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AbstractAbstractAbstractAbstract    
SSL operations underlie most financial and private transactions on the Web.  SSL server performance 
is critical, since a single SSL transaction can take as many server resources as hundreds or thousands 
of normal requests. HP’s Itanium Processor Family (IPF – AKA IA-64) offerings bring unprecedented 
performance to this critical piece of the Internet infrastructure. 

This paper presents an overview of the generic software/system tuning process and its importance to 
obtaining the best performance on IPF systems. It also provides more background information with a 
review of the SSL protocol at a high level, with attention to performance aspects. The most aggressive 
tuning approach is explored through the development, leveraging existing open-source code, and 
application of a simple benchmark methodology for measuring SSL performance.  This benchmark 
was used to drive significantly improved SSL performance on HP's new IPF platform. Comparative 
results on other systems have also been collected and are presented to place the leadership results 
obtained on HP’s IPF systems in context. 
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1111    IPF’s Sensitivity toIPF’s Sensitivity toIPF’s Sensitivity toIPF’s Sensitivity to Tuning Tuning Tuning Tuning    
The Itanium Processor Family (IPF – AKA IA-64) is the next generation of processors based on a 
collaboration between Intel and HP. IPF promises to provide a base for high-performance, stable, 
scalable platforms required for use in demanding, mission critical enterprise applications. IPF is 
based on a new architecture, Explicitly Parallel Instruction Computing (EPIC) that is designed to 
extract the highest performance from the most demanding computational loads. In order to extract 
the maximal benefits of EPIC you must take the time to analyze and tune your workload. 

In the design of IPF, an explicit trade-off was made that placed a larger burden on the compilers and 
optimization of the software in order to effectively use the advanced capabilities of the architecture. 
While all architectures benefit from tuning efforts, this effort provides greater benefit for applications 
targeted for IPF systems. As IPF will grow to be the dominant enterprise architecture, the efforts made 
to tune IPF solutions will provide a payback far into the future. 

1.1 Performance Tuning in General 
The amount of effort you, or your software vendor, put into tuning an application depends on how 
critical its performance is to your needs. If the application represents the critical path of a business 
critical task… then the extra work required to extract the best performance will be more than worth it. 

Tuning efforts can be broken into 3 major types or phases: 

1.2 General, “Outside Focused” Tuning Efforts 
This is where you manipulate the environment around the application to maximize performance. 
General tuning can sometimes be as simple as buying a faster, more capable system or dedicating a 
system to execute just the workload you are interested in optimizing.  It also includes kernel and 
system tuning, memory upgrades and other methods to provide a platform that meets the unique 
needs of the targeted application. 

A good understanding of the targeted workload is required to learn what system resources are at a 
premium. Performance measurement tools that provide memory, disk and cache usage statistics and 
other system resource measures (such as semaphores, shared memory etc.) can direct you in these 
tuning efforts. For ISV supplied solutions, optimal system settings are usually available from the 
vendor. 

1.3 Basic Profiling and Tuning of the Critical Sections 
Here you break the application into its major parts, analyze each to determine bottlenecks, and work 
to remove those bottlenecks. Basic profiling and tuning requires the identification of, and access to 
the components that make up the application (not necessary source code). Critical paths are 
determined through simple measurement and you then focus effort on the pieces that represent the 
largest part of the workload. 

If you do not have access to source code, you can substitute other functionality equivalent modules (if 
this flexibility is present) or work with the vendor to obtain a higher performing version of key 
components. You can break a critical task into multiple parallel paths and dispatch the load to a 
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(logical) cluster of servers. If you do have access to source code, tuning often starts by compiling with 
successively higher levels of optimization and employing Profile Based Optimization1 techniques. 

PBO is a technique where statistics are gathered on the execution profile of the object code. The 
statistics are then fed back to the compiler and optimizer and used to generate an execution image 
that more closely matches the demonstrated behavior of the application. Improvements on the order 
of 30% are not uncommon with this approach. 

1.4 Iterative Analysis and Tuning in a Controlled Environment 
The Iterative approach employs a deeper understanding of the applications being optimized in 
addition to the same approaches as #1 and #2.  It goes further by establishing a test bed to facilitate 
measurement and iteration. The design of the test bed is a critical piece: a poorly constructed 
benchmark will lead you to tune your application incorrectly. 

