The SAN's Revolution Evolution

Winston Hait Senior Product Manager Syncsort, Inc. 50 Tice Boulevard

Woodcliff Lake, NJ 07675

Phone: (201) 573-5179, Fax: (201) 930-8290

E-Mail: whait@syncsort.com

What is a SAN? Storage Area Network

•A SAN is a secondary network whose primary focus is off loading the traffic associated with data storage and movement from a primary network

The Movement Behind SAN's: Explosion of Data and Technology

- Data Growing 50-400% per year
- Internet storage estimates say that capacity needs will double every three months"
 - Network World Fusion, March 15, 2000
- Overall forecasted installed storage capacity worldwide for 2003 is 300 times the capacity installed in 1993
 - IDC, Mass Storage News, March 2, 2000

/

The Movement Behind SAN's: Explosion of Data and Technology

How handle the explosive growth in an easily managed, highly dynamic environment?

SAN's - Storage Area Networks

The Movement Behind SAN's: Explosion of Data and Tape Tech

- Move from Centralized to Distributed...and back
- Data storage and backup backing up to tape has been done for years starting with reel to reel
 - DLT came along and helped revolutionize tape because of its speed, capacity and reliability
 - 4mm and 8mm were good, and now are overcoming quality and ruggedness issues

From Centralized to Distributed The Evolution Begins

- Large data centers centralized administrative tasks including data storage and backups
 - Not much data moving at first over network
 - Backups not a big impact to the corporate enterprise since they are done locally
- Distributed computing becomes the rage
 - Reduced TCO (total cost of ownership)
 - Simpler (supposedly)
 - Lower loads on the over all network(s)
 - Administrative nightmare

From Centralized to Distributed The Evolution Begins

- Data growth begins, the network impact grows
 - More data traversing the network
 - Link and node utilization's rise
 - Off-hours backups necessary
 - Must add additional storage, but how manage?
 - Distributed backups to isolated tape & libraries
 - Which systems should get backed up vs. do
- Data continues to grow, on a geometrical basis
 - Networks have a hard time keeping up

SAN's Emerge Goal: Off-load increasing traffic

- Goal/purpose: a Storage Area Network (SAN) is a dedicated, storage-only secondary network that off-loads storage traffic from the primary or enterprise network
- Helps reduce the impact of data movement
- Remember, server backups are only 20% of the equation, the other 80% is the restore and how quickly you can do it
 - 10% and 90% ????

Review:

Let's review networking capacities and backup media/hardware

Where is the bottleneck?

Review: Examine network speeds In a perfect world...

- 10Base-T: 3.6GB/hr (=60MB/min=1MB/sec)
- 100Base-T: 36 GB/hour
- 1000Base-T: 360 GB/hour (Copper)
- FDDI: 36 GB/hour
- ATM: 280 GB/hour
- Fibre Channel: 360 GB/hour

Review: Examine network speeds Let's be practical...

Ethernet - Divide by 2

Fibre - Think 90%

Review: Hardware Specifications: 1/2"

3480	1.5 MB/sec	.2GB cap	5.4 GB/hour
comp*	3 MB/sec	.4GB	10.8 GB/hour
3490	3 MB/sec	.4GB cap	10.8 GB/hour
comp*	6 MB/sec	.8GB	21.6 GB/hour
3490E	3 MB/sec	.8GB cap	10.8 GB/hour
comp*	6 MB/sec	1.6GB	21.6 GB/hour

3590 Magstar 9 MB/sec 10GB cap 32.4 GB/hour comp* 18 MB/sec 20GB 64.8 GB/hour

^{*} based upon 2:1 compression

Review: Hardware Specifications: 4mm

DDS2	336KB/sec	4GB cap	1.2 GB/hour
comp*	772KB/sec	8GB	2.4 GB/hour
DDS3	1.2MB/sec	12GB cap	4.32 GB/hour
comp*	2.4MB/sec	24GB	8.64 GB/hour
DDS4 comp*	3MB/sec	20GB cap	10.8 GB/hour
	6MB/sec	40GB cap	21.6 GB/hour

