
- 1 -

Web server architecture

antoni_drudis@hp.com
 john_mendonca@hp.com

Hewlett-Packard Company
11000 North Wolfe Rd. 47 LAX

Cupertino, CA 95014
tel/fax (408) 447-5109

Architecture of web applications

The distributed nature of web applications requires a flexible, scalable, and fault-tolerant architecture that is not
adequately served by traditional transaction-processing engines. While the basic building blocks of software tools have
not changed much over time, the way these blocks are put together reflects the new requirements on the overall
solution.

The generic architecture of the client-server model is just the first step towards the design of the solution. Performance
considerations such as communication bandwidth requirements, transaction processing methodology, and taking
advantage of parallel computing and multithreading technology on the server platform determine the perceived quality
of products such as database, web, and application servers.

Software design is an evolving discipline where every major milestone is the consolidation of technical innovations
from previous steps with the solution for new application requirements in terms of resilience, development costs, and
functionality. The introduction of client-server architectures was marked by the formal delegation of the application
intelligence to distributed objects. For example, in the client-server model, the graphical user interfaces manage the
interaction between the user and the application, and local editing reduces the need to use valuable server resources to
perform tasks that can be done as well at the client side. That strategy was already used in the conventional mainframe
architecture supporting intelligent terminals. What is different in the client-server paradigm is that the application is no
longer centralized but distributed among specialized servers.

Since many functions that used to be centralized in the mainframe were moved towards autonomous servers, some of
the design paradigms had to be changed accordingly. For example, the need for a uniform resource identification policy
for objects led to name servers and the need to protect services from unauthorized access led to secure services and
encryption techniques. From the user's perspective, client-server architectures provided a lower-cost, flexible, and
scalable solution where services and processing power could be added or modified without a major rewrite of the
application software.

The web is an extension of the client-server paradigm

The web can be architected as a client-server model where web servers deliver multimedia contents to browsers and
other clients such as applets and search robots. The web has changed the scale of the global network and the patterns of
server access. Concurrent users are not counted in thousands but in tens or hundreds of thousands, the environment is
heterogeneous and constantly changing, transactions are stateless and difficult to track, and the process may integrate
applications from different environments. These four differentiators for web applications highlight the need to build a
new design paradigm and the reason to explore the implications of the requirements in transaction processing
applications.

mailto:antoni_drudis@hp.com;
mailto:john_mendonca@hp.com

- 2 -

Scaling can be achieved by replacing the current processing platforms by faster systems but, specially, by distributing
services and replicating servers. That strategy not only provides increasing computing power without bringing down
the whole network but it also increments the resilience of the solution and allows for planned and unplanned down time
in each server.

Standardization -either formal or de-facto- of application components facilitates the interoperability of servers and
clients on the web. The transport protocol is standard, markup languages are being standardized, and file formats such
as pdf are being used across operating systems and computing platforms.

A basic principle in software design is the ability to map the logical requirements of the users into the physical
implementation of a solution that satisfies these needs. While users formalize their requirements in a high-level
language and programmers map that language into an architecture-oriented application, the execution of the program
does not offer a simple platform-independent mapping between the user's view and what code is running in the
platform at a given time.

Transactions and sessions

The concept of transaction narrows the gap between logical and physical views of how data is processed. A transaction
is a set of operations that, if fully executed, guarantee to leave the data in a consistent state. For example, in a low-level
transaction such as a disk I/O, the programmer is guaranteed that there is no need to recover from a hardware
malfunction. The read o write operation will return a value to indicate the success or failure of the operation but the
operation itself will take care of unwanted concurrent access at this level. At a higher-level transaction such as a
database update, a set of logical operations is required to execute as a single unit to ensure consistency. For example, to
transfer money between two accounts, the program has to subtract a given amount from the balance of the first account
and add the same amount to the balance of the second account. That transaction spans several lower-level transactions
that have to be undone if any of them fail.

The architecture of software applications evolves as new technologies allow a change of scale in the number of
transactions these applications process. Software designers make assumptions about the architecture of the platform
and the performance ranges of the components of the solution. For example, the programmer may assume that access to
memory is much faster than access to a disk and consequently minimize the I/O requests. A change in the order of
magnitude of the volume of data to be processed often forces the designer not only to reconsider the speed
requirements of the hardware components but also how these components relate to each other. In the example, if the
memory requirements exceed the available memory, the application may incur in frequent page faults and lose the
theoretical advantage of using faster memory access.

