
Maximizing Availability & Performance HPWorld 2001

High Availability Track Paper #50 Page 1 of 10

Maximize Availability & Performance

By
Melanie Kacerek

HPWorld 2001 Paper #50

High Availability Track

Quest Software, Inc.
8001 Irvine Center Drive
Irvine, California 92692

949-754-8000 telephone
949-754-8999 fax
mkacerek@quest.com email

www.quest.com

mailto:mkacerek@quest.com
http://www.quest.com/

Maximizing Availability & Performance HPWorld 2001

High Availability Track Paper #50 Page 2 of 10

Maximize Availability & Performance

===

By Melanie Kacerek
Quest Software, Inc.

Redundancy is the
key to availability

Backups, extracts, reorgs, upgrades, data block corruptions,
disk failures, fail-overs, tornadoes, hurricanes, and
earthquakes – these are all common interruptions to today’s
business operations. In actuality, most outages are a result
of human mistakes such as untested updates and patches,
rather than natural disasters. However, for companies which
are seriously pursuing continuous 24-by-7 operations,
preventative measures must be taken to address both types of
downtime.

Diagram 1 Redundancy for Disaster Resilience____________________________________

Redundancy is the key underlying principal to most disaster
tolerance strategies. Many companies invest in secondary
disks, secondary networks, secondary routers, secondary
systems, and sometimes even secondary data centers in order
to protect their business. However, if you carefully review
the diagram above that depicts a standard schematic for
disaster preparedness, you will notice that it still contains a
single point of failure. That vulnerability is arguably the
most critical element – the database.

Protecting the database is often overlooked or left undone
because many of the early options were too costly. The
early solutions to database protection were expensive to
purchase, time-consuming to deploy, and labor and CPU-
intensive to maintain.

Production System

Network

Router

Router

Users Network

Backup

Maximizing Availability & Performance HPWorld 2001

High Availability Track Paper #50 Page 3 of 10

 Criteria for
selecting a solution

Today’s high availability options vary widely in
effectiveness. Your organization’s requirements will
determine your criteria. Some points to consider when
evaluating high availability solutions for your databases are:

• Costs
• Completeness
• Minimized fail-over times
• Independence
• Resilience
• Performance
• WAN support
• Daily functionality
• Flexibility
• Scalability

Costs
When considering high availability alternatives, the ease of
implementation and ongoing maintenance should be
considered, since they help determine the real costs of the
solution. Some “simple” solutions are actually permanently
labor intensive, so the initial low cost can be deceptive.

Some such solutions would be nightly copies, backups,
extracts or snapshots. When these are performed manually,
the labor costs should be calculated, as well as the risks
associated with unautomated procedures.

Completeness
The next item to consider is completeness. If your DR copy
is only as-of last night, you have lost how many hours of
work? By how many employees? What if the crisis hits at
monthend?

From a completeness standpoint, two subtopics should be
addressed. First, does the high availability solution you are
considering provide a complete copy of your database? Does
it maintain all of the data and data types you need to continue
production activity?

Next, does the solution minimize your risk of lost data.
Review each alternative with the following questions in
mind:

• Can data ever be lost?
• When can data be lost?
• How much data can be lost?

Maximizing Availability & Performance HPWorld 2001

High Availability Track Paper #50 Page 4 of 10

Tradeoffs

If data can be lost during normal operations such as during
the transmission over a network, the value of the proposed
solution is questionable. If some data is trapped on the
primary system and is lost when the primary system fails,
that may or may not be acceptable, depending on the type of
transaction at risk and the business being conducted.

Minimizing Fail-overs
In most cases, there is a tradeoff between the risking losing
some data and minimizing downtime during a fail-over. For
example, a hardware mirroring solution in synchronous mode
will not lose transactions when the primary system fails.
However, before business can continue on the secondary
system that contained the mirrored copy of the database, time
must be spent opening and recovering the redundant
database. In the financial industry, every single transaction
is important, and a lengthy fail-over process that insures that
every transaction is recorded is preferable to losing even one
deposit, withdrawal, buy, or sell order.

In contrast, to many e-commerce sites, minimizing the outage
experienced by Web users takes priority over losing data. In
those environments, the desire is to minimize downtime first,
and minimize lost data second. For such sites, having the
target instance already open and available is a priority.

Independence
Some high availability clustering solutions provide quick,
automated fail-overs, so that end users are virtually unaware
of the problem. Many of these clustering solutions can be
depicted as shown in Diagram 2. If System A fails, users and
applications can be migrated to System B. However, the
database is still a single point of failure. Plus, in some
solutions, the success of continued operations after a fail-over
is threatened because the systems share critical components.
__

Diagram 2_Clustering___

System A System B

Maximizing Availability & Performance HPWorld 2001

High Availability Track Paper #50 Page 5 of 10

Replication benefits

Often, clustering solutions share some components between
the nodes within the cluster. These shared components can
be the missing links that cause the secondary system to be
incomplete. In those fail-over situations, the secondary
system is then inoperable and consequently experiences a
“sympathetic” failure.

