

Page 1

Monitoring an Integration Broker:
 A Case Study.

Bill Martorano
Hewlett Packard Company

100 Mayfield Avenue MS 36U3
Mountain View, California 94043

(650) 691-7099

(916) 785-9278 fax

bill_martorano@hp.com

HP World Conference
August 2001

Page 2

ContentsContentsContentsContents

1 ABSTRACT .. 4

2 BUSINESS CASE ... 5

2.1 SUPPORT MODEL .. 5
2.2 HIGH AVAILABILITY MODEL .. 5

3 ARCHITECTURAL APPROACH ... 6

4 IMPLEMENTATION .. 7

5 CONCLUSIONS... 9

6 NEXT CHALLENGES .. 9

7 ADDITIONAL REFERENCE... 10

8 APPENDIX A – EIA HIGH AVAILABILITY ARCHITECTURE PRINCIPLES.. 11

8.1 INTRODUCTION ... 11
8.2 APPROACH .. 11
8.3 MAJOR TECHNOLOGY ADDITIONS (WAVE 2).. 11
8.4 SOFTWARE/APPLICATION COMPONENTS .. 11
8.5 APPLICATION MONITORING.. 12
8.6 PROCESS MONITORING ... 12
8.7 PROCESS RE-START/RECOVERY ... 12
8.8 PERFORMANCE MONITORING ... 13
8.9 SOFTWARE COMPONENT DEPLOYMENT.. 14
8.10 INFRASTRUCTURE .. 14
8.11 WAVE 2 (LAB COMMENT) RECOMMENDATIONS TO EXECUTIVE SPONSOR .. 14

9 APPENDIX B – BEA MANAGER ARCHITECTURE .. 16

9.1 MANAGEMENT REQUIREMENTS.. 16
9.2 THE BEA MANAGER COMPONENTS ... 16
9.3 SNMP AGENT ARCHITECTURE... 17
9.4 MANAGEMENT ARCHITECTURE .. 19
9.5 ALERTS... 20
9.6 GET AND SETS .. 20
9.7 PERFORMANCE METRICS .. 20

10 APPENDIX C – BEA MANAGER HIGH AVAILABILITY STRATEGY. ... 21

10.1 INTRODUCTION .. 21
10.2 EIA HA ARCHITECTURE ... 21
10.3 MULTIPLE MACHINE MODE... 21

10.3.1 Implications for BEA Manager .. 21
10.4 SINGLE MACHINE MODE.. 21

10.4.1 Implications for BEA Manager .. 21
10.5 SNMP AGENT ARCHITECTURE.. 22
10.6 FAILOVER AND THE BEA MANAGER TUXEDO AGENT.. 23

11 APPENDIX D – BEA MANAGER USER DEFINED TRAP LIST. ... 24

11.1 BACKGROUND.. 24
11.2 TRAP TABLE .. 24

Page 3

11.3 TRAP OUTPUT .. 28
11.4 STANDARD TRAP (.1.3.6.1.4.1.140.300.0.23: SERVER STATE TRAP) .. 28
11.5 USER DEFINED TRAP (.1.3.6.1.4.1.140.1.1.0.110: USER DEFINED TRAP 110) ... 29

12 APPENDIX E – BEA TUXEDO MIB DEFINITIONS.. 30

12.1 INTRODUCTION .. 30
12.2 DEFAULT SNMP TRAPS .. 30
12.3 USER DEFINED SNMP TRAPS .. 30
12.4 PERFORMANCE METRICS ... 31

13 OVERVIEW OF THE BEA MIB... 32

13.1 BEA MIB GROUPS ... 32
13.2 THE TUXEDO MIB .. 33
13.3 THE STANDARD TUXEDO SNMP TRAPS.. 36
13.4 LIST OF STANDARD TUXEDO SNMP TRAPS.. 36
13.5 RAISING THE STANDARD SNMP TRAPS IN A TEST ENVIRONMENT .. 40