Applications running on low-performance computing platforms often force a simplification in the external processes.
For example, on these platforms, transactions can be serialized if the number of concurrent users is small. In many
cases, entry-level machines perform critical tasks using a single-user paradigm. Attempts to parallelize the process
often start by replicating lower-cost resources so the usage of the most expensive resources is maximized. For example,
the move from traditional batch processing computers to the time-share minicomputers and transaction servers was
based on the much faster increase of performance in computing power than the increase in performance -or its
perceived need- of disk files and terminals. In a traditional transaction-processing server, programmers may indicate
the logical bounds of a transaction and the middleware or the operating system will perform the necessary actions to
preserve the ACID requirements of the transaction.

Two architectures used for traditional transaction processing applications are mainframes and client-server.
Mainframes typically allow concurrent users by serializing the access to critical resources such as data on disks, cache,
and I/O buffers. By allowing multiple levels of resource locking -at a global, file, entry, or data item level- multiple
users may work concurrently on unrelated data. Transaction serialization is done using application paradigms such as
two-phase commit.

- 3 -

On simple client-server applications, concurrency can be achieved by using the communications protocol features to
serialize the access to critical resources. For example, by delegating the management of user requests to sockets, the
server program can process a transaction at a time while all the other clients are sending their requests through sockets.
A key differentiator of traditional transaction process is the fact that transactions are processed as unrelated to each
other. There is no state kept from one transaction to the next and the environment is stable.

The classic paradigm of transaction processing needs to be extended for the web. Both on servers and mainframes,
transaction monitors are based on the assumption that the client or the remote terminal will send well-behaved
transactions. These transactions are short, serializable, most frequently stateful, and homogeneous. In the initial
instances of the web usage to publish data, that concept fits the requirements of the web server: users send requests to
get data from a file or out of a software module, and the server processes each transaction on a best-effort basis. The
goal of the systems architect is to optimize the resources. On transaction processing engines, optimization is reached by
minimizing the waiting time for each transaction.

Instead, web servers for database access, such in business to business or business to consumer transactions, introduce
the concept of session, where a set of transactions have to be processed using the same criteria about the user
environment. As opposed to typical transaction processing environments, clients may pause in a session for long
periods of time while the user interacts with the application.

For example, a user accesses a book catalog on a web bookstore. That type of access can be seen as a simple
transaction where the user sends the query criteria and the web server communicates with the application server to
request database entries that satisfy the query conditions. Next, the user selects one or more books and decides to buy
them. Because the web runs non-stop, the store may have changed the price of the book while the user was deciding
whether to buy it, but the buyer still expects the old price to be applied to this sale. Next, the buyer places the order and
the web server talks to the application server which in turn may place an order to the publisher's server, request space in
the warehouse, start a shipping order, verify and charge the customer's credit card, and send an e-mail confirmation. All
these individual transactions on different servers and subnets form a single session because all of them have to use a
uniform set of data from the environment. While there are many transaction engines commercially available, so far
sessions are managed by individual applications. This is an area of growth both from the theoretical perspective and
product offerings. At this time, state preservation, limited scalability, and application resilience are the main roadblocks
to the expansion of the web in commercial applications.

The Java language is making its inroads as a pervasive computing environment at the client side, thus reducing the need

 browser proxy
 server

 Router firewall
 internet
 remote
 agent MC/ Reverse Internal
 Service proxy develop.
 Guard

 Remote Internal
 sites External External users
 web server ftp server

 Intranet

Figure 1: architecture of a typical web server

- 4 -

for communication bandwidth and server processing. Efficient queuing management tied to a multithreading paradigm
provides a first level of smoothing out the rate variations in client accesses, and solutions at the client side such as
cookies and the server side such as application servers provide some state preservation in a fundamentally stateless
environment. Some specialized applications such as publishing -where data is stable, access is repetitive, and the cost
of local storage is smaller than cost of bandwidth- can use data and server caching and platform replication as a means
to reduce the current strain on servers.

Replication and caching are further utilized with static data to increase the tolerance of the overall network to both
planned and unplanned maintenance tasks. Communication from the client is no longer an all or nothing proposition
but a guaranteed operation when the access parameters stay in a given range. System and network administrators can
configure the resources to provide a fail-over mechanism that prevents catastrophic consequences when a key
component fails.

Local solutions extend the usability of components but a new definition of the principles that govern
web applications is needed

Optimizing individual components of the e-commerce solution may prove to be a good short-term strategy for product
vendors to accelerate their market penetration. But on a global scale, integrators of the hardware and software platforms
where the web, application, and database servers run are still faced with the formidable task to translate these
component-level performance improvements into a predictable end-user experience.

