
1

Aries: Transparent Execution of PA-RISC
Applications on IA-64

Vania Ning Fang

Mike (Xiaoxin) Chen

Hewlett-Packard Company
11000 Wolfe Road, MS42U5

Cupertino, CA

Tel: (408) 447-0965
Fax: (408) 447-4924

{vania, xchen}@cup.hp.com

mailto:xchen}@cup.hp.com

2

Introduction
Over the course of years, new computer architectures have been designed and developed

to address known issues of their predecessors or to accommodate the increasing performance
need required by the computing community. As new architectures emerge, however, users
inevitably face the problem of having to migrate applications built on the previous platform(s) to
the new platform(s). The migration process usually requires a considerable amount of user
intervention and is typically very time consuming. Having to repeat the lengthy porting process
for each application incurs extra overhead on users. An alternate solution to this problem is
dynamic binary translation - a technology that transparently translates binaries from one
instruction set to the other and executes the translated code immediately after the translation
becomes available. Applications on the old platform can be executed in the same manner on the
new platform without major performance penalty or extensive maintenance cost.

 In order to ensure smooth transition from Hewlett-Packard’s PA-RISC1 architecture to
Intel’s IA-64 architecture, Hewlett-Packard has developed Aries - a software emulator that
accurately translates PA-RISC binaries to native IA-64 code using the dynamic binary translation
technology. As the only software migration engine available for PA-RISC to IA-64 translation,
Aries innovates the traditional software emulators in that it offers not only transparency between
different computing platforms, but also excellent reliability and sustained performance. Unlike
previous emulators or translators, Aries is designed to cover all PA-RISC applications and
preserve the necessary performance requirements for the applications.

Motivation
Porting applications between platforms, especially when the underlying computer

architecture changes, typically involves modification and recompilation of the application source
or binary. This traditional approach evidentially incurs a lot of overhead that can be otherwise
prevented by adopting the dynamic translation technology. First of all, availability of application
source code is limited - without source code, recompilation is simply out of the question, as is the
case for legacy applications. Secondly, given the source code, recompilation of applications is
still not an easy task. Users have to rely on the application designer to manually make changes to
the source code in order to adapt to the new architecture platform, which is cumbersome and time
consuming. In addition, some changes cannot be performed without the aid of certain porting
tools, which again are not always readily available. Thirdly, a majority of the applications have
more than one version as they evolve over years. For each individual version users wish to
execute on the new platform, porting has to be done separately. In addition, certain versions
might require additional effort to port due to version specific implementation details.

Binary translation, on the other hand, offers smooth transition for all applications from
one architecture to the other. It requires no user intervention, nor does it depend on availability of
source code or any porting tools. From user’s perspective, applications can be executed on the
new platform in the same manner as on the old platform. Dealing with various versions of an
application is also not an issue, since each version will simply be translated and executed
separately as if they are different applications. Binary translation offers transparency that cannot
be achieved via traditional porting approach. As such, a state-of-art binary emulation engine like
Aries is a natural solution to the software migration problem.

Besides transparency, completeness is another important feature of Aries that
differentiates it from a mere research prototype. Completeness means that Aries is capable of
emulating all PA-RISC applications. This requires not only machine instruction emulation, but
also accurate simulation of the old runtime environment based on the new one. In addition, Aries
maintains application performance comparable to the PA-RISC performance. All of the above

1 PA-RISC stands for Precision-Architecture-reduced-instruction-set-computing

3

ensure that users can easily execute their PA-RISC applications on the IA-64 platform without
noticeable difference.

High Level Overview
Aries is a software emulator that is designed to meet the following requirements without

introducing any security holes for the applications it emulates:
1. Hardware level reliability
2. Transparency
3. Comparable performance to native PA-RISC execution

On all IA-64 machines bundled with Aries, users can install their PA-RISC applications and
launch them just as they would on PA-RISC systems. The HP-UX kernel on the IA-64 machine
will detect that the application is not a native IA-64 binary; the control is then transferred to Aries
from this point on. Aries will faithfully emulate the PA-RISC application without requiring any
effort on user’s side.