13.5.1 Trap Test Software ... 43
13.6 A REVIEW OF THE BEA MIB... 43
13.7 THE UNIX OPERATING SYSTEM ... 44

13.7.1 BeaSystem... 44
13.7.2 BeaUnix.. 44
BeaSmgr – shared memory table .. 45
BeaSysPerf – workstation performance attributes – most of these are cumulative counters.. 45

13.8 TUXEDO APPLICATION /Q (TUXTAPPQ)... 46
TuxTAppCtrl - Control Table ... 46
TuxTappQSpaceTbl – Queue Space ... 46
TuxTappQTbl - Application Queue... 48
13.8.1 TuxTAppQmsg – Messages... 48
13.8.2 TuxTQtransTbl – Transactions... 49

13.9 NONE QUEUED TRANSACTIONS ... 50
13.10 LIST OF ATTRIBUTES TO BE POLLED FOR USER DEFINED TRAPS MECHANISM... 50
13.11 CHANGING RULES DYNAMICALLY USING SNMP (BEAINTAGT).. 51
13.12 UNIX RULES ... 51
13.13 TUXEDO COMMUNICATION RULES ... 51
13.14 TUXEDO APPLICATION RULES.. 52
13.15 TRANSACTION RULES... 52
13.16 APPLICATION QUEUE RULES .. 52
13.17 LIST OF ATTRIBUTES TO BE MONITORED TO PROVIDE PERFORMANCE METRICS ... 53
13.18 UNIX ATTRIBUTES.. 53

Process Table ... 53
File System Tables .. 53
IPC Utilization.. 53
The System Performance Group (beaSysPerf) ... 54

13.19 APPLICATION QUEUE ATTRIBUTES ... 54

Page 4

1 Abstract

As Enterprise Application Integration (eAI) solutions begin to emerge as
a predominant integration "backplane" solution in support of a "Services
Oriented Architecture" they bring with them new challenges for software
monitoring and high availability. In a mission critical environment, middleware
forms the "glue" which integrates multiple applications and composite services
together. Often this environment is enterprise-wide and has many distributed
components. Middleware solutions may also consist of heterogeneous technologies,
which must perform together even though they were not originally designed for this
purpose.

Middleware based solutions may be purposely designed to be loosely coupled or
latent (for example, publish/subscribe message-oriented solutions), or they may
demand the highest levels of performance and availability in support of zero latent
transactions (for example, web-portals). These solutions may co-exist, and rely on
the same integration broker environment.

Business units often demand service-level guarantees for solutions constructed on
top of a middleware environment. These service levels often define goals for end-
to-end availability and response time, which are quite challenging for Information
Technology organizations to deliver. Lack of availability and performance can
cripple a business process, or endanger a customer relationship, especially as
customers are becoming increasingly exposed to "internal" applications and
business processes via the web.

The design for availability and performance in such a complex environment cannot
be "bought off the shelf". Instead, its architecture must be defined up-front and
integrally implemented into the integration broker (or middleware) architecture.

A case study of HP's Enterprise Information Architecture (EIA) will describe the
approach taken to ensure end-to-end monitoring and high availability for critical
components of one specific integration broker architecture. The study documents
use of the Hewlett Packard software tools HP OpenView and HP ServiceGuard, for
this purpose. These tools were used extensively to monitor and operationally
maintain commercial off the shelf (COTS) software components, such as
BEA/eLink, Tuxedo and CORBA, as well as custom-built software modules.

Page 5

2 Business Case

The predominant business case for enabling a monitoring and high availability
environment for the Enterprise Information Architecture (EIA) program, is to
enable a stable, reliable and high performance middleware environment, for
solutions which rely on this architecture as a “services backplane”.

A primary focus for EIA is to provide a single point of interface and access to “back
office” systems. As such reliability and performance are of paramount concern. If
EIA were to become a “bottleneck” for “front office” solutions, the value
proposition of using such middleware would be significantly reduced.