Tuning is not a magical process. The best results are often obtained by stubbornly iterating until the 
target level of performance is obtained… or you just run out of time. Another important benefit to 
taking the time to develop or adopt a benchmark that is meaningful for your environment is the 
ability to evaluate the capabilities of different vendor’s offerings separately from their marketing 
claims.  “Bake-offs” based on realistic benchmarks that you care about are a critical part of the 
buying cycle. 

We now present a specific example that applies the most aggressive approach just described, 
starting with some insight into the importance of SSL in today’s Internet based business environment.  

2222    SSL MotivationSSL MotivationSSL MotivationSSL Motivation    
When you make a credit card purchase on the web, access your brokerage or retirement account, or 
receive other confidential information, you are probably using SSL. 

SSL2 is a security protocol more recently standardized in as TLS3.  It uses a combination of public-key 
and private-key cryptography to allow private communication between consumers and businesses 
over a public network. 

Popular browsers include a padlock icon to indicate that the connection is secure (it can’t be 
observed by a third party).  This icon indicates that SSL is being employed, and users are 
encouraged not to transmit sensitive information (such as credit card numbers) without it. 

Our focus is on the performance of a server handling SSL transactions. 

                                              
1 A listing of the available tools to assist the developer and optimizer is available at 

http://devresource.hp.com/devresource/Tools/ToolLibrary.html. The Caliper tool can be used as both a 
PBO and a performance analysis tool. 

2 SSL 3.0 Specification.  http://home.netscape.com/eng/ssl3/  
3 Transport Layer Security.  http://www.ietf.org/html.charters/tls-charter.html  
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3333    SSL PerformanceSSL PerformanceSSL PerformanceSSL Performance    
For a merchant trying to make money on the Web, probably the most important exchanges with the 
customer are those involved in accepting an order.  All the pretty graphics and fancy interface is 
valuable because it leads to a financial transaction with the user. 

Similarly, sites that collect user information (e.g. product registration), find that the most useful 
information (name, address, income range) are most likely to be considered confidential by the user.  
Using SSL to protect the data increases the likelihood of receiving useful information. 

SSL is also being used to keep other information secure, such as brokerage and 401K transactions, 
travel requests, employee transactions (health plan signup, time vouchering), and password entry to 
remote sites.  Over time it is likely to be used for other applications such as browsing websites. 

SSL transactions are surprisingly expensive for the server.  A single SSL request takes processing 
power much greater than a more ordinary web request. In late 1999, we saw SSL operations taking 
over 1000 times as long as a SPECweb96 operation.  In mid 2001, we saw improvement to closer to 
10 to 1 compared to SPECweb99. 

Studies have shown that customers are willing to wait a small number of seconds for the result of a 
secure transaction.  If they see no response they will often ‘reload.’ effectively doubling the server 
workload!  If they give up, the merchant has wasted the server resources used so far, lost a sale, and 
quite possibly lost a customer.  On the web “your competitor is only a click away.” 

Obviously it is critical for servers to provide adequate SSL performance.  Web traffic is “bursty,” 
producing large spikes in access rates.  Since SSL requests are comparatively so expensive, there is 
little to be gained by delaying other (inexpensive) requests to handle the sales.  Web server needs to 
be able to handle significant SSL load. 

Other studies have focused on the need for hardware accelerators4, since some platforms are weak 
at the computations needed to handle SSL requests5. 

Our results show that some platforms perform quite well without additional accelerator hardware. 

4444    How SSL WorksHow SSL WorksHow SSL WorksHow SSL Works    
SSL uses the almost-magical tricks of Public Key Cryptography to allow two parties who have never 
met to communicate securely over a public network. 

The user typically follows a link to a well-known site such as www.amazon.com.  Once they are 
ready to make their purchase, they click on a link taking them to the order section.  This is the 
beginning of their secure transaction. 

In response to the secure request (identifiable by the icons mentioned above, and by the transition 
from an “http:” to an “https:” URL), the server sends its public certificate.  This certificate is signed by 

                                              
4 Information Security Magazine, January 2000.  

http://www.infosecuritymag.com/articles/january00/cover.shtml  
5 This reference covers the architectural capabilities of different microprocessors with an emphasis on IPF: Intel 

Itanium Processor – High Performance on Security Algorithms (RSA Decryption Kernel) 
http://www.intel.com/eBusiness/pdf/prod/ia64/30045WP.pdf  
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one of a small set of trusted authorities (such as VeriSign).  The user’s browser checks the signature 
against its built-in list, and verifies that the certificate is indeed valid. 

