HP World Conference

Graphical hiomalion Pjpleme
Presented By John Lehner, CEO Kathryn G. Lehner, CFO PowerGraphs.com
designed by
Creativemindsinc.com

Graphical Information Systems

PowerGraphs.Com
15 Sequoyah Road
Colorado Springs, CO 80906 719-576-8084
info@powergraphs.com
designed by
Creativemindsinc.com

Graphical Information Systems

Inter-Relationships among events
is the most critical aspect of many
managerial decisions

Information Overload

Demands

Graphical Representation

of these

0	
$\stackrel{\leftrightarrow}{\infty}$	Graphical Representation
$\frac{\text { ¢ }}{\text { ¢ }}$	increases Managerial Productivity
©	
	Intuition\& self confidence by having

visual comprehension of

 ∞ data \& events
statistical measures

1. managerial intuition

- developed for the statistical measures

- visualize with graphs of data \& events

2. managerial intuition

why the

standard deviation
is important \& what it looks like
graphically

3. managerial intuition

working knowledge of

regression analysis

useful for projections

Successful Management

Requires Managing Huge Amounts of

Information
And that requires a new IJ I nfraStructure:

Successful Management

 Requires a new IT I nfraStructure:
an E-I nfoStructure

 with Graphical I nformation
an E-I nfoStructure with Graphical I nformation

brings in external

 information which moves in tandem with your
data

an E-I nfoStructure

 with Graphical Information external information develops a reference point for your responsibilities
as they move in tandem

 within the
larger economy

external information

 produces relativityfor your department or firm with

the
 economy

larger
increases productivity
thru better decisions

an E-I nfoStructure with Graphical Information

external information increases

managerial effectiveness, \& efficiencies,

\&

external information

 providesnational \& foreign economic/ financial indicators
which serve as a basis for comprehension \& relativity of your responsibilities

external information

 in graphical formproduce \& support managerial intuition
decisions are quicker being better informed produces
self

external

national \& foreign

 economic/ financialare available
on the web
for your analysis \&
application

national economic indicators

Foreign Trade: census.gov/foreigntrade/www/press.html\#turrent
Natl Assn Purchasing Mgrs: napm.org/ Consumer Price Index:
stats.bls.gov/news.release/cpi.toc.htm
GDP: bea.doc.gov/bea/newsrel/gdp101p.htm Producer Price Index:
stats.bls.gov/news.release/ppi.toc.htm
Employment Cost Index:
stats.bls.gov/news.release/eci.toc.htm
Import/Export Prices:
stats.bls.gov/news.release/ximpim.toc.htm
Federal Budget:
stats.bls.gov/news.release/cpi.toc.htm

Graphical Information Systems

Managerial Decisions \& Projections
Using
Graphed Data Sets

Decisions \& Perceptions

If I see farther than others

its by stepping on their glasses
"The Missing Piece"

Decisions \& Perceptions

- "The Missing Piece"
- e- Infostructure

Graphical Information

 which SupportsManagerial
Decisions \& Intuition

Topics

-G raphical infomation

- Statistical anips

Stats rarefied thru Graphs
percept sets Bet 1

The Law of............

Stat VS. M ath

A ny D ecision
D escribed \boldsymbol{W} ith \mathbf{a}
M ath Form ula
is programmable \&
does not require a Human Decision

STAT VS. MATH

Decisions Not Described With a Math Formula

Requiresa
Hum an Decision
stat was created
to deal with these more difficult problems

SHAT vS. MATH

stats useful for
 decision making

graphical visualization: - standard deviation - 2 or more sets of data - correlation

Standard Deviation

1. indicates spread within the data
2. how diverse or spread out is the data?
3. this is a range or dispersion
data not spread out
is more reliable and useful for
decision making and projections

Standard Deviation

std deviation also called sigma

std deviation usually

presented as plus and minus

which is the distance away
(in both a plus and minus direction) \pm from the data

Plus / Minus 1 Std Deviation or Sigma

Std Deviation = Red Lines

Graphic Visualization provides more meaning than

$$
\text { the figure of } 2.2
$$

your data is the blue line)