2.1 Support Model

A consistent monitoring architecture for support was required. Consistency in this
sense refers to the commonality of support tools used to enable the support
infrastructure across all of Hewlett Packard Information Technology. HP’s global
infrastructure is deployed worldwide and consists of multiple comprehensive
applications and services that enable the enterprise; of which the Enterprise
Information Architecture may be viewed (from a support perspective) as merely yet
another component. In this environment, fixed support technologies and tools were
mandated. It was not possible to install or deploy specific tools to fit the application,
rather the tools defined the monitoring solution for the application (in this case the
Enterprise Information Architecture).

Without such a mandated model for support, each application could select
customized monitoring tools. The results, when replicated company wide would
extrapolate to an inconsistent and replicate monitoring environment and
infrastructure; one which would be difficult if not impossible to maintain and
support. Instead, a pre-defined suite of tools was specified, to be “built into
application architectures ” during design. A primary tool mandated in this suite was
HP OpenView IT Operations Console, which is used by applications support as a
primary user interface and single collection point for support personnel to monitor a
multitude of regionally deployed software solutions.

2.2 High Availability Model

The EIA design model utilized three primary programming environments.

Page 6

1. BEA Tuxedo: Used for asynchronous or loosely coupled message-oriented-
middleware (MOM) solutions.

2. CORBA (Common Request Broker Architecture): Used for synchronous or

tightly coupled message-oriented solutions.

3. HP Process Manager: Used to define and control business process automation.

EIA uses HP Process Manager to direct messages from producer to consumer.

Within these environments, independent goals for high availability were described.

• 99.9% availability for the synchronous environment (CORBA).
• 85.0% availability for the asynchronous environment (Tuxedo, HP Process

Manager).

These separate goals were in recognition that loosely coupled solutions require less
availability. Tightly coupled solutions on the other hand, are primarily required for
transactional solutions, i.e. solutions which interact with live customers.

3 Architectural Approach

Given the constraints of the support model and choice of monitoring tools, the
architectural approach taken was to design the required monitoring and high-
availability architecture from a distributed deployment perspective; then specify
points of integration with the mandated monitoring tools. The challenge was to
identify the primary solution components (as not all components of a complex
software system can or should be monitored), then build a plan to integrate them
into the mandated monitoring tools, using the following technologies:

• SNMP : Simple Network Management Protocol (an industry standard

technology)

• ARM : Application Response Measurement (an API used to feed the HP

MeasureWare product).

These technologies were then rationalized against the pre-defined list of approved
monitoring products.

Page 7

• HP OpenView: A product family consisting of management products dedicated

to Application, Availability, Network, Performance, Service, Systems and
Storage management. HP OpenView is a "framework" into which many
applications may be built for an integrated network and system management
solution.

• HP OpenView IT Operations Console: A graphical user interface which

consolidates and displays the status of monitored components. HP IT uses the
ITO Console as “single point of reference” mechanism.

• HP (MC) Service Guard: A software package that enables multiple computers

to be defined into a highly available cluster. Nodes, networks and processes
configured into these clusters are able to be monitored and automatically
stopped, started or moved to a different “hot backup” node.

• HP MeasureWare: A resource and performance management collector. The

MeasureWare architecture has an open interface which allows the
collection of data from many sources, including:

1. Application Response Measurement (ARM) a.k.a. Transaction

Tracker is part of MeasureWare. It is a set of APIs which, when
implemented into the application, provides end-to-end response
time of a particular transaction.

2. SNMP MIB (Management Information Base). MIB’s express a

formal description of a set of network objects that can be managed
using the Simple Network Management Protocol (SNMP).

4 Implementation

Implementation was defined as part of the design and development job of each
development engineer. It was recognized early on in the project that comprehensive
monitoring would not be possible if individual components were not designed “up
front” with the monitoring architecture in mind.

Page 8

“Off the shelf” components, were integrated based on one or more of the identified
primal technologies (MIB, ARM). BEA Tuxedo already defined a comprehensive
MIB monitoring architecture, which was closely integrated with the internal
“bulletin board” transaction monitoring environment. The challenge here was to
identify which, of thousands of possible monitoring conditions were appropriate for
the EIA environment.

