
James G. Lynn
August 24, 2001

Pure Java Transaction Management
for

Tomorrow’s Enterprise Applications

Agenda
• What is transaction processing?

Transaction ACID properties
Distributed transactions
JTA, JTS, J2EE and OMG

• Configuration Features

• Complex Transaction Features

• Standards

What is transaction processing?
• In the simplest terms:

A request for a service of some kind with immediate
confirmation or denial back to the requester. In between the
request and response, resources (e.g. files, databases) are
read and updated as required

• Distributed Transaction Processing
Transactions which consist of reads and/or updates to
various resources spread over several systems and/or
databases

Software technology to assure complete, Software technology to assure complete,
accurate business transactionsaccurate business transactions

Transaction ACID properties
• Atomicity

the transaction completes (commits) or if it fails (aborts) then
all effects are undone (rollback)

• Consistency
transactions produce consistent results

• Isolation
intermediate results are not visible, and transactions appear
to execute serially even if done concurrently

• Durability
the effects of a committed transaction are never lost

The result of a transaction must be
predictable and stable

World of Transactioning
• Traditional transaction systems

Client/Server
Concurrency

Control

Transaction
Integrity

Handle thousands
of clients

ACID

Transaction Monitor

New World of Transactioning
• Traditional transaction systems

• New Transaction Systems

Client/Server
Concurrency

Control

Transaction
Integrity

Handle thousands
of clients

ACID

High Volume
Application

Server
Transaction

Integrity
Internet – Millions

Of Users
ACID

Transaction Monitor

High Volume
Application

Server
Transaction

Integrity
High Volume
Application

Servers
Transaction

Integrity

Marketplace
• Financial and Telecommunications markets

Banking
Insurance
Mobile services

• ISV’s
• Other J2EE vendors without a JTS

• Sophisticated end users
Application component builders
Application service integrators

Why do we need it?
“Midtier application server companies have to gain
transaction skills or risk being left behind. ... there
will be less and less reason to buy application
servers and transaction monitors separately—as
well as less and less reason to buy application
servers without transaction services.”

“App Servers vs. Transaction Monitors”,
Timothy Dyck, July 24, 2000.

Distributed Transactions

• Transactions can
span:

machines
domains
software languages

Machine 1
Client Application

Machine 2
Transaction Resource

Physical
Resource

Machine 3
Transaction Resource

Physical
Resource

Transaction Service

begin
commit Resource API’sResource API’s

Prepare
Commit

Prepare
Commit

Tx = App :: TM.getTx
R[n] = App :: RM.CreateResource
App :: Tx.enlistResource(R[n])
App :: Tx.begin
TM :: R[n].begin
App :: R[n].resource api’s
App :: Tx.commit
TM :: R[n].prepare
TM :: R[n].commit

RM specific api TX api

XA api

Application

R

Resource
Manager

Tx

Transaction
Manager

Distributed transaction process model

• X/Open and OSI
define the DTP model

• Defines the basics of
transaction processing

Supports ACID
properties
Defines two phase
commit (2PC) protocol

J2EE model for Transaction Integration

Application Servers

JTS

Internet – Millions
of Users

ACID
JSP

Servlet
EJB

Server

New model for App Server – Pure Java JTS

What is Java Transaction Service?
• JTS is an implementation of a

Transaction Manager
• JTS implements

Java Transaction API (JTA) 1.0
Specification
Java mapping of the OMG Object
Transaction Service (OTS) 1.1
Specification