Std Deviation = Red Lines

Plus / Minus 3 Sigma $=6.6$

Standard Deviations

Plus / Minus 3 Sigma =

6 Sigma the standard tool in mfg.

generally 6 sigma is to much

variation for
Managerial Decision Making

STAT VS. MATH

stats useful for decision making

graphical visualization:

- 3 sets of data
- correlation
- projections (regression)

Practical Stats

statistics was created
 to deal with daily problems

 which can not explained or defined with a math formulastats involve a lot of ranges $\&$ estimates \&
\%'s

Practical Stats:No Formulas

the objective is make stats managerially useful by developing \& strengthening your intuition
stats involve a lot of estimates \&
is useful for decision making \& supporting intuition

Production, New Order, Back Log

HIGH CORRELATIONS

PROD
 NEWO
 BACK

PROD 1.00
NEWO 0.96
BACK 0.92
0.93
1.00

CORRELATIONS

- Data Sets that move together Up or Down
- Example:

As one data set increases another can
increase or decrease in tandem this is a co-movement

CORRELATIONS

moving in tandem

 does not implycause $\&$ effect
correlation simply means
the data moves at the same time cause $\&$ effect is the result of research

HIGHLY CORRELATED DATA

CORRELATIONS

PRODN NEWORD BKLOG

PRODN 1.00

NEWORD
.96
1.00

BKLOG
.92
.94
1.00

Projection / Prediction

the PRODUCTION BLUE line

is your data........

 the other data; BACKLOG \& NEWORDERis EXTERNAL DATA (from the web) $\&$ is useful for decision making

Projection / Prediction

Given the High Correlations

Either

 BACKLOG or NEWORDERis a good Predictor of
your PRODUCTION BLUE line using a regression projection

The Regression Formula

Simple Regression Formula

$$
\mathbf{Y}=\mathbf{a}+\mathbf{b x}
$$

Multiple Regression Formula

$$
\mathbf{Y}=\mathbf{a}+\mathrm{b}_{1} \mathrm{x}_{1}+\mathrm{b}_{2} \mathbf{x}_{2}
$$

Projection / Prediction

projection of your
Production data using the external data as a driver
(which is the X variable)
in Regression Analysis

- The predicted value of your data is the Y
- Simple Regression = one X predictor - Multiple Regression = two \mathbf{X} predictor

Projection / Prediction

using the external data as a driver
(which is the X variable) for the predicted Y variable in Regression Analysis
involves selecting an X :
first, managerial experience $\boldsymbol{\&}$ intuition
second, the X's \& Y's should be correlated (related quantatively)

this data is very unstable but correlated

is this data highly correlated?

Decision Rule: Correlation

- Decision Cut Off Point

No Predictor Variable (X)
Should Be Included In The Regression Formula
Which Has A Higher Correlation With Another X Variable
Than With Dependent Y Variable

Decision Rule: Correlation

- Decision Cut Off Point

No Predictor Variable (X)

Should Be Included I- The Regression aula

Which Has A Highe we elation With Ano ure X Variable
Than With Dependent Y Variable

Decision Rule: Correlation

- Restated: - Decision Cut Off Point Include Only ' X' Variables In A Projection Formula
- Which Have A Higher Correlation With The Y Variable Than With Another X Variable

Decision Rule: High Correlation

- If 2 ' X' Variables Are Very Highly Correlated

Include Only One in the Regression Formula

Not Both (when highly correlated as No Additional Information is Added...... Only Duplicated

The Law of............

Regression Formulas

Simple Regression:

$$
\begin{aligned}
& Y=a+b x, \text { or } \\
& Y=\alpha+\beta x, \quad \beta=\text { beta } \\
& \alpha=\text { alpha }, \quad \beta=1
\end{aligned}
$$

Multiple Regression:

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{a}+\mathbf{b}_{1} \mathbf{x}_{1}+\mathbf{b}_{2} \mathbf{x}_{2}, \text { or } \\
& \mathbf{Y}=\boldsymbol{\alpha}+\boldsymbol{\beta}_{1} \mathbf{x}_{1}+\boldsymbol{\beta}_{2_{2}} \mathbf{x}_{2}
\end{aligned}
$$

Regression Formula: where

Y = your predicted / projected production value

a or $\alpha=$ the point where
x hits the y axis
the fixed point, or the
fixed value in a cost formula useful for projecting costs

