Implementing Highly Available OpenView

Ken Herold Senior Integration Consultant Melillo Consulting

Overview of High Availability (HA)

Highly Available NNM

Highly Available ITO

Management of HA clusters

Integrated products

Demand for HA solutions

Shift in focus on NSM solutions in the marketplace

- NSM core IT department function
- IT departments accountable to business units
- Driven by Service Level Agreements (SLAs)
- Impact of reporting

Highly Available NNM

Collection station failover

- Implemented in Distributed Internet Discovery & Monitoring (DIM)
- Allows a Management Station (MS) to pick up status polling responsibility for a failed Collection Station (CS)

Highly Available cluster

 Allows NNM to run on a cluster of 2 or more servers that provide continuous availability

Distributed Architecture Overview

Failover Configuration

Failover filter

 Allows specified objects to be polled by MS during CS failure

Enabling CS failover

- xnmtopoconf -failover {stationlist}
- **Applying failover filter**
 - xnmtopoconf -failoverFilter {filter} {stationlist}

Limitations of DIM for HA

Scaling

- Limited by number of devices polled and the polling interval
- Practical size of object database (primary & secondary objects)
- Capacity of network connection between MS & CS
- Event data may be lost since SNMP traps are not forwarded when CS fails
- Multiple CS failures may create problems for MS

Highly Available ITO

Multiple Managers

- Manager of Managers
- Peer Managers
- Follow-the-Sun
- **Hardware Backup**
 - Cold Standby
 - Highly Available Cluster

Multiple Managers

Manager of Managers (MoM)

- Single ITO server manages multiple ITO servers
- **Peer Managers**
 - Multiple managers with a designated responsibility providing redundancy to one another
- **Follow-the-Sun**
 - Management responsibility moves based on time of day

Limitations of Multiple Managers

Scalability

- Number of managed nodes per ITO server
- Number of messages received in the ITO browser
- Number of operator logons
- Speed of network connections to remote sites
- NNM configuration issues
- Agents must be told to report to new ITO server (time issue)

Hardware Redundancy

- **Cold Backup**
 - Cost effective
 - 1 server backs up multiple ITO servers
 - Shared storage device not required
 - Downtime may be unacceptable
 - Configuration of failed server loaded after failover
 - Message issues
 - No synchronization of current message data
 - Latency detecting events while message buffers are cleared
 - Need to implement configuration synchronization

Hardware Redundancy

Hot Standby

- ITO servers implemented in HA cluster
- Rapid, automated failover of a failed ITO server
- Configuration and messages data shared between nodes
- Upgrades & patches require more effort to install
- Costly solution
 - Requires shared disk array
 - MC / ServiceGuard software required
- Can provide LAN failover

Basic HA Definitions

Package - application and associated processes can only run on 1 node in the cluster

Service - a process monitored by MC/SG

Original Node - node where package existed before failover

Adoptive Node - node that takes control of a package

Overview of a Cluster

Create a volume group on shared device Create logical volumes in that group

- /etc/opt/OV/share
- /var/opt/OV/share
- /opt/OV/OpC_SG
- /u01/oradata/OpenView (DB files)
- /u01/app/oracle/product (DB binaries)

Create fully qualified hostname & IP address for ITO package

Activate & mount volume group on primary node

- vgchange -a y /dev/{volume_group}

- Install Oracle binaries on primary node Install ITO binaries on primary node Install latest ITO/NNM patches on primary node Configure the ITO database (opcconfig)
 - Select MC/SG installation
 - Use fully qualified name for package
 - Shared Ivol is /opt/OV/OpC_SG
 - Configure DB automatically
 - Do not enable startup at boot time
- Configure startup of ITO processes manually in \$OV_LRF directory:
 - ovaddobj ovoacomm.lrf
 - ovaddobj opc.lrf

MELILLO CONSULTING, INC.