Since network communications are bound by the slower component, solution architects often design redundant
solutions with replicated components such as network segments and computer systems. These topologies scale only if
the appropriate algorithms run on the nodes to divert the traffic into the most efficient branch. Protocols such as ATM
based on these algorithms may provide network level quality of service.

The main factors in solution performance are providing adequate bandwidth and balancing the distributed components
of the application in terms of I/O, memory and processing power. For example, by moving services to a different
system, the designer may free up some scarce resources at the cost of increasing the bandwidth needed for the
additional network traffic. This is a continuous task because of the increasing requirements on data traffic for
multimedia applications.

The web introduces news challenge to application architects and stresses the need to design up front the security,
scalability, manageability, and quality of service that users will require.

! Users are no longer the trusted and well trained employees who used to access the company's database but semi-
anonymous users who may engage in non-cooperative or destructive behavior that increases resource consumption
and endangers the integrity of the database. The distributed and stateless nature of the application makes it difficult
to maintain efficient and secure communications between the server and its clients.

! The designer of the overall solution needs to anticipate the access patterns. While demand in a controlled
environment is bound by an upper limit that can be architect into the application, the web is characterized by an
unpredictable demand. Web access patterns changes during the hours of the day, the days of the week, and other
seasonal variations, external events. Also, unexpected events such as breaking news that make users to access the
server such as an on-line fashion show that produces a sudden increase of visitors to the company web site or a
marketing campaign that produces a steady increase in the traffic- originate peaks in resource consumption. Disk
space, processing power, and network bandwidth may reach their limit and all users experience bad response time
and diminished throughput.

! When the number of users is larger than expected, the server needs to differentiate users by giving priority to
certain users who are perceived to add the most value to the service supplier.

- 5 -

! Even for the same user, there might be a need to differentiate services at the system level. For example, complex
queries to a large database consume more resources than just accessing a static web page or filling a simple order
form. The administrator of the application may want to provide premium service to the users who engage in
commercial transactions through the server by penalizing non income-producing activities such as catalog
browsing.

! While servers are designed as independent entities, the performance of the application depends on how the user
environment fits into the expected network topology in terms of servers, services, and systems.

Programming paradigms for transaction servers

The single transaction instance model may fit into one of the two main server paradigms:

! In real-time systems, the transaction is completed before the application gives control to the next request. This
model can be used when transactions are short in nature, they have no logical interrupts such as waiting for a
response from another module, and throughput is deemed more important than the response time of individual
transactions.

! Time-sharing systems allow for concurrent processing of transactions lined-up in different queues. In this case, the
system allows the transaction to be interrupted so other transactions are not starved out from critical resources. In
time-sharing systems, the programmer defines the bounds of the transaction and often has to define the recovery
methods when a transaction cannot be completed. This model is typically used when transactions are long in nature
and have logical interrupts such as waiting for a response from the user or an I/O device, and the response time of
individual transactions is deemed more important than overall throughput

 For example, an ATM machine may use the more efficient real-time transaction model because the individual
transactions are simple and independent of each other. Users wait for a few seconds while their requests are being lined
up in the transaction queue in the server. Once the transaction is executed, the user resets his or her expectations about
the contents of the data and the performance of the terminal. Instead, an airline reservation system may use the time-
sharing paradigm because a typical transaction may require many steps where the decision at a given point depends
from the response of the system to the previous inquiry. The combination of the application rules for record locking and
the user training to set the right expectations on the accuracy of the data at a given time allows a large percentage of
transactions to be executed without rejection from the server.

Multi-user transaction models, used for example in workflow collaboration programs, define an environment where the
users log into the application, which keeps track of each transaction. Under that model, the parallelism does not only
apply to the I/O components of the application but also to the shareable critical components. There are several variants
of this model, depending on where the queues are set up. For example, in a simple multi-threaded application, users
may access the server using the socket library, effectively serializing the requests from the clients. Once a request
reaches the server, the application may assign a given thread to that request. At this point, the programming paradigm
for the client is the same as the time-sharing model.

Server implementation

Servers are typically implemented as daemon processes (services) that may use standard mechanisms for
communication with their clients such as CORBA or the socket library to support application features such as
guaranteed delivery and serialization of requests. While some servers are meant to be lightweight, others try to use all
available resources to process concurrent requests from hundreds or thousands of users. Foot print, scalability,
transaction latency and software fault tolerance are just a few of the many characteristics of a server.