^{*} based upon 2:1 compression

Review: Hardware Specifications: 8mm

8mm Mammoth 3MB/sec 20 GB 10.8 GB/hour 6MB/sec 40 GB 21.6 GB/hour comp* 8mm Mammoth-2 12MB/sec 60 GB 43.2 GB/hour 30MB/sec 150 GB 108 GB/hour comp** 8mm Mammoth-3 20MB/sec 120 GB 72 GB/hour 180 GB/hour 50MB/sec 300 GB comp** - due Q2 or Q3/2001

^{*} based upon 2:1 compression

^{**} based upon 2.5:1 compression

Review: Hardware Specifications: 8mm

8mm AIT comp*	3MB/sec	25 GB cap	10.8 GB/hour
	6MB/sec	50 GB	21.6 GB/hour
8mm AIT-2 comp*	6MB/sec	50 GB cap	21.6 GB/hour
	12MB/sec	100GB	43.2 GB/hour

^{*} based upon 2:1 compression

Review: Hardware Specifications: DLT

 DLT 4000
 1.5 MB/sec
 20 GB cap
 5.4 GB/hour

 comp*
 3.0 MB/sec
 40 GB
 10.8 GB/hour

DLT 7000 5 MB/sec 35 GB cap 18 GB/hour comp* 10 MB/sec 70 GB 36 GB/hour

DLT 8000 6 MB/sec 40 GB cap 21.6 GB/hour comp* 12 MB/sec 80 GB 43.2 GB/hour

^{*} based upon 2:1 compression

Review: Hardware Specifications: Latest

Ecrix (8mm) 3 MB/sec 33GB 10.8 GB/hour comp* 6 MB/sec 66GB 21.6 GB/hour 9840 (STK) 20 MB/sec 20GB 72 GB/hour

comp*** 80 MB/sec 80GB 288 GB/hour (7-to-1?)

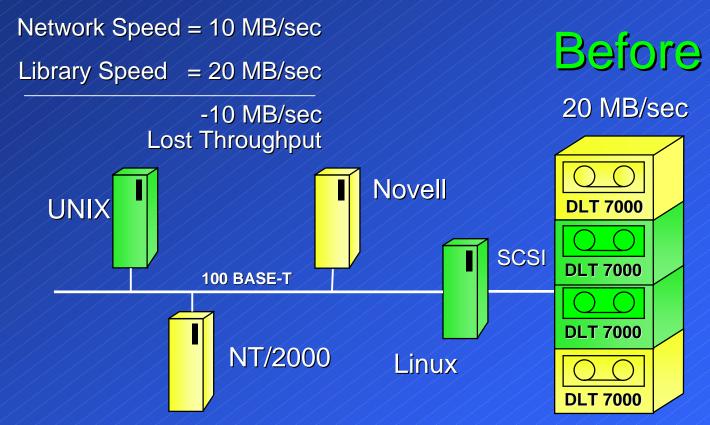
 SuperDLT
 15 MB/sec
 100-500GB
 54 GB/hour

 comp*
 30 MB/sec
 200GB-1TB
 108 GB/hour

LTO (Ultrium) 15 MB/sec 100-500GB 54 GB/hour comp* 30 MB/sec 200GB-1TB 108 GB/hour