Shared Nothing Disaster Resilience
To maximize availability you must maintain multiple
independent, redundant databases. None of the components
within the architecture may be shared between the servers or
the databases on them. As a result of this design, the failure
of an instance, a system, or the network does not affect the
viability of the remaining systems and databases.
__

Diagram 3_Redundant systems and databases____________________________________

Replication provides disaster resilience in many ways. One
common source of downtime is data block corruptions.
Hardware mirroring will replicate these flaws. Consequently,
those replicas are just as badly affected as the primary
database. Log-based solutions replicate logical transactions,
so they do not replicate the physical, data block corruptions.
As a result, the target databases are viable fail-over options.

Another potential point of failure could be the replication
queues if you select an asynchronous solution. If the queues
are stored within the database, then their size is limited, and
if they require more than the available space while the
network is down, they could accumulate, fill the designated
tablespace, and cause the production instance to fail. So, you
should seek a replication solution that queues the
transactional changes to the database outside the database.
During the stress of a network outage, complete attention can
then be focused on resolving the network problem because
the replication queues do not threaten to jeopardize the
production environment.

System A System B

Maximizing Availability & Performance HPWorld 2001

High Availability Track Paper #50 Page 6 of 10

A solid replication solution is designed to solve availability
issues rather than create such crises. It should be designed to
automatically respond to many situations as well as their
resolutions. For example, if the network fails, it should
queue transactions. When the network is recovered, it should
resume transporting the transactions to the target systems
automatically. Similarly, if the target instance fails, a
resilient solution will queue the transactions until it can
regain access to that instance and resume posting.

Performance
Comparing high availability solutions must include
comparing the affects of implementing the solutions. The
real question is, “Does the solution adversely affect your
production activity?” Trigger-based replication solutions
require additional processing within your production
database, chewing up precious system resources and delaying
response time to your users. While this technology has
improved in recent years, it still requires considerable CPU
and network bandwidth.

Clustering technologies vary in their overhead requirements
depending on whether the secondary systems are hot or cold.
If the secondary system can be “hot,” it can be used to access
the database during normal operations when the primary
system is also functional. In this case, locking mechanisms
must be invoked to manage the traffic. Basically, in these
scenarios, the underlying database gets the traffic from
multiple systems, plus the locking required to allow it. The
net result is often inferior performance. A premium solution
should be designed to minimize its impact on the production
instance, the system, and the network.

Fast replication, or low latency, is another feature to seek. If
the solution begins replicating a transaction as soon as the
first operation (insert, update, delete) is recorded in the redo
logs, it minimizes the delay between when a transaction is
performed on the source system and when it is visible in the
target instance.

Reducing the latency means that the possibility of lost data is
also reduced. If the solution waits for a commit in order to
begin replication or even longer for a log switch in order to
transfer an archive log to the target system, the volume of
data potentially trapped on the source system at the time of a
primary system failure is increased.

Maximizing Availability & Performance HPWorld 2001

High Availability Track Paper #50 Page 7 of 10

Maximize daily
performance and
availability

Identify exception
situations that
threaten your
business continuity

WAN Support
If the primary business location is geographically-challenged,
maintaining an alternate data center out of Mother Nature’s
reach makes sense. In the recent years, hurricanes have had
increasingly-wide paths of destruction, causing flooding and
power outages for hundreds of miles.

Another common reason for needing wide-area network
support is to support bi-coastal production activity, or to
enable ‘follow the sun’ operations. As more and more
companies develop a global presence, the need for data to be
available across long distances grows too.

Daily Functionality
Numerous high availability solutions provide only one
functional copy of the database at a time. The other copy is
inaccessible until the moment of need. A solution truly
focused on availability should maintain a fully open, viable,
up-to-date target instance, so daily query processing that once
impeded online transactions can be relocated to the target
instance. By offloading query activities, you will in turn
reduce the stress on the primary production instance because
you will be reducing the i/o conflicts. By reducing the i/o
contention, you may reduce the possibility of an unplanned
database outage while improving performance of both online
transaction and report processing.

Another benefit of maintaining a fully open, viable instance
is that the time required to resume production activity after
the primary system is minimized because you do not need to
open and recover the secondary database.

Once you have maximized availability for daily purposes,
you should focus on the exceptions. Many HA discussions
focus on disasters, or unplanned downtime. However, the
truth is that in most shops, planned downtime, a.k.a.
maintenance, accounts for much, much more time. The sad
part is that most businesses simply accept planned downtime
as a necessary evil or in contrast, they forbid preventative
maintenance if it involves an outage. Either way, most
businesses have stopped looking for a way to perform
maintenance without downtime.