- 6 -

Most web servers are meant to be general-purpose applications where the user can plug specific tools to extend the
functionality of the server in areas such as multimedia processing, encryption and authorization, or resource
management. While this strategy leads to applications with a high degree of compatibility between versions and easy
migration paths for the user, it does not lead to a product tuned to the specific requirements of a given company.

By analyzing the design objectives of the application and published performance data for the server, the user can
determine which brand better fits his or her requirements. The analysis of a web server can suggest implementation
strategies that can be used for other programs that use the client-server paradigm. For example, some programmers may
analyze the Apache web server to see how to use plug-in technology and other programmers might be interested in
designing servers that operate at peak performance such as the Zeus web server or support a wide set of functions such
as the Netscape Enterprise Server.

The basic purpose of a serve is to attend unexpected requests from its clients, process these requests in a predictable
manner, and return the result to the client. To accomplish its objective, the server can be structured in a three-layer
model, namely I/O, concurrency control, and request processing.

URI translation

Access control

authentication

M IM E type checkingFix ups
Invoke handler
(sends response)

logging

cleanup

Read request

Figure 2: web server functions

I/O

Single thread

I/O

Multiple threads

Thread management
Concurrency
management

Process
requests Process

request
Process
request

Process
request

Figure 3: single-threaded and multi-threaded applications

- 7 -

At the I/O level, the server can serialize the requests to simplify the programming paradigm. Seemingly concurrent
requests from clients are queued using an algorithm (first-come, first-served, priority-based, LIFO, etc.) that fits the
application requirements (top performance, quality of service, optimization of a given component, etc).

At the request process level, the server may use a best-effort model where the request (transaction) is fully processed
and returned to the client before starting the process of the next request. Sometimes, when the requests consume highly
variable amount or resources, the server may use a concurrent model where transactions have to coexist.

In any case, the server has an implicit or explicit module for concurrency control to ensure data integrity and guarantee
a reasonable performance. Figure 3 shows the two-layer architecture of a single-threaded server.

When transactions have to be processed in parallel, the server may take advantage of the hardware architecture of the
platform and assign a different thread to each transaction. In the example shown in figure 3, the server consists in three
logical layers. At the I/O level, this server receives the requests from multiple clients and serializes them. Next, at the
thread management layer, the server assigns each request to a particular thread created and destroyed either as they are
needed by the server or created initially using some configuration database and assigned dynamically to the request. In
both cases, the intelligence of the server about concurrency guidelines resides in that specific layer.

At the request process layer, the server could be somewhat simpler than in the single-thread model at the expense of
minimizing global data shared by all threads.

Multithreaded architectures are the norm in web servers, even on single-processor platforms, because the diverse level
or resources needed to process each request and the independence of a request from other requests from other clients.
When the web server is connected to an application server, the advantages of the multithreaded architecture for single-
processor platforms may not be that significative.

Servers using multi-threaded architecture may have better performance on multi-processor platforms if the services
invoked by each process request module (the middle layer in the figure) perform faster than these individual threads.
Otherwise the performance improvements of the multi-threaded architecture may be lost and single-thread and single-
process servers provide the functionality at a lower cost.

Other
server

Single thread

I/O

Multiple threads

Thread management
Concurrency
management

Process
requests Process

request
Process
request

Process
request

Figure 4: bottlenecks single-threaded and multi-threaded applications

Other server

I/O

- 8 -

Example: simple administration server for a network-based application

In some instances, simple single-purpose programs yield a better performance than full-fledged general-purpose servers
that use more modern technologies do. For example, figure 5 shows the architecture of a single-threaded management
server. That server is a daemon process waiting for requests from clients such as GUI programs and applications
running on the network. Clients send requests to the server to read or update the configuration of the network topology
and distributed applications parameters. Clients may also send requests to notify events and communicate the status of
each component. One of these servers is the logging daemon. Clients send asynchronous messages to the logging server
and may occasionally request configuration data such as log file names and sizes.

If the management server communicates with its clients through message queues or sockets, requests are serialized.
Because of the dependencies between requests (for example, the meaning of an event depends on the configuration of
the component) the most efficient architecture is to use a single thread that processes the request on a best-effort basis.
Access to the underlying database does not require a locking mechanism and the throughput be maximized.