The valid certificate assures the customer that the server is indeed who they say they are, and avoids 
certain masquerade attacks. 

Besides the identifying information, the certificate includes a 1024-bit public key.   

The browser now generates a random number, and performs a one-way encryption6 of it using the 
server's public key. 

The client next sends the encrypted random number back to the server. The server uses its never-
divulged private key to decrypt the message and retrieve the client’s random number. 

The magic just happened.  The client and server who never met now share a secret (the random 
number), established via communication that was entirely open to public view. 

Unfortunately, this exchange required millions of cycles of computation (particularly on the server). 

Now that they have a shared secret, however, the customer and server can use an older, more 
efficient technique called symmetric or private-key encryption.  Using identical algorithms, the 
browser and server derive a 128-bit key from the shared secret. 

This key may now be used to securely and efficiently transfer data between the two parties. 

One final piece of the protocol is the use of a secure hash on the data payload to ensure that it is not 
altered during transmission. 

The SSL protocol allows the use of alternate cryptographic algorithms for the initial public-key 
exchange, the symmetric encryption, and the secure hash.  The client browser (using parameters that 
can be set by the user, but are most likely defaults) and the server negotiate a set of algorithms to use 
(called a crypto suite) during the initial phase of the SSL transaction. 

Different algorithms are available to trade off computation costs, patents (RSA used to be patented), 
ease of government wiretapping, etc.  In practice, only a small fraction of the many possible suites 
are commonly used. 

5555    Benchmark DesignBenchmark DesignBenchmark DesignBenchmark Design    
A good benchmark can be useful as a workload to drive intelligent tuning decisions, and to do 
product positioning, both between product lines and with the competition.  The benchmark described 
below has been helpful in these areas. 

With additional calibration against specific customer workloads and configurations, benchmarks can 
also be used for sizing and capacity planning.  We have not yet performed this calibration. 

5.1 Two key benchmark objectives 
There are two features that are important in developing a quality benchmark: 

                                              
6 http://www.rsasecurity.com/rsalabs/faq/2-3-2.html It is computationally infeasible for an eavesdropper to 

reverse the encryption using only the public key. 
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5.1.1 It must give reproducible results 
This first point obviously means you should be able to reproduce your own measurements, but it also 
means that an independent observer can verify them as well.   

A proprietary benchmark is at a severe disadvantage because it limits the number of people that can 
reproduce it.  Some benchmarks have licensing restrictions that require permission before results can 
be reported.   

Freely distributable benchmarks (such as netperf7) have potentially the largest base of potential 
testers. This increases the range of results available beyond what any one organization could 
provide.  The results will also be produced by people with a broad variety of axes to grind. 

When designing benchmarks it is important to be decisive.  A benchmark with dozens of options is 
unlikely to produce useful results.  When a user wants to compare systems, he will likely find that one 
system has been measured with option B, while the other was measured with option Q, so no useful 
comparison is possible. 

A related problem is when a measurement produces many separate results (e.g. separate timing 
results for each of the hundreds of Unix syscalls).  These measurements can be useful for engineering 
purposes, but they provide little direction about what should receive tuning attention.  For a customer, 
they provide mountains of data, but little useful information.  

A benchmark that is HP-UX specific is less valuable than one that runs on a variety of Unix’s, while 
one that also runs on non-Unix servers is even better. The benchmark described can be run on any 
system that runs a web server able to process SSL. Additionally, a benchmark is more useful if it can 
be driven by a variety of clients. 

5.1.2 It must represent a meaningful workload. 
Unfortunately, this second point is often violated.  A benchmark that does not represent any customer 
need (e.g. nops/sec) is useless.  On the other hand, a benchmark need not represent all possible 
customers to be valuable. 

5.1.2.1 Temptations 
When developing a benchmark, it is tempting to tweak the benchmark so that it focuses on the 
aspects that your system (whether commercial or an academic project) is best at.  Keeping a 
customer application in view helps avoid the temptation to head down that path.  For example, some 
of the architectures that HP sells are best at the initial public-key negotiation, but not as strong at the 
symmetric encryption.  Trying to make ourselves look good would lead to decreasing the amount of 
data transferred, or even to skipping the data transfer entirely (A secure transaction with no data is 
about as useful as a fast nop).  We've stayed with the 14KB average transfer size that SPEC derived8 
years before optimizing SSL results became an issue. 