Regression Cost Formula

a cost formula (better for budgeting)

 is a simple regression, with one X variable (the predictor of Y)

Regression Projection Formula

$$
\begin{aligned}
& Y=a+b x \\
& Y=a+b_{1} x_{1}+b_{2} x_{2},
\end{aligned}
$$

- Y = your predicted PRODUCTION BLUE line
- a or $\alpha=$ the point where
x hits the y axis, or
the fixed value in a cost formula

Regression Formula: where

$$
\begin{aligned}
Y & =\mathbf{a}+b x \\
Y & =\mathbf{a}+b_{1} \mathbf{x}_{1}+b_{2} \mathbf{x}_{2}
\end{aligned}
$$

b, or b_{1} or $b_{2}=$
the coefficient or weight
x or x_{1} or $x_{2}=$
the predictor x value
for your Production Y value

Cost Formula

a cost formula

 is a simple regression formula to identify the fixed \& variable
parts of a cost:

where:
a or $\alpha=$ fixed portion of a cost, $\&$
$\mathrm{x}=$ the predictor (driver) variable
$\& \mathrm{~b}=$ the variable portion

Regression Cost Formula

-a cost formula (better for budgeting) is a simple regression, with one X variable (the predictor of Y)
a cost formula identifies the fixed \& variable parts of a cost restated: it defines cost behavior
$\boldsymbol{\&}$ is useful also for revenues

$$
\mathbf{Y}=\mathbf{a}+\mathbf{b} \mathbf{x}
$$

Negative High Correlation

Highly Correlated Data

GDP SALES
GDP
1.00

SALES -. 87
1.00

Negative Correlation

Correlation is the key for choosing the X variables as predictors of Y

Correlation can be either Positive or Negative

Select any high correlation.

Negative High Correlation

Projection / Prediction

Sales Blue line is your data... the other data....... GDP

is EXTERNAL DATA from the web

Given the High Correlation -. 87 GDP

 is a good Predictor of your Sales Blue line
Projection / Prediction

Given the High Correlation -. 87 GDP
 is a good Predictor of your Sales Blue line

the negative simply indicates these 2 data sets move in opposite directions

Projection / Prediction

Projection of your data use the external data GDP as a driver this is the X variable in Regression Analysis to predict Sales
the predicted value of your sales data is the Y values
Simple Regression =
has one X predictor

Predict Sales Using GDP

Simple Regression

The more simple the equation the better for Decision Making generally, do not use more than 3 X's

Negative High Correlation

High Correlation

One additional Decision Rule:

Use only X variables that are Managerial Intuitive

If 2 X variables are highly correlated are not Managerial Intuitive as to their inter-relationship use them

High Correlation

Over time as the " environment"
in which these highly correlated X and Y variables changes, the correlations will change and thereby become unrelated and unreliable
they must be Managerially Intuitive

simple regression projection

Multiple Regression

Multiple Regression

Regression Projection Graph

 ${ }^{70} \Pi{ }^{10}$ PRODUCTION BLUE

HIGHLY CORRELATED DATA

using the highly correlated data

 in this examplethe projection of the future production involved this equation:

$$
Y=a+b_{1} x_{1}+b_{2} x_{2}
$$

the method involved the following:

Projected Production - (assumptions)

Production is a function of regressing each independent variable on the other as they had high correlations

Secondly, the projected X values were shifted forward 12 months
... the dependent Y (production) was then projected in the graph

Production Projection Graph

simple regression projection

measures of the quality of the

regression formula

sometimes referred to as the

' goodness of fit '

1. the \mathbf{R}^{2} : measures how well the X predicts the Y
2. the standard error of the estimate
3. the standard error
4. residuals

standard error of the estimate \mathbf{Y}

standard error of the estimate of Y (the predicted value)
the difference between the actual Y values and the predicted Y values on the regression line
this difference is sometimes called the 'prediction error'

standard error of the estimate

measures the quality of the

 regression equation in predicting Ythis measure is also called the ' standard deviation of Y'
when the standard error of Y is large (relative to the regressed Y) the X is of little value in predicting Y

standard error (deviation)

of the estimate of Y

a large std error of the estimate indicates the values are not stable nor consistent therefore any projections made using this \mathbf{X} to predict this \mathbf{Y} are not useful

how is a ' small' standard error of the estimate determined:

1. the size of the standard error as a percent of the

mean of the actual Y values

std error

how is a 'small' standard error of the estimate determined:

Note: if this \% is to high to be managerially useful (based on your intuition)
then the std error of the estimate is considered to large

std error

 mean of Y
how is a 'small' standard error of the estimate determined:

- calculate the range of the Y or the range of a projection of Y using the standard error of the estimate (ie. its \pm value)

range =

mean of $Y \pm$ std error

standard error of the estimate

Note: if this range of Y is to wide to be managerially useful (based on your intuition) then the std error of the estimate is considered to large

$$
\begin{aligned}
& \text { range }= \\
& \text { mean of } Y \pm \text { std error }
\end{aligned}
$$

analysis of residuals

residuals should NOT

have a determinable

or observable pattern

when graphed

X Variable 1 Residual Plot

residuals graphed from this data

analysis of residuals

R^{2}

$\mathbf{R}^{\mathbf{2}}=$ Coefficient of Determination

this is another measure of the
' goodness of fit'
(an evaluation)
of the regression equation and its predictions

$\mathbf{R}^{\mathbf{2}}=$ Coefficient of Determination

represents the proportion of the predicted Y that is determined by X
\& therefore
determined by
regression formula or
the regression line

when all points are on

 the regression line the $\mathbf{R}^{2}=1$
200

when all points are NOT

on the regression line the $\mathbf{R}^{2} \neq 1$

$\mathbf{R}^{2}=$ Coefficient of Determination

$=$ almost always less than 1

 but greater than zero$=$ never greater than than 1
but never less than zero
should be greater than 70\%
for the regression equation to be managerially useful

this $\mathbf{R}^{2}=73 \%$

100

Managerial Intuition

be comfortable with

1. correlation
2. Standard deviation 3. Regression projections
3. Std error of estimate 5. R^{2}
4. residual graphs

be comfortable with

1. correlation $\quad \mathrm{s} / \mathrm{b}$ over 70\% the co-movement of 2 data sets which move in tandem
this is not a cause $\&$ effect 2 . standard deviation should be small relative to mean or to a specific value
\& calculate the \pm range

managerial intuition

3. regression projections

 a simple the equation is better limit the X's to a max of 3 don't over analyze4. Std error of estimate s/b small relative to mean of Y or to a specific value \& calculate the \pm range which s/b narrow

be comfortable

5. $\mathbf{R}^{2}=$

Coefficient of Determination

the proportion of

the predicted Y that is determined or explained by X in the regression formula
generally s/b over 70\%

managerial intuition

6. residuals

the error term or the

 unexplained $\%$ after the \mathbf{R}^{2} graph the residuals against the X variablelook for a fixed pattern a random pattern or no pattern is best

Suppliers Delivery (red) \& Inventory (blue)

straight line (red) is

linear regression line

curved line (blue) is non-linear regression line

the \mathbf{R}^{2} value indicates how well the X variable explains the changes in the Y variable

55

the 72% is OK for projections the $\mathbf{4 9 \%}$ is too low

to be of value in regression

the 49% is too low to be of value however, if the outlier (unusual) value (the high point) at about January ' 00 is removed from the analysis
the $\mathbf{R}^{\mathbf{2}}$ value will increase

if the outlier value is removed from the analysis the manager must be comfortable in deciding
that this point value is truly unusual and could be removed
the graph will not go down perpetually
at some point it will change direction we just don't know when
inflection point = when the graph
changes direction

what is needed is to inject

an inflection point at a point in time

 into the future
this will change the direction
of the graph

inflection point =

when the graph changes direction

the formulas are of limited value and must be changed when the graph changes
one suggestion is to use the same formula that drove the graph the last time

it went up

Topics

-G raphical infomation

- Statistical anips

Stats rarefied thru Graphs
percept sets Bet 1

The Law of............

changes to...

The Law of \qquad Whenval GHOORACC

an E-I nfoStructure with Graphical Information

external information increases

managerial effectiveness, \& efficiencies,

\&

