HP World Conference

Craphical Information Systems

Presented By John Lehner, CEO Kathryn G. Lehner, CFO PowerGraphs.com

designed by Creativemindsinc.com

Graphical Information Systems

PowerGraphs.Com
15 Sequoyah Road
Colorado Springs, CO 80906
719-576-8084
info@powergraphs.com

designed by Creativemindsinc.com

Graphical Information Systems

managerial decisions

Information Overload

Demands

Graphical Representation

of these

inter-relationships

Graphical Representation increases Managerial Productivity &

Intuition& self confidence by having

duantitativa sunnort

visual comprehension of data & events

produces a better & quicker comprehension

of the reality of events and their projections

visual comprehension of data & events

for the value of statistical measures

strengthens intuition & thereby produces better decisions

visualize inter-actions & produce better decisions

DO NOT CONCENTRATE ON ON THE FORMULAS

develop a managerial feel (intuition)

1. managerial intuition

- developed for the statistical measures

visualize with graphs
 of data & events

2. managerial intuition

why the standard deviation is important & what it looks like graphically

3. managerial intuition

working knowledge of regression analysis useful for projections

Successful Management

Requires Managing
Huge Amounts of

Information
And that requires a new
IT InfraStructure:

Successful Management

Requires a new IT InfraStructure:

an E-InfoStructure with Graphical Information

an E-InfoStructure with Graphical Information

brings in external information which moves in tandem with your

data

an E-InfoStructure with Graphical Information external information develops a reference point for your responsibilities as they move in tandem within the larger economy

external information produces relativity

for your department

or firm with

the larger

economy this

increases productivity thru better decisions

an E-InfoStructure with Graphical Information

external information increases

managerial effectiveness, & efficiencies,

external information provides national & foreign economic/financial indicators which serve as a basis for comprehension & relativity of your responsibilities

external information in graphical form

produce & support managerial intuition

decisions are quicker being better informed produces self

external national & foreign economic/financial

are available
on the web
for your analysis &
application

national economic indicators

Foreign Trade: census.gov/foreign-trade/www/press.html#current

Natl Assn Purchasing Mgrs: napm.org/

Consumer Price Index:

stats.bls.gov/news.release/cpi.toc.htm

bea.doc.gov/bea/newsrel/gdp101p.htm

Producer Price Index:

stats.bls.gov/news.release/ppi.toc.htm

Employment Cost Index: stats.bls.gov/news.release/eci.toc.htm

Import/Export Prices:

stats.bls.gov/news.release/ximpim.toc.htm

Federal Budget:

stats.bls.gov/news.release/cpi.toc.htm

Graphical Information Systems Managerial Decisions & Projections Using Graphed Data Sets

"The Missing Piece"

Decisions & Perceptions

- "The Missing Piece"
- e- Infostructure

Graphical Information which Supports

Managerial

Decisions & Intuition

Topics Graphical Inform ation statistical Relationships manageria!

Perceived thru Graphs HOW? Between Data Sets Graphs Decisions & Confidence Managerial.

The Law of.....

Equal gnorance

Stat VS. M ath

Any Decision
Described With a
Math Formula

is programmable & does not require a Human Decision

STAT vs. MATH

Decisions Not Described With a Math Formula

Requires a

Hum an Decision

stat was created to deal with these more difficult problems

STAT vs. MATH

stats useful for decision making

graphical visualization:

- standard deviation
- 2 or more sets of data
 - correlation

Standard Deviation

- 1. indicates spread within the data
 - 2. how diverse or spread out is the data?
 - 3. this is a range or dispersion

data not spread out is more reliable and useful for decision making and projections

Standard Deviation

std deviation also called sigma std deviation usually presented as plus and minus which is the distance away (in both a plus and minus direction) ± from the data

Plus / Minus 1 Std Deviation or Sigma

Std Deviation = Red Lines

Graphic Visualization provides more meaning than the figure of 2.2 (your data is the blue line)

