
reduce the number of servers to manage. It provides the means to specify and track
business goals for mission-critical applications. It maintains consistent performance by
automatically adjusting resource allocation in reaction to changes in service levels. Its
flexible date range specification handles various data center schedules.

References

• HP-UX Workload Manager User's Guide, Version 1.0, April 2000,

http://www.docs.hp.com/hpux/network/#hpuxworkdoc

• HP Process Resource Manager User's Guide, Version 1.07, December 1999,
http://docs.hp.com/hpux/ha

• Workload Performance Monitor Considerations, February 2000,
http://resourcemanagement.unixsolutions.hp.com/WaRM/docs/perfmon.html

• HP-UX Workload Manager 1.0 Configuration, December 1999,
http://resourcemanagement.unixsolutions.hp.com/WaRM/docs/config.html

• HP-UX Workload Manager, February 2000,
http://www.unixsolutions.hp.com/products/sys_mgmt/wlm_wp.html

• http://www.hp.com/go/wlm