Aries emulates a PA-RISC application by emulating the program’s instructions, the
program’s system calls, and the behavior of the HP-UX/PA-RISC kernel. Figure 1 shows the
control flow among Aries components. The core of Aries is the control system, which is
responsible for dispatching between components of the emulation engine. Aries’ emulation
engine can be categorized into two modules - namely the Instruction Set Architecture (ISA)
emulation engine and the operating system environment emulation engine. The ISA emulation
module deploys a combination of fast interpretation and dynamic translation technology to ensure
reliable and efficient instruction emulation. Each PA-RISC block is by default emulated by the
fast interpreter until it hits the translation threshold, by which time it will be sent to the dynamic
translator. The dynamic translator translates the PA-RISC block to the equivalent set of IA-64
instructions. Such translated executable code is referred to as Dyncode and is stored in Aries
code cache for subsequent use. The next time the same PA-RISC block is encountered, Aries will
directly execute the corresponding Dyncode without incurring additional translation overhead.
The environment emulation module is responsible for processing system service requests made

Interpreter

Dyncode

Dynamic
Translator

Code Cache

Control
System

System Call Manager

Exception Manager

ISA Emulation Engine

Environment Emulation
Engine

Figure 1. Aries Emulation System
Data Flow
Control Flow

4

by the PA-RISC applications as well as signals delivered to the applications by the HP-UX
operating system. More details about each of these components will be discussed in the following
section.

The Underlying Technology

1. Control System
Aries can be thought of as a state machine -- the control moves from one state to the other

during the emulation of a PA-RISC application. The control system is responsible for all of the
state transitions.

A PA-RISC application can be considered as a set of sequential PA-RISC code blocks and
the program control jumps from one code block to the other. Aries emulates one block at a time
and transition to other code blocks occurs when the emulation of the current block completes. In
Aries, a PA-RISC code block can be either interpreted or emulated by executing the native IA-64
code, which is previously translated by the dynamic translator at run time. When the number of
times a PA-RISC block has been interpreted reaches a threshold, it is identified as a "hot block".
A "hot block" is immediately translated into native IA-64 code (here after referred to as Dyncode)
by the dynamic translator and then stored in the Aries code cache. From now on, Aries control
system will directly branch to the corresponding Dyncode for each subsequent invocation of the
same PA-RISC block.

An application makes service requests to the underlying system via system calls, the interface
between the application and the operating system. Aries intercepts all of the system calls made
by the PA-RISC application and maps them to the corresponding system call stub routines, which
can either be direct IA-64 system calls or Aries emulated routines. Since Aries emulates PA-
RISC applications on the HP-UX operating system, most of the system calls are passed through to
the equivalent IA-64 system calls. However, it is incorrect to invoke the native IA-64 routine for
some special system calls, such as system calls related to the runtime context and PA-RISC
machine status. These system calls are implemented by Aries.

On a PA-RISC system, when the operating system delivers a signal to the PA-RISC
application, the application can choose to block or pass it to the corresponding signal handler for
this signal. The signal handler interrupts the normal program execution and returns control back
to the program after processing the signal. When Aries emulates a PA-RISC application, it has to
preserve the same signal behavior. All signals are intercepted and recorded by Aries and the
control system then delivers to the user specified signal handler at the appropriate time.

2. ISA Emulation

a. Fast Interpreter
The Aries interpreter fetches and decodes PA-RISC instructions one at a time and executes it

based on Aries maintained PA-RISC machine states, which contains all PA-RISC registers and
other program status fields. The interpreter is carefully written in C for optimal performance. It
is capable of interpreting all PA-RISC code blocks including the ones that are too complex to be
translated by the dynamic translator. The interpreter transfers control back to the control system
after executing one PA-RISC code block. Figure 2 shows the interaction between the fast
interpreter and the dynamic translator.

5

b. Dynamic Translator
When invoked by the Aries control system, the dynamic translator translates a PA-RISC code

block into a Dyncode block, which is a set of equivalent native IA-64 instructions. It then stores
the Dyncode in Aries code cache so that the control system can directly jump to it when the same
PA-RISC block is invoked again. Aries maintains an Address Lookup Table (AMAP) that maps
from PA-RISC code blocks to the corresponding Dyncode. For each PA-RISC block, the control
system will first attempt to look it up in the AMAP. If translation for this PA-RISC code block
already exists, the control system will directly execute the Dyncode. Otherwise, the control
system will either interpret or translate the block depending on the translation threshold.