Std Deviation = Red Lines

Plus / Minus 3 Sigma = 6.6

Standard Deviations

Plus / Minus 3 Sigma =

6 Sigma

..... the standard tool in mfg.

generally 6 sigma is to much

variation for

Managerial Decision Making

Stats Information

Std Deviation = Red Lines

Plus / Minus 1 Sigma = 11

Plus / Minus 3 Sigma = 33/side

STAT vs. MATH

stats useful for decision making

graphical visualization:

- 3 sets of data
- correlation
- projections (regression)

Practical Stats

statistics was created
to deal with daily problems
which can not be
explained or defined with a math
formula

stats involve a lot of ranges & estimates & %'s

Practical Stats:No Formulas

the objective is make stats managerially useful by developing & strengthening your intuition

stats involve a lot of estimates & is useful for decision making & supporting intuition

HIGH CORRELATIONS

	PROD	NEWO	BACK
PROD	1.00		
NEWO	0.96	1.00	
BACK	0.92	0.93	1.00

CORRELATIONS

- Data Sets that move together Up or Down
 - Example:
 As one data set increases
 another can
 increase or decrease in tandem
 this is a co-movement

CORRELATIONS

moving in tandem does not imply cause & effect

correlation simply means the data moves at the same time cause & effect is the result of research

HIGHLY CORRELATED DATA

CORRELATIONS

PRODN NEWORD BKLOG

PRODN 1.00

NEWORD .96 1.00

BKLOG .92 .94 1.00

Projection / Prediction

the PRODUCTION BLUE line

is your data.....

the other data;

BACKLOG & NEWORDER

is EXTERNAL DATA
(from the web) & is
useful for decision making

Projection / Prediction

Given the High Correlations Either BACKLOG or NEWORDER is a good Predictor of your PRODUCTION BLUE line using a regression projection

The Regression Formula

Simple Regression Formula

$$Y = a + bx$$

Multiple Regression Formula $Y = a + b_1x_1 + b_2x_2$

Projection / Prediction

Production data using the external data as a driver

(which is the X variable) in Regression Analysis

- The predicted value of your data is the Y
- Simple Regression = one X predictor
- •Multiple Regression = two X predictor

Projection / Prediction

(which is the X variable) for the predicted Y variable in Regression Analysis

involves selecting an X: first, managerial experience & intuition

second, the X's & Y's should be correlated (related quantatively)

this data is very unstable but correlated

Equations by Sergei Biryukov visualization by PowerGraphs

is this data highly correlated?

Equations by Hassan Sedaghat visualization by PowerGraphs

Decision Rule: Correlation

- Decision Cut Off Point No Predictor Variable (X) Should Be Included In The Regression Formula Which Has A Higher Correlation With Another X Variable Than With Dependent Y Variable

Decision Rule: Correlation

- Decision Cut Off Point
No Predictor Variable (X)
Should Be Included Jr. The
Regression Aula

Which Has A Higher Celation

With Another X Variable

Than With Dependent Y Variable

Decision Rule: Correlation

- Restated: - Decision Cut Off Point Include Only 'X' Variables In A Projection Formula

- Which Have A Higher Correlation

With The Y Variable

Than With Another X Variable

Decision Rule: High Correlation

- If 2 'X' Variables Are

Very Highly Correlated

Include Only One in the Regression Formula

- Not Both (when highly correlated)
as No Additional Information
is Added..... Only Duplicated

The Law of.....