                                              
7 http://www.netperf.org/netperf/NetperfPage.html  
8 http://www.spec.org/osg/web96/web96q+a.html - question 6 
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5.1.2.2 You have to start somewhere 
This isn't the last SSL benchmark that ever needs to be written.  It doesn't cover all interesting areas, 
but it does cover an interesting, important area that isn't adequately handled by other benchmarks. 
It's reproducible, and it represents a reasonable first approximation of a secure user workload. 

5.2 Choosing parameters for SSL Benchmark 
With the above objectives in mind, it's clear that we need to be customer-focused when we make 
decisions about what crypto suite to measure,how much data to transfer, and how much session 
reuse to have. We want to represent good user practices – ones that are commonly used, and 
secure. 

Five important parameters for SSL measurements: 

5.2.1 Public Key Algorithm + length 
The choice here is fairly obvious: 1024-bit RSA9.  RSA is very commonly used.  Now that RSA 
Security's patent has expired, there's no reason not to use it. 

1024-bit is considered a secure length for normal usage10.  768 or less would be insecure, and 
>1024 is currently only needed for specialized applications (such as PKI management).  To keep a 
level playing field, we consistently used 2-prime RSA (i.e. not using RSA’s multiprime technology). 

5.2.2 Symmetric Key Algorithm + length 
128bit RC411 is both fast and secure. 

Shorter RC4 is insecure – it was used because of (now-obsolete) government regulations. 

DES is currently insecure12. 

3DES13 (or triple-DES) is more secure than RC4-128, but it is muchmuchmuchmuch more expensive. 

AES14 (formerly Rjindael) will likely replace RC4 over the next few years but is only rarely used 
today. 

For today’s workload we chose 128bit RC4. 

5.2.3 Cryptographic Hash Algorithm  
SHA1 and MD5 are both plausible choices.  SHA1 is commonly used, not much more costly than 
MD5, and notably more secure15 (160 vs. 128 bit hash), so we used SHA1. 

                                              
9 http://www.rsasecurity.com/rsalabs/faq/3-1.html  
10 Applied Cryptography, Bruce Schneier, tables 7.6  + 7.9 
11 http://www.rsasecurity.com/rsalabs/faq/3-6-3.html  
12 http://www.eff.org/descracker.html  
13 http://www.rsasecurity.com/rsalabs/faq/3-2-6.html  
14 http://csrc.nist.gov/encryption/aes/  
15 http://www.rsasecurity.com/rsalabs/faq/3-6-5.html  
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In practice, the RC4-SHA suite (shorthand for SSL3_TXT_RSA_RC4_128_SHA) is commonly used for 
secure SSL transactions. 

5.2.4 Data Transfer Size 
Choosing the data transfer size is an opportunity to play "benchmark games".  The benchmark 
designer is trading off the importance of the Public Key computation (done once, very computational 
intense) with the symmetric computation and hash (done on a per byte basis). The smaller the transfer 
size, the greater is the relative importance of the Public Key computation. 

We decided to stick with the 14KB average size used by SPEC16 in their SPECweb96 and 
SPECweb99 benchmarks.  They did significant research17 involving access log analysis at a number 
of sites to come up with this figure.  Secure traffic may have a different average size than non-secure 
traffic, but until a similar-quality analysis is done on secure traffic, we’re hesitant to change the value. 

Also, the 14K figure may be interpreted as the total payload per RSA negotiation.  That way it also 
approximates session reuse (see below) with a total of 5 3KB transfers per session. 

5.2.5 SSL Session Key reuse rate 
Here the right answer is less clear, but there is still value in making a choice. 

Some early benchmarks got this totally wrong, simulating a thousand customers each making a 
purchase by having one customer make a thousand purchases.  That is, they had an infinite reuse 
rate, and only a single RSA negotiation was done for the entire benchmark run.  Although the RSA is 
no longer the only important performance component it is still very significant, and ignoring it is 
wrong. 

The conservative zero-reuse assumption was chosen – SSL sessions are never re-used.  This 
represents the "worst case" situation. 

Measurements across a variety of sites should be made to derive session reuse and transfer sizes that 
more accurately reflect SSL usage patterns. 