The translator consists of the decoder, code generator and the instruction scheduler. The
decoder simply parses each PA-RISC instruction and converts it to internal representation to be
handled by the code generator. The code generator translates each PA-RISC instruction into a
sequence of equivalent native IA-64 instructions. All 128 IA-64 general registers are used in the
translated code. To boost performance, all PA-RISC general registers are mapped to IA-64
registers so that the translated IA-64 code will not make more memory references than the
original PA-RISC code block. The rest of the IA-64 registers are used to store intermediate values
to maximize instruction level parallelism.

IA-64 architecture uses instruction bundle to hold up to three instructions in predefined
format. In addition, instructions might be executed out of order on IA-64 while PA-RISC
programs are executed in strict instruction order. These incur extra difficulties in Aries
implementation because Aries needs to encode the translated IA-64 instructions in bundles and
explicitly put stop bits to preserve program order if necessary. Aries scheduler efficiently
schedules instructions into bundles and insert stop bits in an optimal way to ensure program
correctness.

c. Dynloop
To speed up execution of Dyncode blocks, an assembly routine (Dynloop) was implemented

to transition from one code block to the other. Dynloop maintains a direct lookup table that maps

AMAP Translation
exist?

Code

b c2

 Code
 Block

b c3

 Code
 Block

b t2

 Code
 Block

Execution
count >

Translation
threshold?

Interpreter

Translator

b t1

 c1

 c2

 c3

b c2

Yes
Yes

No No

Figure 2. Aries interpretation and dynamic translation

6

a PA-RISC code block address to the matching Dyncode block. If the lookup succeeds, it directly
jumps to the target Dyncode block. Otherwise, it returns back to the control system, which will
perform a more expensive AMAP lookup.

More over, Aries implements a backpatch technique that allows a Dyncode block to directly
branch to another Dyncode block without going through a target lookup. When the Dyncode
block is first translated, the branch targets are unknown because they do not statically map to a
Dyncode block. When the Dyncode block corresponding to the PA-RISC branch target becomes
available, Aries modifies the branch instruction in the previous Dyncode block so that it jumps to
the target Dyncode block.

3. Environment Emulation

a. System Call Manager
All PA-RISC HP-UX system calls enter the kernel space through a common system call

gateway page. The environment emulation module captures system calls made in an emulated
PA-RISC application at the gateway page and calls the corresponding emulation routines. Most
system call emulation routines are simple stubs that invoke the native system calls directly on the
IA-64 platform. Other system calls require special handling. For example, when the PA-RISC
application sets the signal mask. Aries intercepts this system call because Aries maintains the
application’s signal mask.

b. Exception Manager
Signals can be raised synchronously or asynchronously. Synchronous signals are always

delivered at the point of the faulting instruction while asynchronous signals do not have a fixed
point of delivery. In other words, it is possible for a program to receive an asynchronous signal at
different points of execution in separate runs. Aries simulates the exact behavior.

All signals raised by the operating system are captured and recorded by Aries. Each
synchronous signal is delivered immediately after emulating the faulting instruction. For
asynchronous signals, Aries queues them up and deliver them to the emulated application at the
earliest locations where it can construct a correct PA-RISC signal context.

A slight complexity arises when a signal occurs during execution of a Dyncode block. If the
1signal is synchronous, Aries commits all instructions prior to the faulting instruction and
delivers the signal to the user specified handler immediately. If it is an asynchronous signal,
Aries delays the delivery until the current Dyncode block has finished.

Special care should also be taken when signals arrive in the middle of a system call. On PA-
RISC systems, the system call will either be aborted or completed, and the signal is delivered
upon the system call return. Aries decides whether to abort or complete the system call
depending on the point when the signal arrives. If the signal arrives before the system call return
point, the system call is aborted. Otherwise, the system call returns with the status provided by
the native IA-64 system call.