Additionally, it was specified that performance metrics were to be gathered from the
Tuxedo environment. Performance was characterized as a metric model defined
around the number of messages which passed through the EIA architecture. This
task proved to be quite difficult, as BEA Tuxedo does a great job of recording
quantum metrics, but does a poor job of reporting granular transactions. After some
effort a group of MIB’s was identified, which in composite could be used to
interpret the number of messages passed through the information bus. Refer to
appendix D and E for further detail about this approach.

For internally developed components, the process of integration to the standardized
support tools was equally difficult. In some cases, internal designs were modified to
include writing specified metrics to the Application Response Measurement
application programming interface (ARM). This was done mainly for the
synchronous CORBA architecture. Specifically, timing metrics and counting
metrics were applied to transactions to enable recording of the number of messages
passed through the interface and the latency factor associated with each message. In
this way, it was possible to graphically display (on the ITO Console) the relative
performance of the synchronous architecture.

Deployment of the monitoring architecture was fortunately already accomplished.
However, an evolution of the deployment architecture was underway which also
required developers to design their solutions to integrate with a future state
monitoring architecture and process flow.

Deployment of EIA components into the monitoring architecture was required. This
task also proved difficult to accomplish due to the number and complexity of the
individual components. Overall, a period of approximately three months was
required from code freeze to final deployment of the monitoring architecture.

Page 9

5 Conclusions

Monitoring, from the point of view of the software developer is a necessary evil.
Although in retrospect the monitoring challenge for EIA was indeed accomplished,
there were a number of lessons learned.

One of the primary lessons learned was to design “up front” for monitoring. Most
developers on the team did not have familiarity with either the SNMP or ARM
technologies. These skills had to be developed before the monitoring designs
became truly effective. In the case of BEA components, a specialized consultant
was hired to build the monitoring infrastructure. This proved to be a problem, as the
consultant was well versed in BEA products and technologies, yet unfamiliar with
Hewlett Packard technologies in the same space (i.e. BEA Manager, HP
OpenView). Additionally, the architectural goals for EIA with regard to
performance metrics were not intuitive to the BEA consultant.

High availability, although only tangentially related to monitoring, proved to factor
significantly into the design and successful deployment of the monitoring
architecture. One specific example of this was a mismatch between the BEA
Tuxedo failover architecture and HP Service Guards failover architecture. Since
both products can be used to implement a failover model, it was sometimes difficult
to choose which design to deploy.

Implementation was successful however, and with it came a new respect for the
difficulty of integrating software components into a common monitoring
architecture. It is hoped that in the future greater degree of standardization will
occur around “industry standard technologies” in the monitoring space. In that
regard, the Java Management Extension (JMX) specification, is looked at favorably
as a potential reconciliation of the multiple technology implementations in this
space.

6 Next Challenges

As the EIA architecture evolves from current to visionary state, it is expected that
many more technologies will be deployed. Each of these technologies expresses a
slightly different native monitoring design. Normalizing these technologies to
enable a cohesive enterprise support model will be a continual challenge.

Page 10

Two functional drivers emerged from EIA’s first experience in providing a
monitoring infrastructure:

1. The architecture must improve to become more pro-active and less reactive.

Currently, pro-activity is somewhat limited in scope and needs to be expanded.
Erratic use models and transactional volumes make this capability imperative as
the capacity of EIA is more completely consumed.

2. Integration of J2EE monitoring technologies will be required. As EIA begins to
deploy and support the E-Service Application Server (HP Bluestone)
environment it will be necessary to monitor the components developed in this
space. Specifically the J2EE container environments will be examined to ensure
that load balancing, performance and other capabilities can be integrated to
report into the overall ITO Console domain.

The impact of a successful monitoring architecture most closely impacts support.
The main consideration and challenge to the monitoring of “middleware” is due to
the lack of traditional support models. Because consistency of this environment is
required across multiple applications, services, components and technologies, it will
continue to be a challenging development challenge for the Enterprise Information
Architecture.