The (presumably) smaller transfer sizes and higher reuse rates will cancel each other out to a degree, 
giving results similar to those measured in this first-generation benchmark. 

The major concern at present is that the reuse path through the Web server and crypto code isn't 
being measured, and therefore hasn't received as much tuning attention. 

5.3 Our Benchmark 
Having made careful decisions about the parameters of the secure workload, we consider how to 
drive that load.  The mechanics of the benchmark do not matter much, as long as meaningful load 
parameters are maintained.   

                                              
16 Standard Performance Evaluation Corporation.  http://www.spec.org/  
17 http://www.spec.org/osg/web96/web96q+a.html - question 6 
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With that in mind, we kept the actual benchmark18 very simple.  Client systems drive the load with 
invocations of cURL19.   Throughput is determined from (the average of) the requests recorded in the 
server log file. 

The tested system can use any web server capable of handling secure traffic, as long as it can 
produce standard log files.  The system tested can run any appropriate OS.  No additional programs 
need to run there.  We tested HP-PA (1.1 and 2.0), UltraSPARC (2+3), IA-32, and IPF architectures.  
We’ve used HP-UX, Solaris, and Linux operating systems, and the Zeus and Apache web servers. 

Client software should run on any type of Unix.  We’ve tested with HP-UX and Linux clients. 

Besides testing the appropriate crypto routines, we want to exercise the system components that a 
real request would use: interrupt handler, network code, operating system and web server – a short 
but meaningful solution stack. 

By initiating the requests on separate client machines, we exercise those paths used in real life.  Since 
client efficiency is relatively unimportant, we have considerable freedom of choice in implementation. 

Other benchmarks should produce similar results as long as the configuration is similar to that 
described above. 

5.3.1 What it doesn’t do  
The benchmark does not check for errors.  The person running the benchmark is responsible for 
checking error logs.  Failure to do so will result in a loss of credibility when others cannot duplicate 
the results.  This leverages the open-source nature of the benchmark. 

The benchmark uses a steady-state request arrival rate.  A Poisson or heavy-tail distribution (along 
with a response time metric) would better represent customer workloads for sizing and capacity-
planning purposes.  The simple steady-state approach is nonetheless useful to drive system tuning 
and provide a level playing field for comparing different systems. 

5.4 Other Benchmarks 

5.4.1 Micro benchmarks  
Micro benchmarks, or component-level benchmarks (such as cycles per 1024-bit RSA decrypt) are 
useful primarily to engineers who are tuning specific sections of code.   I believe there are 
benchmarks of this type included in the OpenSSL code base20.  These benchmarks do not require 
client systems (since they do not test the network, OS, or web server). 

5.4.2 System Level Benchmarks 
A system level benchmark shows the combined impacts of the areas that affect real-life performance: 
OS, networking, interrupt processing, data transfer, user libraries, crypto libraries, web server, etc.  
As individual bottlenecks are tuned, new ones appear. 

                                              
18 Publicly available at  ftp://ftp.cup.hp.com/dist/networking/benchmarks/SSL_rate.tgz  (instructions 

included) 
19 http://curl.haxx.se/  
20 http://www.openssl.org/  



IA-64 and SSL Performance  10 

Before creating a new benchmark, existing readily available benchmarks were explored.  Intel had a 
very polite and useful commentary21. 

5.4.2.1 Web Bench 
Web Bench uses insecure key lengths, so it is not a good choice for SSL benchmarking.  Today, RSA 
has been tuned enough that symmetric encryption (and hence key length) doesdoesdoesdoes have a significant 
impact.  Apparently Web Bench was developed when US security export restrictions were still in 
place.  As a very general benchmark, there is no one way to run it, so results on different systems are 
likely to be made with different parameters, and are thus not comparable. 

Web Bench is Windows-based. 

5.4.2.2 Web Application Stress 
The biggest problem with the Web Application Stress benchmark is that it doesn't control session 
reuse.  Reuse varies with the type of client used.  This makes it very easy to get meaningless results 
(e.g. with infinite session reuse).   

WAS is Windows-based. 

5.4.2.3 SPECweb SSL 
SPEC is currently working on developing a SPECweb99 variant that will include SSL usage.  It will not 
be open-source (SPEC charges for access to the benchmark code).  They do have a formal review 
and publication process. 

SPEC has a good reputation for developing quality benchmarks. 