* based upon 2:1 compression

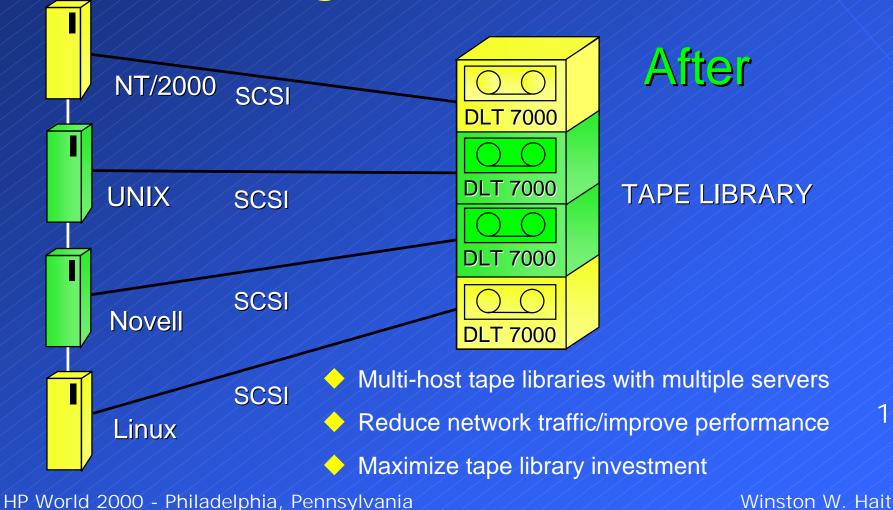
*** based upon 4:1 compression


HP World 2000 - Philadelphia, Pennsylvania

Winston W. Hait

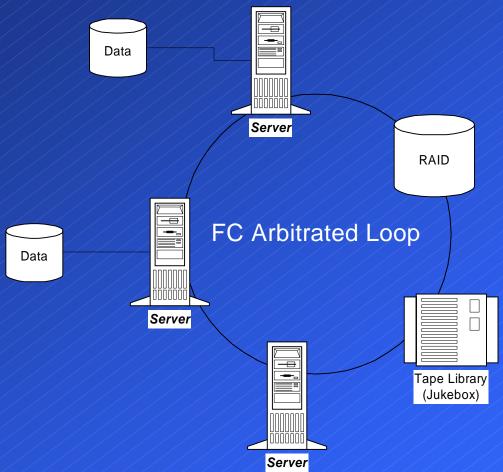
First Stage in Evolution: Multi-Hosting

- Multi-hosting direct SCSI connect server to tape library
 - Cheap cost of SCSI cables
 - Fast 40MB/sec –most tape drives can only write at 5MB/sec
 - Off-loads traffic and maximizes tape investment speeds are fast enough to keep tape spinning all the time
 - Only downside distance 25 meter limit of SCSI


First Stage in Evolution: Multi-Hosting

18

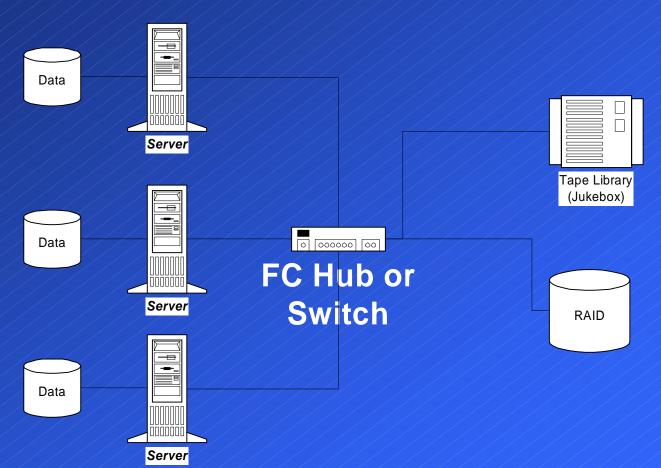
TAPE LIBRARY


First Stage in Evolution: Multi-Hosting

Second Stage in Evolution: Fibre Channel - Arbitrated Loop

- 100 MB/sec speed
- Arbitrated circuit based only one conversation at a time without redundant loops, hubs or using a switch
- Not a bandwidth consideration, but latency of arbitrating connections
- 126 devices on one loop vs. 16 for SCSI
 - Current suggested/recommended is 3-6 servers
 - Must bring down entire loop to add or remove a device without node-bypass circuitry or switch

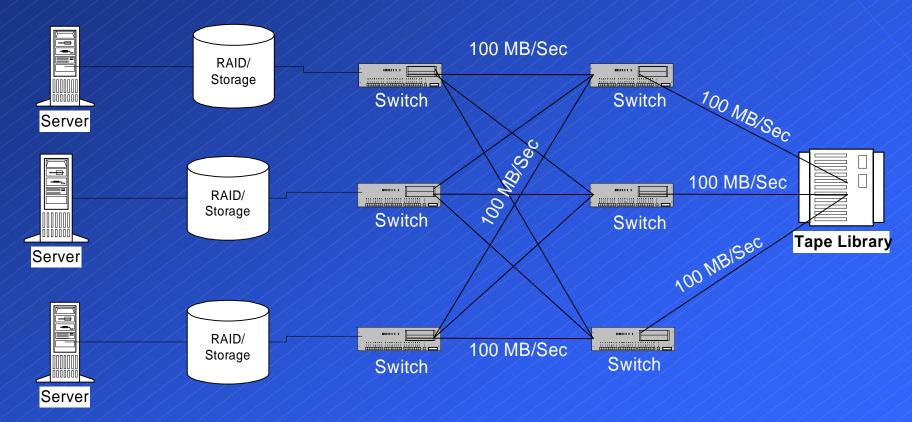
Second Stage in Evolution: Fibre Channel - Arbitrated Loop