7 Additional Reference

A significant amount of specific reference detail follows in the appendix section of
this document. The material is represented to be technically accurate, however due
to the volatility to the implementation design in this space there may be some
duplication, inconsistencies and inaccuracy with regard to content. The purpose for
sharing data in such a raw fashion is to provide the reader with a more granular view
of the EIA monitoring solution.

Page 11

8 Appendix A – EIA High Availability Architecture
Principles.

8.1 Introduction

This document describes the architectural approach and principles used to ensure a high degree of
availability (HA) for the EIA Wave 2 solution. The program goal to enable Request/Reply capability into EIA
during Wave 2 has been a driving factor for many of the requirements for high availability. Prior to this
phase, the only solution pattern engaged by EIA was “loosely coupled” asynchronous, and therefore by
nature highly latent. Synchronous binding, by contrast is a “tightly coupled” solution, which demands a
greater degree of high availability requirement.

8.2 Approach

Architecture, in and of itself is only part of the total HA picture. As presented to the executive sponsor at lab
commit, the casual analysis of unplanned downtime (the outcome of insufficient availability) is the product of
three distinct component pieces of the total solution.

! 20 % Technology: Hardware, Operating Systems, Environmental factors, Disasters.
! 40 % Application Failure: Bugs, Performance Issues, Design Patterns.
! 40 % Operator / Human Error: Not performing a task. Performing a task incorrectly.

Of these areas of concern, the focus for this document will only be the Application Architecture, including
choice of technologies, implementation decisions and approach taken to enable a highly available solution.

8.3 Major Technology Additions (Wave 2)

The criteria for application of technologies in solution design, encompasses both the strategic goals for the
EIA program (e.g. platform for e-services) as well as general tactical goals of the SET organization (e.g.
follow established development practice).

With regard to Wave 2, additional technologies were added to the existing Tuxedo, eLink base. These major
technology elements are;

• CORBA (Common Object Request Broker Architecture)
• HP Process Manager (Business Process Manager)

8.4 Software/Application Components

Page 12

Complimentary to these major technologies are software sub-components which directly enable these
technologies. Examples here include the Routing Server (CORBA), HP Process Manager Integrator (bolt on
to eLink), HP ORBPlus (HP Process Manager ORB) etc.

A certain number of these sub-components will be required to maintain operation in order to ensure that a
HA capability is maintained. All of these processes are based on the HPUX 11.0 platform. A formal list of
these processes will be included in another document.

By selecting a critical set of components to keep up and running, one should not infer that other processes
not listed in the critical set are unimportant. Instead, the purpose for this categorization is to enable
management and supportability. In the event of application or platform failure, these categorizations could
be used to determine the relative priority of process recovery.

8.5 Application Monitoring

Participant applications, both producers and consumers are part of the total end-to-end solution enabled by
EIA. However, as presented in EIA’s high availability policy, maintaining availability for such applications
(e.g. SAP) is outside of the scope of the EIA program.

A separate effort, sponsored by HP Information Technology Services (Polly Yap) is responsible for identifying
critical HP internal applications and ensuring their capability to support a highly available environment.

8.6 Process Monitoring

It is the goal of the EIA program, to enable the automated monitoring of all processes, which are part of the
EIA technology suite. These processes include, but are not limited to the Tuxedo, eLink, CORBA and HP
Process Manager bundles.

HP ITS has selected the ITO Agent as the recommended tool for process monitoring. ITO Agent is part of
the HP Openview suite of monitoring solutions. This agent executes on each HPUX platform and can be
configured to examine critical processes, notify the ITO Openview console of exceptions and (potentially) re-
start processes. The major focus of ITO Agent from Wave 1, which will continue in Wave 2 is the monitor
and alarm when processes fail. For example, all Tuxedo processes have been “hooked” to ITO Agent, by
directing ITO Agent to read and interpret the Tuxedo log file. The process of engaging ITO Agent to critical
processes will continue for Wave 2.