• JTA is a required part of J2EE
• JTS is an optional part of J2EE and

EJB today…
• A JTS Transaction Manager provides

transaction services to the parties
involved in distributed transactions

Application

Java Transaction API (JTA)
• Sun Microsystems

specification
• Required for J2EE

Gives easy API to
J2EE developers

• XA architecture
Similar to XA
Supports XA
compliant resources

javax.transaction

javax.transaction.xa

Resource
specific api

Physical
Resource

XA Resource

Tx like api

Xa like
api

.TransactionManager

.Transaction

.UserTransaction

Application

Transaction
Service

TR/TO specific api

Object Transaction Service (OTS)
• OMG defines standards

for object transaction
service

• Standard provides IDL
(interface definition) for
transactions

• Language neutral
specification

• Specifications
OTS 1.1 Released
OTS 1.2 May 2000

Physical
Resource

::Resource

::TransactionalObject

::Current
::Control
::Coordinator
::Terminator

Transactional
Resource/Object

JTA to JTS
• JTA implemented via

JTS (an OTS mapping)
• Mature and proven

software technology

• Offers benefits of JTS
to JTA

distributed transactions
nested transactions

JTA

JTA-XAResource

Resource
specific
api

Physical
Resource

Application

JTS

JTS Resource
XA Wrapper

J2EE 1.3
• Sept 2000 First 1.3 source drop

• Oct 2000 Specification for proposed final

• Feb 2001 Beta 1.3 (source, binary, CTS)
! API feature complete

• ??? 2001 GA
J2EE 1.3J2EE 1.3

FebFeb ??????OctOctSepSep

J2EE transaction platform
• J2EE requires a JTA
• Transactions can be

started by
J2EE components
J2EE application
client

• Transactions can be
propagated from one
J2EE platform to
other J2EE platforms

<tx:begin>
<sql>…</sql>
<sql>…</sql>
</tx:begin>

JSP

JTA-XAResource

Resource
specific api

Physical
Resource

J2EE Components

JTS

JTS Resource
XA Wrapper

Servlet EJB

JTA

UserTransaction

Java vs. Other Implementations

…a commercial pure Java transaction service, an essential
requirement for e-commerce, especially wireless
e-commerce.

…an object based model that is highly proprietary and based
on older technology… is not highly scaleable, nor is it easily
integrated. Hurwitz Trend Watch – 7/13/00

Agenda
• What is transaction processing?

Transaction ACID properties
Distributed transactions
JTA, JTS, J2EE and OMG

• Configuration Features

• Complex Transaction Features

• Standards

Interposition
• Reduces network

resources
• Optimized

orchestration of 2PC

Machine 1
Client Application/Component

TS

Machine 2

Transaction
Resource

No Interposition

Transaction
Resource

Commit

prepare

commit

Machine 1
Client Application/Component

TS

Machine 2

Transaction
Resource

With Interposition

Transaction
Resource

Commit

commit

TSprepare

Transaction Heuristics
• Independent

transaction completion

• Available for unusual
circumstances (e.g.
network failure)

Application

Transaction
Service

Transactional
Resource/Object

Transactional
Resource/Object

1. commit

2. prepare

3. prepare

4. commit

Network
Failure

5. commit

? Heuristic
Commit

Timeout and
never recovered!

Heuristic
Rollback
Heuristic
Hazard

Heuristic
Mixed

Transaction Manager Server Model
• Transaction service

can run standalone

• Runtime model is
configurable

Machine 1

Machine 1
Client Application

Machine 3
Transaction Resource

Physical
Resource

Machine 4
Transaction Resource

Physical
Resource

Transaction Service

begin commit
Resource API’s

Commit

Resource API’s

Prepare
Commit

Check/Unchecked behavior
• Transaction originator is the only able

to commit transaction

• Transaction commits only after all
transactional objects have completed
requests

• These may be configurable

Agenda
• What is transaction processing?

Transaction ACID properties
Distributed transactions
JTA, JTS, J2EE and OMG

• Configuration Features

• Complex Transaction Features

• Standards

Nested Transactions
• Nested transactions

are supported

• Nested Transactions
with 2PC are supported

• Nested transactions
allow for pieces to
complete without
hurting the entire
transaction

Top
Level

Transaction

begin

begin

commit

begin

commit

commit

Nested Transaction

Nested Transaction

Transaction’s Current
Application

Transaction
Service

TR/TO specific api

Physical
Resource

::Resource

::TransactionalObject

Transactional
Resource/Object

CosTransactions::Current
::Control
::Coordinator
::Terminator

Direct/Indirect management
• Direct

The developer uses the following services to work the
transaction

• Control
• Coordinator
• Terminator

• Indirect
Transaction control is done through the Current object
Similar to using the JTA where the transaction control
and creation is abstracted from the user