21

HP World 2000 - Philadelphia, Pennsylvania

Winston W. Hait


Second Stage in Evolution: Fibre Channel - Arbitrated Loop

Third Stage in Evolution: Fibre Channel - Switched Fabric

- More expensive
 - Multiple switches, hubs and routers
 - Can help some with SCSI to FC converters at the end points, but the fabric in the middle is where the costs climb quickly
- Fast speeds
 - Multiple paths allow multiple channels of gigabit speed in system
 - 8 simultaneous 100MB/sec pipes through a 16 port switch
- Redundancy/failover
- Zoning

Third Stage in Evolution: Fibre Channel - Switched Fabric

Comparison: SCSI vs. Fibre Channel

- SCSI
 - Risk is low
 - Time tested
 - Widely installed
 - Simple to use
 - Inexpensive mostly just cost of cables
- Limited to maximum distance of 25 meters from server
- Most versions of SCSI slower than FC
 - UltraSCSI III 160 MB/sec vs. FC 100MB/sec
 - FC 200MB/sec, non-aggregated standard

Comparison: SCSI vs. Fibre Channel

- Fibre Channel Risk is higher, but is dropping
 - No standard...yet: FibreAlliance & SNIA
- Greater distance up to 10km on a single run
- Heterogeneous systems are still <u>1-2</u> years away
- Cost is higher, but dropping
 - Managed hub \$500-700/port, Switches \$625/port
 - Fully redundant switches (failover) \$4,000/port
- Zoning -
 - Security
 - Fail-over capabilities
 - Management / Load balancing

26

HP World 2000 - Philadelphia, Pennsylvania

What is the best for you? Determine your need

- First question how important is availability
 - i.e. how much is it worth?
- ERP systems with verbose, highly redundant subsystems
 - worth it
 - Easy to justify
 - Link aggregation can help scale up as needs grows
 - Helps handle data transfer bursts (i.e. mirroring/backups)
- Sales Force Data lead tracking, etc.
 - May only need simple backup depending on data
 - High volume, try multi-hosting
 - Has the largest backup window

What is the best for you? Server Farms

- Greatest advantage is distance, or lack there of
 - SCSI
 - Distance isn't a problem
 - Simple SCSI is an accepted standard
 - Inexpensive just the cost of cables
 - Multiple servers can be connected to one tape library
 - Configure a server with more than one SCSI adapter
 - Multi-hosting Multiple channels from one source
 - Fibre Channel

- More expensive, but could be first step to implementing a SAN
- Faster speeds not that important if use multiple SCSI connects

What is the best for you? Campus or MAN

- FC or SCSI
 - Distance is solved with FC connects or SCSI routers
 - Simplifies management
- Arbitrated Loop (AL)
 - May work if only have a few servers dedicated loops
- Switched Fabric (SF)
 - If you have great value to the data on a 24/7 basis
 - Expensive, but reliable, flexible and dependable

What is the best for you? Enterprise

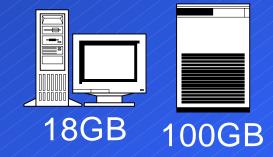
- Combination based on distance and needed availability
- Can look to multiple "sites" within the organization
 - One main location, but each building it's own SAN with aggregated links to main data center
 - Will have to use the same vendor for everything to ensure interoperability ... for now
- Depending on amount of data to move, a combination of SCSI, FC-AL and FC-Switched may be the best
 - Beware the upgrade path

What is the best for you? 3rd Party Copy

- Designed to provide low server utilization for backups
- How does it work?
 - Need equipment that supports 3rd Party Copy
 - Build block list
 - Transfer info
 - Who controls?
 - Problem with Database backups

What is the best for you? Network Attached Storage

- NAS devices how do they work
- What is NDMP
 - Network Data Management Protocol
- Can they work in a SAN?
 - How?