Equal gnorance

Regression Formulas

Simple Regression:

$$Y = a + bx$$
, or
 $Y = \alpha + \beta x$,
 $\alpha = alpha$, $\beta = beta$

Multiple Regression:

$$Y = a + b_1x_1 + b_2x_2$$
, or
 $Y = \alpha + \beta_1x_1 + \beta_2x_2$

Regression Formula: where

Y = your predicted / projected production value

Regression Cost Formula

a cost formula (better for budgeting)
is a simple regression, with one X
variable (the predictor of Y)

```
where, a = the fixed portion, &
    x = the variable portion, &
    Y = projected cost
```

Regression Projection Formula

$$Y = a + bx$$

 $Y = a + b_1x_1 + b_2x_2$

- Y = your predicted
 PRODUCTION BLUE line
- a or α = the point where

x hits the y axis, or the fixed value in a cost formula

Regression Formula: where

$$Y = a + bx$$

$$Y = a + b_1 x_1 + b_2 x_2,$$

$$\mathbf{b}$$
, or \mathbf{b}_1 or \mathbf{b}_2 =

the coefficient or weight

Cost Formula

a cost formula
is a simple regression formula
to identify the fixed & variable
parts of a cost:

where:

a or α = fixed portion of a cost, &
 x = the predictor (driver) variable
 & b = the variable portion

Regression Cost Formula

•a cost formula (better for budgeting)
is a simple regression, with one X
variable (the predictor of Y)

a cost formula identifies the fixed & variable parts of a cost restated: it defines cost behavior & is useful also for revenues

$$Y = a + bx$$

Negative High Correlation

Highly Correlated Data

GDP

SALES

GDP

1.00

SALES

-.87

1.00

Negative Correlation

Correlation is the key for choosing the X variables as predictors of Y

Correlation can be either

Positive or Negative

Select any high correlation.

Negative High Correlation

Projection / Prediction

Sales Blue line is your data...
the other data.... GDP
is EXTERNAL DATA from the web

Given the High Correlation -.87 GDP

is a good Predictor of your Sales Blue line

Projection / Prediction

Given the High Correlation -.87 GDP

is a good Predictor of your Sales Blue line

the negative simply indicates
these 2 data sets move in
opposite directions

Projection / Prediction

Projection of your data use the external data GDP as a driver this is the X variable in Regression Analysis to predict Sales

the predicted value of your sales data is the Y values

Simple Regression = has one X predictor

Predict Sales Using GDP

Simple Regression

The more simple the equation the better for Decision Making generally, do not use more than 3 X's

Negative High Correlation

10.10.00.00.00.00.00.00.00.00.

Predict Sales Using GDP

High Correlation

One additional Decision Rule:

Use only X variables that are Managerial Intuitive

If 2 X variables
are highly correlated
are not Managerial Intuitive
to their inter-relationship
use them

but as do not

High Correlation

Over time as the "environment"

in which these highly correlated X and Y variables changes, the correlations will change

and thereby become unrelated and unreliable

they must be Managerially Intuitive

simple regression projection

Multiple Regression

Multiple Regression

$$\mathbf{Y} = \mathbf{a} + \mathbf{b}_1 \mathbf{x}_1 + \mathbf{b}_2 \mathbf{x}_2$$

Regression Projection Graph

HIGHLY CORRELATED DATA

using the highly correlated data in this example the projection of the future production involved this equation:

$$\mathbf{Y} = \mathbf{a} + \mathbf{b}_1 \mathbf{x}_1 + \mathbf{b}_2 \mathbf{x}_2$$

the method involved the following:

Projected Production – (assumptions)

Production is a function of regressing each independent variable on the other as they had high correlations

Secondly, the projected X values were shifted forward 12 months

... the dependent Y (production) was then projected in the graph

Production Projection Graph

simple regression projection

measures of the quality of the regression formula

sometimes referred to as the

'goodness of fit'

- 1. the R²: measures how well the X predicts the Y
- 2. the standard error of the estimate
- 3. the standard error
- 4. residuals

standard error of the estimate Y

standard error of the estimate of Y (the predicted value)

the difference between the actual Y values and the predicted Y values on the regression line

this difference is sometimes called the 'prediction error'

standard error of the estimate

measures the quality of the regression equation in predicting Y

this measure is also called the standard deviation of Y'

when the standard error of Y is large (relative to the regressed Y) the X is of little value in predicting Y

standard error (deviation) of the estimate of Y

a large std error of the estimate indicates the values are not stable nor consistent therefore any projections made using this X to predict this Y are not useful

how is a 'small' standard error of the estimate determined:

1. the size of the standard error as a percent of the mean of the actual Y values

mean of Y

how is a 'small' standard error of the estimate determined:

Note: if this % is to high
to be managerially useful
(based on your intuition)
then the std error of the estimate
is considered to large

std error

mean of Y

how is a 'small' standard error of the estimate determined:

calculate the range of the Y
 or the range of a projection of Y
 using the standard error
 of the estimate (ie. its ± value)

range = mean of Y ± std error

standard error of the estimate

Note: if this range of Y is to wide to be managerially useful (based on your intuition) then the std error of the estimate is considered to large

range =
mean of Y ± std error

analysis of residuals

residuals should NOT have a determinable or observable pattern when graphed

X Variable 1 Residual Plot

residuals graphed from this data

analysis of residuals

R^2 = Coefficient of Determination

this is another measure of the 'goodness of fit'
(an evaluation)
of the regression equation and its predictions

R² = Coefficient of Determination

represents the proportion of the predicted Y that is determined by X

& therefore determined by the regression formula or the regression line

when all points are on the regression line the $R^2 = 1$

when all points are NOT on the regression line the $R^2 \neq 1$

R^2 = Coefficient of Determination

- = almost always less than 1 but greater than zero
- = never greater than than 1 but never less than zero

should be greater than 70% for the regression equation to be managerially useful

this $R^2 = 73\%$

Managerial Intuition be comfortable with

- 1. correlation
 - 2. Standard deviation
 - 3. Regression projections
 - 4. Std error of estimate
 - $5. \mathbb{R}^2$
 - 6. residual graphs

be comfortable with

1. correlation s/b over 70% the co-movement of 2 data sets which move in tandem this is not a cause & effect 2. standard deviation should be small relative to mean or to a specific value & calculate the ± range

managerial intuition

- 3. regression projections
 a simple the equation is better
 limit the X's to a max of 3
 don't over analyze
- 4. Std error of estimate s/b small relative to mean of Y or to a specific value & calculate the 土 range which s/b narrow

be comfortable

5. $R^2 =$

Coefficient of Determination

the proportion of the predicted Y that is determined or explained by X in the regression formula

generally s/b over 70%

managerial intuition

6. residuals the error term or the unexplained % after the R^2 graph the residuals

against the X variable

look for a fixed pattern a random pattern or no pattern is best

Suppliers Delivery (red) & Inventory (blue)

straight line (red) is linear regression line

curved line (blue) is non-linear regression line

the R² value indicates how well the X variable explains the changes in the Y variable

the 72% is OK for projections the 49% is too low to be of value in regression

the 49% is too low to be of value
however, if the outlier (unusual)
value (the high point) at about
January '00 is removed
from the analysis
the R² value will increase

if the outlier value is removed from the analysis the manager must be comfortable in deciding

that this point value is truly unusual and could be removed

the graph will not go down
perpetually
at some point it will
change direction
we just don't know when

inflection point =
when the graph
changes direction

what is needed is to inject an inflection point at a point in time into the future

this will change the direction of the graph

inflection point = when the graph changes direction

the formulas are of limited value and must be changed when the graph changes

one suggestion is to use the same formula that drove the graph the last time it went up

is this multiple regression?

Equations by Sergei Biryukov visualization by PowerGraphs

Topics Graphical Inform ation statistical Relationships manageria!

Perceived thru Graphs HOW? Between Data Sets Graphs Decisions & Confidence Managerial.

Equations by Hassan Sedaghat visualization by PowerGraphs

visualize inter-actions & produce better decisions

DO NOT CONCENTRATE ON ON THE FORMULAS

develop a managerial feel (intuition)

The Law of.....

Equal Ignorance

changes to...

The Law of.....

an E-InfoStructure with Graphical Information

external information increases

managerial effectiveness, & efficiencies,