5.4.3 Clients: Windows vs. UNIX 
Serious performance measurement requires multiple clients (We used 120 clients to saturate the 4-
way Itanium).  Controlling these clients requires a platform with good support for remote access.  
Any Unix variant would suffice, Windows clients become difficult to manage after the first few. 

5.5 Further Benchmark Development 

5.5.1 More Load per Client 
When measuring very high performing systems such as a 4-way Itanium, the number of clients 
required becomes awkward.  If extremely fast systems such as this were frequently tested, it would be 
appropriate to revise the benchmark to generate more SSL load per client.  Such a new version 
would likely not create a new process for each request, so it would need to be extremely careful to 
handle SSL session reuse correctly. 

5.5.2 Customer Studies of SSL session reuse and transfer size 
It would be valuable to conduct studies at various sites currently using SSL to gain a good 
understanding of real-life SSL session-reuse rates and SSL transfer sizes.  Once determined, these 

                                              
21 Designing a Secured Website – What you need to know about SSL Benchmarking.  

http://www.intel.com/network/white_papers/ssl_benchmarking/benchmark.htm  
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parameters could be used to make the benchmark load more representative. Additionally, calibration 
of benchmark results against live SSL systems would provide information needed for system sizing 
and capacity planning. 

5.5.3 New Crypto Suites 
AES is likely to become prevalent over the coming years.  When desired, the current benchmark can 
easily use AES instead of RC4. 

6666    Benchmark ResultsBenchmark ResultsBenchmark ResultsBenchmark Results    

6.1 Test Setup 
With a benchmark in hand, we built a test harness leveraging older clients that had been used for 
SPECweb96 + 99 testing.  These were rack-mounted B160 + B180 workstations connected to the test 
system by a private, switched 100t network.  Each workstation also had a second 100t port on our 
site network for control. 

6.2 The Tuning Cycle 
In the simplest case of a tuning cycle, you set up your server, measure it, then change a single 
component and try again. 

Although this description is simple, it doesn’t give you any hint about what to change.  In practice, 
you also run analysis tools on the server to give you those hints. 

The tools available for analysis are different on different target platforms. 

vmstat (standard on UNIX systems) will report user, system + idle time.  In many benchmark situations 
you are trying to saturate the CPU, so idle CPU suggests that  you need more load or you have a 
contention problem. 

Profiling (prof, gprof, etc) will help you identify routines within an application that are bottlenecks.  
We used an internal program called Prospect to get prof-style output without requiring application 
recompile.  (We did not have access to the web server source code).   

Although Prospect is not generally available, a similar tool called Caliper is now available.  After 
manually sorting + grouping the profile output, we were able to identify promising areas and 
estimate potential improvements. 

Kernel profiling and syscall traces may also be helpful in situations where the system time is large. 

Next you evaluate the opportunities, considering how quickly and easily they can be implemented, 
and decide what change to try on the next measurement cycle. 

6.3 Over Time 

6.3.1 Initially Un-tuned 
Initial measurements were made in November 1999 with a different, custom-built SSL benchmark.  It 
showed about one SSL op/sec on a 9000/K580 (240 MHz PA8200). 
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6.3.2 A Surprising Improvement 
Attention to system-level SSL performance began in October of 2000.  (Teams involved in the crypto 
code had been using micro-benchmarks and intuition to guide their tuning.)  Measuring with a new 
benchmark (described above), new OS version, new web server version, and new processor lead to 
a surprising 40x improvement.  We began tracking down the source of the improvement. 

One of the easiest tests to run was changing back to an older version of the web server.  It turned out 
that at Version 3.3.7 (December 1999), the Zeus22 Web Server had changed to a different crypto 
library.  This accounted for roughly 20x of improvement, with an additional 2x from the processor 
change. 

6.3.3 Tuning on Itanium 
Initial measurements on the Itanium system, showed a veryveryveryvery clear bottleneck.   

•  Almost all time was spent in user mode (not system or interrupt).  
•  Almost all user time was spent in zeus.web (unsurprising).   
•  Almost all time in zeus.web was spent in crypto library routines. 
•  Almost all time in the crypto routines was spent in the code used in the initial private-key RSA 

decryption operation.   

Because there was such a strong bottleneck that could be significantly improved on this architecture 
we were able to make excellent progress in improving performance in a short period of time. 