THE POWER OF SOLUTIONS

Modify /etc/oratab to enable autostart Verify ITO/NNM starts Modify ov.conf file

- Clean copy /opt/OV/newconfig/OVNNM-RUN/conf/ov.conf
- Create ov.conf.host1 & ov.conf.host2
 - Modify HOSTNAME= field in each to match the local hostname
 - Modify NNM_INTERFACE= to match floating IP
 - Modify USE_LOOPBACK= to ON

Modify NNM auth files

- ovw.auth
- ovwdb.auth
- ovspmd.auth

MELILLO CONSULTING, INC. THE POWER OF SOLUTIONS

Verify ITO/NNM starts

- First copy ov.conf.host1 to ov.conf

Install bits on 2nd node

- Do not run opcconfig
- Verify operation of NNM

Modify opcsvinfo file on both to include lines:

- OPC_SG TRUE
- OPC_SG_NNM TRUE

Switch shared volume to 2nd node

- Shutdown OpenView & Oracle
- Unmount all 5 volumes
- Deactivate the shared volume group
- Activate VG & mount lvols on 2nd node

MELILLO CONSULTING, INC. THE POWER OF SOLUTIONS

Copy the following to the 2nd node:

- /etc/oratab
- /etc/opt/OV/share/conf/ovdbconf

Create new server registration file:

- cd /etc/opt/OV/share/conf/OpC/mgmt_sv
- mv svreg svreg.OLD
- touch svreg
- opt/OV/bin/OpC/install/opcsvreg -add itosvr.reg
- rm svreg.OLD

Remove ovserver file:

- rm /var/opt/OV/share/databases/openview/ovwdb/ovserver

Run opcconfig

 Do not configure the DB automatically
 Create ITO package
 Modify monitor scripts to watch necessary OpenView processes
 Configure package control scripts
 Verify operation of ITO on both cluster nodes independently
 Test failover by killing monitored process

Configuration Files

ito.ctl

- Package control file, contains steps necessary to activate/deactivate ITO in failover
- ito.mon
 - Describes processes that the package monitors
- ito_create_new_svreg
 - Creates new server reg file on failover, invoked by ito.ctl
- ito_start_sgtrapi & ito_stop_sgtrapi
 - Starts & stops trap interceptor on ITO server

Common Problems

Failure to modify opcsvinfo file

OPC_SG_NNM_STARTUP TRUE
OPC_SG TRUE

Failure to remove ovserver file

If in doubt remove & let it get re-created

Failure to modify NNM auth files
Failure to modify the ov.conf file

HOSTNAME, NNM_INTERFACE fields

Keep in Mind

Patches must be applied to each node

- Key commands
 - cmhaltpkg ITO
 - cmrunpkg -n {node} -v ITO
 - cmviewcl
 - cmmodpkg -e ITO
 - cmrunnode {node}

An ovstop will cause switchover Processes to monitor for failover

Managing HA Clusters

Managing the Management Cluster

- Trap Template
- Log files
- **Process monitors**

Managing HA packages

- Process monitors
- Log file issues

Managing HA Clusters

Shared log files

- Monitored from active node
- Copy contents to log.node on failover, start with clean slate
- Use "close after read" to avoid corruption
- Use "read from last file position"
- Do not use "message on no logfile"

Monitors

 Intelligent monitors that read output of cmviewcl to determine state

Managing HA Clusters

Trap interceptor

- Assign to virtual node
- Started up on active node with ito_start_sgtrapi
- Stopped on inactive node with ito_stop_sgtrapi

Notification & Trouble Ticketing in HA clusters

Connect to TT using virtual hostname

- Databases will be synched
- Intelligence needed to move SPI monitoring
- Include startup/shutdown of SPI in package control scripts

HW Notification requires connection to each server

SW based use virtual hostname to connect

PerfView & MeasureWare in HA Environments

Management Server

- PerfView binaries loaded on every cluster node
- Use shared data repository as MW data collection
- Each node connects to MW agent as necessary
- **Managed Node**
 - MW agent runs on each cluster node to collect performance data
 - Application data collected on cluster node that currently runs the package

Thank You for Attending

Ken Herold Melillo Consulting, Inc.