8.7 Process Re-Start/Recovery

Page 13

It is the goal of the EIA program, to enable the automated re-start and recovery of all processes, which are
part of the EIA technology suite, which may fail for any number of reasons. These processes include, but are
not limited to the Tuxedo, eLink, CORBA and HP Process Manager bundles.

Tuxedo has a built-in transaction monitoring technology, which is implemented by direct integration of the
Tuxedo bulletin board. This capability has been enabled for all Tuxedo processes. Tuxedo offers a large
configurable option set for the monitoring, scaling and re-starting of identified processes. This is
implemented by static configuration (UBBCONFIG) and by dynamic modifications to this configuration
(SNMP, BEA manager MIB’s).

BEA manager, an snmp-based bolt-on to eLink is also used as a monitoring agent. BEA manager is used to
monitor Tuxedo internals and report anomalies to the NodeManager component of Openview.

Additional technologies introduced into the EIA suite for Wave 2 will include HP Process Manager and
CORBA. Both of these technologies are based on HPUX implementations. Therefore the plan for
integrating these technologies into the existing recovery design will be to identify critical components, at the
process level, then configure these processes to be re-started according to the capability of the existing (or
potentially additional) tools. CORBA offers a robust set of discovery and invocation options. The selected
technology for Wave 2 (the ORBacus Naming Service) will allow the logical abstraction of invocation instance
(IOR) to be presented to clients who wish to exercise EIA synchronous functionality. This abstraction allows
some degree of platform and process recovery to take place independently of consumer knowledge. The
exact configuration of this capability demands further refinement.

8.8 Performance Monitoring

It is the goal of the EIA program, to enable the automated performance monitoring for all processes, which
are part of the EIA technology suite. These processes include, but are not limited to the Tuxedo, eLink,
CORBA and HP Process Manager bundles

HP ITS has recommended the use of Openview (Perfview) as the designated tool of choice for the
monitoring of application performance. This tool has limited interface capabilities. Currently, an “pipe”
interface is available, and this interface is fed performance data from the Tuxedo environment by means of
selective ping and interpretation of performance MIB’s (management information base). These performance
MIB’s are analyzed by time-slice, then reported to the Perfview monitor.

Extensions the Perfview interface are in plan. Specifically, the Application Resource Management (ARM)
interface has recently been provided by HP Openview. Use of this interface will allow more dynamic
performance data to be populated to Perfview and this mechanism is being built into selected Wave 2
components (i.e. CORBA gateway).

In addition to Perfview, classic tools, such as HP GlancePlus may be used to monitor performance. Although
not optimal, these optional tools may be considered for selected processes which are not deemed critical to
monitor in a more automated fashion.

Page 14

HP Process Manager does not have a product integration with HP Openview. This deficiency will force some
degree of development to integrate critical HP Process Manager processes into the Perfview monitor
(probably by use of the ARM interface).

8.9 Software Component Deployment

The primary criteria for deployment of software components in EIA are as follows.

Maintaining to the best degree possible, a standard deployed software and hardware configuration

across all EIA instances (AP, EU, Americas).
Producer/Consumer application location.
Data center location.
WAN infrastructure costs.
Capability of the software components to support distributed deployment.
Isolation from single-point-of-failure where possible.
Business model logical profiles.
Complexity of the deployed solution.

This is not a complete list, as there are many factors external to the EIA program which factor into the
deployment decision. For example, the Enterprise Integration program to focus implementation of integration
broker BPM’s (Business Process Managers) to a centralized instance, consolidation of HP data centers etc.
These external variables may be independent from architectural design and optimal deployment, from the
EIA perspective.

8.10 Infrastructure

The HP Services Information Technology organization within ESSO is responsible for scaling and
infrastructure deployment for EIA.

8.11 Wave 2 (Lab Comment) Recommendations to Executive Sponsor

After analysis of Wave 1, the following recommendations were made to the EIA executive sponsor at the Wave 2 lab
commit meeting. The purpose of these recommendations was to solicit high level support for a cross-organizational
effort to ensure end-to-end high availability of the entire business process, from application producer, through EIA to
application or service consumer.