Successive versions of RSA decrypt code that were better tuned lead to other crypto routines (RC4 
and SHA1) becoming more significant in the overall performance.  As these were tuned, other areas 
became tuning targets (libc, general Zeus and other crypto code).  Other opportunities for tuning that 
we can be addressed over the coming months were also identified. 

The graph below shows how system-level SSL performance improved on Itanium as a result of the 
tuning efforts of HP, Zeus, and RSA.   

                                              
22 Zeus Technology.  http://www.zeus.co.uk/  
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Our first measurement with prototype Itanium hardware and an alpha version of Zeus Web Server 
for HP-UX/Itanium gave us 20 SSL ops/sec in February of 2001.  This version included very early 
crypto libraries. 

March brought a beta version of ZWS with better crypto libraries.  This delivered 100 SSL ops/sec. 

Tuning during March investigated different boot options (workarounds for early chip features), and 
an improved HP-UX kernel.  These changes brought us to 180 SSL ops/sec. 

April brought a new version of Zeus with improved RC4 (crypto library) routines.  This brought us up 
to 220 SSL ops/sec. 

May brought a new optimized kernel, and a faster, more final version of the Itanium chip with a 
larger cache.  This brought us to the current 315 SSL ops/sec. 

6.3.4 Real Life Tuning 
Producing the progress described above involved other support activities and efforts that didn’t “pan 
out.”  They are described to help set expectations for others planning tuning efforts. 

The process included  
•  making measurements for comparison 
•  researching various tuning options (Who’s allowed/able to change the code?  What’s their 

schedule?) 
•  managing the clients 
•  deciding when to upgrade (or delay upgrade of) hardware and software  
•  running the tests 
•  checking for errors (and re-testing when needed) 
•  coordinating with partners (internal and external to HP) 
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•  collecting profile traces and aggregating the data 
•  locating bottlenecks and identifying tuning opportunities (short + long term) 
•  writing and publishing interim results 
•  convincing the partners to take action 
•  measuring prototypes for partners 
•  trying out dead ends 

The aspects of the system we changed during testing included: 
•  new versions of Zeus 
•  new crypto libraries 
•  changed boot options 
•  changed the system firmware 
•  changed OS versions on the system 
•  increased number of clients 
•  upgraded the processor 

Unlike some tuning efforts, we weren’t able to get involved in a kernel-tuning cycle.  We started too 
close to the OS release.   
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6.4 MP scaling 
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The SSL workload scales well on MP systems.  There should be little interaction between independent 
requests, and in fact we saw excellent scaling.  Zeus Web Server is good about batching access log 
updates to avoid excessive disk IO's. 

One issue is maintaining a cache of recent SSL information in case the sessions are reused.  This 
benchmark does not utilize this cache, but the web server maintains it in case reuse does happen.  
This is a good idea since unnecessarily repeating the public key exchange would be expensive.  Zeus 
maintains a multi-level cache.  The in-memory cache is managed efficiently, but maintaining the disk-
level cache slowed the system significantly in the MP case.  For the benchmark measurement we 
added 'tuning!ssl_diskcache no' to the Zeus configuration file /usr/local/zeus/web/global.cfg .  This 
was the only configuration change made in any testing. 

It would be useful for a future benchmark version to include a moderate amount of session reuse.  
This would help drive appropriate tuning decisions in maintaining the disk-level cache. 
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6.5 Platform Comparisons 

6.5.1 Comparative Results 
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Architecture Clock (MHz) OS W eb Server 14KB SSL ops/sec

Itanium 800 HP-UX 11.20 Zeus 3.4beta 315
Appliance 3chips NA NA 269
HP-PA8600 550 HP-UX 11.0 Zeus 3.3.8.3 145
IA-32 1000 Linux 7.0.91 Zeus 3.3.8.2 129
UltraSparc3 750 SunOS 5.8 Zeus 3.3.8.2 42
UltraSparc2 450 SunOS 5.8 Zeus 3.3.8.2 30  

6.5.2 Itanium 
The Itanium system does exceptionally well.  The architecture is particularly good at the heavy 
computation needed for encryption work. These measurements were made with firmware revision 73. 