Note that the server depicted in figure 5 can be abstracted into a single object where methods are used to configure and
retrieve configurations and to notify and select miscellaneous events and statistics. From the client point of view, this
server has a behavior similar to traditional transaction servers: when the client issues a request, the request is placed on
an input queue to the server and the initial response time depends on the current length of that queue. When the request
is received, it is processed with no interruptions from other clients –reducing concurrent access to the database- and
then it is returned to the client. Single-processor servers may benefit from that architecture because of its simplicity of
programming and overall throughput. Note that when the program supports dialog with the user, this model might not
be appropriate because of the long response time when the input queue is longer than expected.

In this example, if the server is multithreaded, transactions sent to and from the clients will have to go through a
multiplexing and a demultiplexing process. First, all client requests sent to the server are queued by the socket library.
Next, the server reads the transactions and processes them on a separate thread. Then, the transaction will have to
compete with transactions on other threads: the database access will be locked for each transaction and the advantages
of using multiple threads will be lost.

I/O

Figure 5: management server

Process
request

Single-user database server

Requests
from clients

- 9 -

Counter-example: an alternative to the simple management server

Requirements on commercial-grade servers often include capabilities far beyond the raw performance provided by the
server in the example. For example:

! Software-based fault-tolerance, which is typically implemented by using a heart-beat that checks if the server
responds in the required time period and a dispatcher processes that switch to a backup server when the heart beat
is not received.

! Manageability through OpenView or other management tools

! On-the-fly software upgrades, which require component versioning and dynamic binding

! Auto-discovery, self-configuration, and other intelligent initialization of the status of the server

These capabilities may be designed into the base product or they may be coded later on as add-ons when the
architecture of the server allows simultaneous execution of the components. Because of this, multithreaded
architectures are the norm more than the exception on modern servers.

Where to draw the line: distributed applications architecture evaluation criteria

Successful software applications satisfy a limited set of requirements but they satisfy these requirements without flaws.
In the case of distributed applications, the set of requirements is still small. Typically, application requirements include:

! Scalability, which is achieved by replicating resources such as services and client applications.

! Flexibility, which is a consequence of an intelligent partition of functions between the elements of the distributed
application. For example, by separating database access from business logic, the engineering team may take
advantage of performance improvements when a new version of the database server is released while being able to
adapt the application functionality to the requirements of the user.

! Resilience, which is a consequence of quality of the design and implementation and the replication of resources to
minimize the impact of application component failures. For example, if the example server described above uses a
heart beat to detect the presence of a backup server and take over in case of failure, the application will have a
better chance to stay up when unplanned events occur.

! Raw performance, typically in the case of web and application servers where throughput and response time can be
easily mapped into revenue for the company running the server.

! Efficiency, which has to be balance against the other criteria to determine the best cost/performance solution that
fits into the requirements of the application.

In addition to these requirements, the implementation team has to take into consideration the classic principles of
software design:

! Serial processes run at the speed of the slower component (all CPUs, no matter how fast, wait at the same speed)

! While parallel processes augment the capacity (throughput) of the application, the response time for each
individual branch still depends on the implementation of each parallel instance.

! Optimization makes sense for critical resources. In distributed applications, servers are always critical. Network
bandwidth, user-interface performance and customization may also determine the success or failure of the
application.

- 10 -

! From the software architecture’s point of view, speed is achieved by caching intermediate results, thus reducing the
need for resources. On the other hand, flexibility is achieved by minimizing the interdependencies that cached
solutions require. The balance between replication and raw performance on a particular server determines its
applicability to a specific problem.

Acknowledgements

The ideas presented in this paper are based on the discussions the authors had while working on WebQoS web server
tools. Brian McCracken and Kim Scott provided many useful insights into the architecture of the management server
and David Dalton made extensive contributions in the area of caching and performance. Stuart Cain, Frank Leong and
Frank Lawrence provided the support for the development and presentation of this paper at the HP-World conference.

References

If you can buy only one book this year and you want to design a server, that book should be “Unix Network
Programming, Volume 1” by Richard Stevens. If you have more time and a bigger budget buy any good pthreads
book, download the Apache web server and you’ll have a good basis for developing a good server.

	Web server architecture
	Architecture of web applications

	The web is an extension of the client-server paradigm
	Transactions and sessions
	Programming paradigms for transaction servers
	Server implementation
	Servers are typically implemented as daemon processes (services) that may use standard mechanisms for communication with their clients such as CORBA or the socket library to support application features such as guaranteed delivery and serialization of re
	Acknowledgements
	References