RECOMMENDATIONS:

1. Define an owner at a higher level for EIA high availability and supportability.

2. Ratify approach and explicit limitations specified by HA policy.

Page 15

3. Create disaster recovery plan. Will require investment in all areas
(infrastructure, architecture, people and processes).

4. Immediately procure a highly available platform for HP Process Manager.

5. Invest in GBIT basic-level skills, by providing more focused training.

6. Develop and/or enhance cross-application support models to support application downtime notification, data

recovery, application performance monitoring.

7. Develop cross-application recovery support model.

Page 16

9 Appendix B – BEA Manager Architecture

HP EIA Project
BEA Manager: Systems Architecture

9.1 Management Requirements
The EIA project has two primary requirements for any management solution. These are

1. Alerts/Traps generated on the managed node (e.g. by the BEA Manager snmp agent) should be propagated to
Openview ITO.

2. It should be possible to issue gets and sets from Openview ITO that will be propagated and implemented by the
SNMP agents running on the managed node

3. A predefined list of system performance metrics should be collected against each of the managed nodes and
passed centrally to Measureware.

9.2 The BEA Manager Components

BEA Manager 2.0 is essentially an SNMP based product. It is made up of 4 components. These are:

1. Agent Connection This is the BEA snmp agent that monitors the TUXEDO application

(tux_snmpd). There should be an agent running on each machine that runs
tuxedo. If there are a number of tuxedo applications (domains) running on the
same machine – there should be a separate tux_snmp agent for each
domain.

2. Agent Integrator This integration product (snmp_integrator) allows you to run more than one
snmp agent on the same snmp port. Agent integrator is also supplied with a
BEA agent for monitoring the UNIX operating system (unix_snmpd). It also
provides the facilities to monitor any MIB attribute against a threshold and
issue a trap when this threshold is exceeded.

3. Agent Development Kit: This provides a SDK that helps clients to implement snmp agents that can be
used to monitor their own proprietary applications.

4. Log Central This consolidates log entries into one centralized location (RDBMS). It can
also be configured to issue snmp traps (or execute a shell script or program)
when particular message types are received.

When designing a management solution for the EIA project it became apparent that the solution should be
based on agent integrator (which can use SNMP to manage TUXEDO) and agent integrator (which can be
used to run BEA and HP agents on the same snmp port).

HP did not intend to develop any proprietary snmp agents and so had no need for the BEA agent
development kit.

Page 17

BEA Manager Log Central provides several useful capabilities.

1. It allows logs from a number of disparate applications running on a number of platforms to be

consolidated on one central data store (RDBMS).
2. Out of the box log central understand the format of TUXEDO and Oracle logs. It can be configured to

understand the format of any other log file.
3. Log Central provides a WEB based GUI that can be used to query and view log entries.
4. Log Central can filter and only propagate and store certain log entry types
5. Log central can also be configured to generate either SNMP traps or execute a shell script or program)

when particular message types are received. This allows us to extend the scope of the snmp traps raised
by the TUXEDO application. Application developers could initiate ‘business ‘application traps by writing
appropriate messages to the tuxedo userlogs.

Despite these advantages it was decided not to use Log Central for the HP EIA project. This decision was
made because

1. Log Central requires either an Oracle (7.3.4 or 8.0.5) or MS SQLServer database. The EIA project team

does not have access to either Oracle or SQLServer.
2. HP OpenView ITO already provides identical functionality to that of BEA Log Central. An ITO log

collection agent can be installed on each managed node. This will read log files and propagate entries to
the ITO central console, which would store these log messages in an Oracle database. ITO can be
configured to generate alerts whenever a particular message type is received.