6.5.3 HP-PA 
The PA 2.0 architecture has good support for computation.  This made up for the lower clock rates. 

6.5.4 IA-32 
The IA-32 performed quite well.  The higher clock rate helped compensate for weaker arithmetic 
units. 
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6.5.5 UltraSPARC2 + UltraSPARC3 
The Sun UltraSPARC2 showed weak performance even with Zeus web server (it was slower with 
Apache).  This matched projections made by Intel based on instruction set architecture23.   

We expected  a clock-speed improvement, plus an architectural boost from moving from 
UltraSPARC2 to UltraSPARC3.  Surprisingly we didn't even get the full clock improvement.  Our 
UltraSPARC3 system included Sun's firmware patch to work around a math problem.  It would be 
interesting to know if the chip performs any better once that error is fixed. 

6.5.6 Accelerator Hardware 
We tried to measure a PCI accelerator card, but were unable to get one functioning correctly with 
Zeus + HP-PA. 

We were able to test an accelerator appliance.  This box, the HP sa7120, handles all the 
cryptographic work for the web server, accepting encrypted https requests from the client, and 
passing on unencrypted http requests to the back-end web server.  The appliance was configured to 
not "spill" SSL requests when overloaded.    This isolated the performance of accelerator from the 
system behind it. 

Measuring 270 SSL ops/sec was very interesting since it provided a calibration between a 
measured, repeatable result and marketing claims of "600 connections per second".  Inspecting the 
hardware internals showed that the system has 3 Rainbow24 chips.  Presumably the "200 connection 
per second" accelerator has a single chip.  Apparently the 200 connections comes from a 5ms RSA 
decrypt time, so this is a micro benchmark, not a system benchmark.  Perhaps the box could really 
hit 600 transactions, if they were of zero length ☺. 

It appeared that the main CPU in the accelerator (IA32, presumably) was performing the RC4 + 
SHA1 computations.  On a more difficult 3DES workload, the Rainbow chips might have been more 
involved and produced a comparatively better result. 

7777    Issues in SSLIssues in SSLIssues in SSLIssues in SSL performance performance performance performance    
This is a summary of system components and how they affected SSL performance. 

7.1 Larger effects 
As expected, the processor architecture had a large impact.  Efficient support for integer 
multiplication is particularly important. 

In most cases we saw a nearly linear speedup with increasing clock rate.  This only applies within a 
processor family (e.g. a 550MHz PA-8600 outperformed a 1000MHz Pentium3). 

Crypto libraries are critical to SSL performance.  We saw significant improvement due to using the 
latest RSA BSAFE Crypto-C libraries25.  (Note: we consistently avoided using multiprime). 
                                              
23  Intel Itanium Processor – High Performance on Security Algorithms (RSA Decryption Kernel) 

http://www.intel.com/eBusiness/pdf/prod/ia64/30045WP.pdf  
24 http://www.rainbow.com  
25 http://www.rsasecurity.com/products/bsafe/cryptoc.html  
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We originally expected the web server choice to play a fairly small role (other than the crypto library 
it is built with).  In practice, we saw a significant difference between Zeus Web Server and generic 
Apache.  This is likely due to the years of tuning that went into ZWS to provide leadership 
SPECweb96 and SPECweb99 results.  

After working around a problem with the maintenance of disk-based SSL session cache, we saw 
nearly linear performance gains as we added processors (MP scaling).  This makes sense, since 
almost all time is spent in user mode, and the requests are essentially independent of each other. 

7.2 Smaller effects 
We didn’t run any controlled experiments changing the OS on a fixed hardware platform.  
Nonetheless, since the total system time is fairly small, it is likely to be a relatively minor effect. 

Now that the RSA code has been fairly well tuned, the length of the data transferred has a significant 
(but not huge) effect.  For example, one experiment in changing the 14KB transfers to 2KB increased 
the throughput from 315 to 390 – a 25% increase from a 7X decrease in data. 

7.3 Very small effects 
This benchmark is quite insensitive to disk and memory configuration. 

Systems tested had a GB or less of RAM, and two disks.  A real customer workload may have 
different requirements, but the SSL performance is basically driven by the CPU. 

Network requirements are modest.  Even the 4-way Itanium result used only 3 100t networks. 

8888    ConclusionsConclusionsConclusionsConclusions    
•  Using a simple solution-stack benchmark, we have driven large improvements in SSL 

performance.   
•  Benchmark results show that IPF performs exceedingly well on this secure workload. 
•  The tuning approach described should be helpful in improving performance on other 

workloads. 