What to do? How Do I Start?

- Check with vendors and who they have certified with
- If need be, visit their lab and see a demonstration of their system
- References who's using what, where and how
- Know what your requirements are now AND in the future
 - Evolve your SAN as your enterprise does
- Test in your environment one piece/segment at a time
- Feedback is the key
 - What do you learn, what's working or not
 - Roll back into the system and continue to fine tune

Step 1a: Document Backup Requirements

Think Enterprise-wide

Total databy machine

Total databy location

Create a spreadsheet!

34

10GB

Winston W. Hait

Node	P a rtitio n	Tane#	base on	When	to ta l d a ta	Restoase	time day of we e k	time	how long?
A	C,D,E	1 1	Saturday	3AM	Base 75Gig	13 hours	Diffe re ntia l	8PM	1 hour
/ A//	G,H,I	2/	Saturday		Base 75Gig	13 hours	M - TH	8:15	111001
A	J./	1	Friday	7PM	Base 50 Gig	10 hours		8PM	
A	K	2	Friday	<u> </u>	Base 50 Gig	10 hours		8:15	
			I Hou J	/ .191 19	Buse 30 Gig/	TO HO CAS		0.10	
В	D,E,F	/3/	Saturday	4AM	Base 75Gig	13 hours	Diffe re ntia l	8PM	1 hour
В	G,H,I	4	Sarurday		Base 75Gig	13 hours	M-TH	8:15	
В	J,,_	3/	Friday	8PM	Base 50 Gig	10 hours		8PM	
	<u> </u>	4	Friday	 	Base 50 Gig	10 hours		8:15	
			Titta y	9.131 W	Dusc 30 Gig	Tollouis		0.13	
				400/				65.7	
/_/Ć/_/		1,2,3,4	Base on	7PM	BASE 200Gig	14 hours	Diffe re ntia l	8PM	1 hour
ATL 4/52			Friday				M-TH		
			Base on	7PM	BASE 100 Gig	4 hours	Diffe re ntia l	8PM	1 hour
ATL 4/52			Saturday				M-F		
E			Base on	2AM	BASE 100 Gig	4 hours	Diffe re ntia l	8PM	1 hour
ATL 4/52			Sunday				M-F		
/ / F//			Base on	8AM	BASE 25 Gig	4 hours	Diffe re ntia l	8PM	1 hour
G //			Sunday		BASE 75 Gig		M-F		
ATL 4/52									
			Base on	2PM	BASE 85Gig	5 hours	Diffe re ntia l	8PM	1 hour
I			Sunday		BASE 25 Gig		M-F		
J					BASE 10 Gig				
ATL 4/52									
K			Base on	8PM	BASE 25 Gig	1 Hour	Catalog Back	ıp qı	
			Sunday				Every Day		

Sample spreadsheet

Step 1b: Document Backup Requirements

- What are your database requirements?
 - Backup window (if any)?
 - If you are 24/7
 - API's Hot Backups
 - Mirroring
- How much data changes daily? By percentage of the machine?
- Data retention requirements? Any legal issues?

Step 2: Identify Priorities

- Use all the information you have gathered
- Specify minimum requirements/ features - (a la zero base budgeting)
- Do you need a SAN? What type?
 - Multi-hosting
 - Arbitrated Loop
 - Switched Fabric

Step 3: Choose Backup Software

Evaluate (features)

Test

Implement

Step 4a: Implement hardware/software

- Identify Equipment/Needs
 - Main server (catalog)
 - Location
 - CPU, Memory, hard disk
 - Other applications to run on server?
 - Device servers
 - Client nodes

Step 4b: Implement software/hardware

- Implement strategy within backup window
- Local Backups are fastest
- Determine and test schedules
- Minimize network traffic

Step 5: Implement Backup strategy

- Work with System Administrator to determine authorizations
 - Define appropriate retention schemes. Double check.
 - Refine backup schedules.

Step 6: Put it into Production

- Monitor effectiveness of the Backups
- Survey users regarding restores
- Monitor growth compare with predictions

Summary:

- Evaluate your environment
 - Use a spreadsheet
- Determine needs
 - Will a SAN help? Which type(s)?
 - Now AND/OR in future?
- Implement/Evaluate in your enterprise
- Review and Refine