Verification Methods

To achieve hardware level reliability has always been Aries’ top priority goal. Given the
functionality of Aries, application testing is a necessary step toward achieving the quality goal.
Aries has been successfully tested with applications of various flavors on the IA-64 platform,
including signal intensive applications, user interactive applications and other applications of
different durations. Nevertheless, application testing is not sufficient to cover all of Aries source
code base. As such, the Aries team has come up with several innovative verification methods,
which have effectively increased Aries reliability.

7

A random testing framework was developed to stress test Aries’ ISA emulation engine. The
random test engine consists of a server and a thin client. The server randomly generates a set of
PA-RISC instruction sequences. The generated PA-RISC code sequence is then executed by the
server on a PA-RISC machine and by the client on an IA-64 machine under Aries. The final
program states are compared for each PA-RISC code block and any discrepancies between the
PA-RISC execution and IA-64 execution indicate an Aries failure. This random test engine
ensures excellent coverage of Aries ISA emulation and it has been instrumental in improving
Aries’ ISA emulation quality.

The Aries team also developed a cross validation tool that automatically verifies Aries at run
time. This tool enables Aries engineers to pinpoint failures at the exact PA-RISC code block
where the bug is first originated, which is extremely helpful since many bugs are not manifested
until much later in the execution sequence, making it difficult to track down the source of failure.

Performance Statistics

Aries performance is measured on a 500MHZ Itanium box. The benchmark applications used
in these measurements include SpecInt95 and SpecFP95. Figure 3 shows Aries IA-64
performance of integer applications relative to a K-class PA-RISC machine. Figure 4 shows Aries
IA-64 performance of floating point applications relative to a K-class PA-RISC machine. The
overall Aries IA-64 integer performance is approximately 3.0 times as slow as the native PA-
RISC execution. Floating point applications are about 3.2 times as slow as the PA-RISC
performance.

Figure 3. Aries Performance for Spec95 Integer Benchmarks2

2 Data collected based on May 29th version of Aries

Spec95 Int

0
2
4
6
8

10
12
14
16
18
20

go

m88
ks

im

co
mpre

ss li
ijp

eg pe
rl

vo
rte

x
gc

c

uu
de

co
de av

g

Ti
m

e
(s

ec
)

PA-RISC
Aries IA-64

8

Spec95 FP

0

2

4

6

8

10

12

tom
ca

tv
sw

im
su

2c
or

hy
dro

2d
mgri

d
ap

plu
tur

b3
d

ap
si

fpp
pp

wav
e5 av

g

Ti
m

e
(s

ec
)

PA-RISC
Aries IA-64

 Figure 4. Aries Performance for Spec95 Floating Point Benchmarks

Conclusion

As the only PA-RISC to IA-64 software emulator available, Aries transparently and
effectively emulates all user-level applications built for HP-UX/PA-RISC systems. Aries deploys
a combination of fast interpretation and dynamic translation technology to emulate the PA-RISC
instruction set architecture efficiently. Aries also faithfully simulates the HP-UX/PA-RISC
system behavior to emulate all PA-RISC applications accurately. In addition, Aries keeps up a
performance level comparable to that of native PA-RISC systems.

References:

[1] C. Zheng, C. Thompson, PA-RISC to IA-64: Transparent Execution, No
Recompilation. Compute, Vol. 33, No. 3, pages 47-52, March 2000.

	Introduction
	Motivation
	High Level Overview
	Aries is a software emulator that is designed to meet the following requirements without introducing any security holes for the applications it emulates:
	Hardware level reliability
	Transparency
	Comparable performance to native PA-RISC execution
	On all IA-64 machines bundled with Aries, users can install their PA-RISC applications and launch them just as they would on PA-RISC systems. The HP-UX kernel on the IA-64 machine will detect that the application is not a native IA-64 binary; the contro
	Aries emulates a PA-RISC application by emulating the program’s instructions, the program’s system calls, and the behavior of the HP-UX/PA-RISC kernel. Figure 1 shows the control flow among Aries components. The core of Aries is the control system, which
	The Underlying Technology
	Conclusion