Maximizing Availability & Performance HPWorld 2001

High Availability Track Paper #50 Page 8 of 10

Create a
maintenance
window

The steps

Plan the
maintenance task

Maintenance minutes can cost companies incredibly. If the
outage is visible to customers, it could reduce repeat
business, adversely affect the company’s reputation, and
ultimately reduce the bottom line. However, maintenance
cannot be eliminated. Systems and databases will demand
their maintenance, whether it is planned or unplanned. So,
you need to create a maintenance window that is invisible to
your customers. With a log-based replication solution, you
can do that, and with that window you can perform O/S
upgrades, database upgrades, and database reorganizations
among other maintenance chores.

The steps:
1. Create a copy of the production database

2. Record production changes in replication queues

3. Perform maintenance on replica database

4. Check your work – test the resulting database

5. Resume replication

6. Reverse roles of primary & secondary systems

Assuming you have implemented a replication solution, the
first step to creating an invisible maintenance window is
easy: create a copy of the production database. This step is
easy, because you have a viable replica on your target
system. However, setting up replication the first time is
another consideration: how do you make a copy of your
production database and begin replication without
interrupting your production activity? Look for a replication
solution that allows you to initiate it using a hot backup.
With that option, creating a copy of the production database
is really easy.

The replication solution needs to be able to queue production
activity while the target copy of the database is unavailable,
and the solution must be able to resume replication to an
altered target database in order for this process to work.
This limits your choices, but it is critical in order to be able to
create an invisible maintenance window.

Once you have the replication underway, determine the steps
necessary to perform the maintenance chore – whether it is

Maximizing Availability & Performance HPWorld 2001

High Availability Track Paper #50 Page 9 of 10

Determine space
requirements

Ready, get set, go!

Test

Resume replication

Direct activity to
target database

an upgrade or a reorganization. If it is an upgrade, also
determine the tests you need to perform after the upgrade in
order to bet your business on it. What must the revised
database be able to do? How can you determine that you
completed the maintenance task successfully? And finally,
how much time will the maintenance task (and the validation
checks) require?

The time required to perform the change plus the time
required to test the results determine the space requirements
for the replication queues. Make sure you that you have
plenty of space to cover queuing production activity in the
worst case scenario. Of course, if you are performing a
reorganization, make sure you have sufficient space for that,
too.

When you are ready, stop replication and start queuing.
Make a backup of the target database – just in case! With
that done, you may now perform the task on the target
database or system – upgrade the database, upgrade the
operating system, or reorganize the database.

Next, test the results.

• If your tests fail, you have the option to restore the
backup and re-attempt the task, or you may restore
the backup, resume replication, and plan to repeat the
task after you have identified the cause of the failure.

• If your tests were successful, double-check to see if
you are ready to resume replication or if you need to
make any additional changes specifically for
replication. (Do you need to upgrade the replication
software on the target system to accommodate a new
O/S version?)

Once you are satisfied, resume replication and get the
upgraded target database caught up with the activity from the
production system by allowing the queued transactions to be
applied. Remember, up until this point, all the maintenance
has been “invisible,” being performed without interrupting
production activity.

When the target database has caught up, you can redirect
activity to the freshly maintained database so that production
can begin benefiting from your efforts. Redirection can be
done through any number of ways – you can manually switch

Maximizing Availability & Performance HPWorld 2001

High Availability Track Paper #50 Page 10 of 10

Benefits

Conclusion

IP addresses or routers, or you can use traffic management
software to do so.

Congratulations! You have now performed major
maintenance invisibly. Your production environment’s
availability was never compromised. Activity was allowed
to continue on the primary system throughout the
maintenance process.

Benefits of this approach are numerous. They include:

• Reduced stress
• Time to test
• More rested DBAs

In reality, the benefits are incredible. Suddenly, you have
the opportunity to revert to a proactive approach to your
systems, because your maintenance window has been
restored. You have the option to plan and perform the
maintenance when you are rested - this process does not
demand an “all-nighter” or precious weekend time. So, your
DBAs and your systems can be less stressed.

If the maintenance is performed without time pressures
(because production isn’t waiting to resume but instead is
allowed to continue without interruption), human errors due
to pressure are less likely. Plus, the results of any human
errors can be detected and corrected by testing before
production is directed to the modified system. So, even if a
mistake is made, you have the opportunity to catch it and fix
it again, invisibly! The bottom line: quality results every
time.

With a solid replication solution, you can enjoy daily
performance improvements and increased availability by
offloading reports and queries to the secondary systems, as
well as invisible maintenance windows to further guarantee
availability and improve performance by performing
preventative measures as necessary.

Melanie Kacerek is the director product management at Quest Software,
where she has focused on high availability solutions for nine years. Prior
to working at Quest, Ms. Kacerek implemented a retail management
solution for numerous companies throughout the United States of
America.

	Diagram 1 Redundancy for Disaster Resilience____________________________________
	Diagram 2_Clustering___
	Diagram 3_Redundant systems and databases____________________________________