Synchronization object
• Allow objects to

monitor transactions

• Interface supplies
methods

beforeCompletion()
afterCompletion()

• Can be utilized for
notifications when
transactions commit

Application

1. commit

Transaction
Service

Transactional
Resource/Object

Synchronization
Object

3. prepare

2. beforeCompletion()

4. commit

5. afterCompletion()

Implicit/Explicit propagation

• Explicit propagation
Transaction propagated as parameter for method
Programmer must implement

• Implicit propagation
Transaction propagated by system with
transactional objects
JTS responsible for ensuring propagation

Multi-threaded aware

• Allows for transactions to participate
across multiple threads

• JTS implementation is thread safe

Resource/
SubTran

aware
Resource

Advanced Integrated Transactions (AIT)

• Complete framework for
developing transactional
applications and
components easily

• Provides concurrency
control, persistence and
crash recovery

• Provides interfaces and
implementations for
persistence and
concurrency

• Provides level of
abstraction above raw
OTS programming

OTS

Concurrency

AIT

Persistence

Transactional
Object

Transactional
Resource

Transactional
Application

Enterprise Transaction Programming

Legacy Systems

DTP

OTS

JTS

JTA

JSP

AIT

Transactional
Object

Resource/
OTS

Developers

Standardization
Of

Transaction
programming

Object
Oriented

Transactions

Transactional
Resource

Transactional
Application

JSP

J2EE
Developers

EJB

Agenda
• What is transaction processing?

Transaction ACID properties
Distributed transactions
JTA, JTS, J2EE and OMG

• Configuration Features

• Complex Transaction Features

• Standards

XA compliance
• JTS provides Tx

layer compliant with
XA

• Supports XA
resourcestx implementation

XAResource

Resource
specific api

Physical
Resource

Application

JTS

JTS Resource
XA Wrapper

JDBC Support

• JDBC 1.0
XA Wrapper for drivers is provided
Resources cannot participate in 2PC

• JDBC 2.0
Supports drivers
Supports XA resources and 2PC

ORB Portability Harness
• Runtime

Layer between JTS and ORB
Abstractions for

• BOA Initialization
• BOA Shutdown
• Initialization code
• Locating objects and services
• Threading (C++)

• Development
Make system to build targeting multiple orbs

Product integration

• High-performance transaction capability built directly
into Single Process

Java Server

JTS
Internet – Millions

Of Users ACIDJSP
Servlet

EJB
Server

JTS Desirable Features
• 100% Pure Java JTS 1.0.1 compliant product with full JTA support
• Configuration features

Interposition
Transaction Heuristics
Distributed Transaction Manager or Transaction Manager Server
Supports check/unchecked behavior

• Complex transaction features
Nested Transactions (also with 2PC)
Support for CosTransaction::Current
Direct/Indirect Transaction Management
Synchronization object support
Explicit/Implicit propagation
Crash Recovery
Multi-threaded aware
AIT

• Standards
XA Compliance
Support for JDBC 1.0 and 2.0
ORB Portable

Recommended reading
• “Principles of Transaction Processing”

P.A. Bernstein and E. Newcomer
1997, Morgan Kaufmann, San Francisco CA USA
ISBN 1-55860-415-4

• “Enterprise Transaction Processing Systems: Putting the
CORBA OTS, Encina++ and OrbixOTM to work”
I. Gorton
2000, Addison-Wesley, Harlow, England
ISBN 0-201-39859-1

• “Enterprise CORBA”
D. Slama, J. Garbis, P. Russell
1999, Prentice Hall PTR, Upper Saddle River, NJ, USA
ISBN 0-13-083963-9

James G. Lynn jlynn@bluestone.com

Pure Java Transaction Management
for

Tomorrow’s Enterprise Applications