9.3 SNMP Agent Architecture

The diagram below represents the configuration of the snmp agents to be used on the HP EIA project

Page 18

The management console (OpenView Network Node Manager) will communicate using SNMP with all of the
snmp agents running on the managed node using the standard SNMP port (161). Traps will be generated by
the various snmp agents on the managed node and propagate to port 162 on the machine running the
OpenView Node Manager

This will be achieved by using the BEA agent integrator (snmp_integrator). The agent integrator will be
configured to listen on port 161. In this configuration the snmp_integrator would be responsible for passing
requests to the HP master agent (snmpdm) which would be configured as a peer SNMP agent. The HP
master agent would then use EMANATE to communicate with the standard HP mib2agt, hp_unixagt and
trapdestagt agents.

The agent integrator would also pass requests to the BEA tux_snmpd and unix_snmpd agents, which are
configured as subagents of snmp_integrator using SMUX on port 199.

To implement this architecture the following must be done;

1. The HP agents (snmpdm, mib2agt, hp_unixagt, trapdestagt) should be already running on port

161(before the BE agents are started) and will be configured as a peer SNMP agent integrator by adding
the following line to the /etc/beamgr.conf configuration file
“NON_SMUX_PEER 161 * .1.3.6.1.4.1.11.2”

2. The BEA snmp_integrator, tux_snmpd and unix_snmpd agents can then be started (see Operational
Procedures Document for details).

BEA
snmp_integrator

HP Master Agent
snmpdm

mib2agtunix_snmpdtux_snmpd hp_unixagt

SMUX SMUX

SNMP
Peer Agent

trapdestagt

Emanate

OpenView
Node Manager

Port 161 Managed Node

Page 19

I should then be possible to issue both SNMP GETs and SETS to attributes in both HP and BEA MIB via port
161 from Openview Node Manager (ONM). Any traps generated by either the BEA agents or HP agents
should result in the propagation of a SNMP trap to Openview Node Manager.

9.4 Management Architecture

This diagram below represents the management architecture that was developed for the HP EIA project.

It uses the snmp capabilities of BEA Manager 2.0 agent connect and agent integrator to achieve the
Management requirements outlined in section 1.

Tuxedo
Domain

snmp_integrator
tux_snmp

ITO
Log

Collection
Agent

Measureware OpenView
ITO

AlarmsPerformance Data

Userlog

DSI

SNMP Gets

Openview
Node ManagerHousekeeper

BEA
Manager/etc/beamgr.conf

/Q

Web Applications Set Monitor Thresholds Real Time Gets & Sets

SNMP Traps
SNMP Gets & Sets

“snmp
walker”

Implemented as snmp
 gets & sets issued via

the “snmp walker”

Page 20

9.5 Alerts

Alerts/Snmp traps will be generated by a number of components.

1. The BEA and HP snmp agents will generate a number of default SNMP traps. So for example the

Tuxedo tux_snmpd agent will generate 32 standard traps (see the BEA Manager MIB review document
for details).

2. The agent integrator (snmp_integrator) will be configured to generate a number of additional user
defined traps. This will be done by the addition of a number of RULE_ACTIONS to the integrator
/etc/beamgr.conf configuration file. These will instruct the agent to poll specified MIB attributes at a set
frequency and generate a named trap if a threshold is exceeded.

3. Alerts will also be generated using the log collection facilities provided by Openview IPO

The snmp traps raised by the BEA & HP snmp agents and the BEA agent integrator will be passed to
OpenView Node Manager. Dave Wilson will configure OpenView so that these traps are then passed to ITO.

An ITO log collection agent will run on each managed node. This agent will be incapable of generating
SNMP traps or ITO alerts directly. Instead it will filter and pass certain userlog messages centrally to the ITO
Oracle database. ITO will then be configured to raise alerts when particular message types are received.

9.6 Get and Sets

A web application will be implemented that will use the Openview Node Manager “snmp walker” facility to
issue gets and sets against the BEA and HP agents.

This facility will also allow the user to set the frequency and thresholds for the MIB attributes monitored by
agent_integrator and used to generate user defined snmp traps (RULE_ACTION – see above). This is done
by issuing an SNMP set for the beaIntAgtRuleAction and beaIntAgtScanInvl attributes in beaIntAgt group of
the BEA MIB.

9.7 Performance Metrics

Performance metrics will be gathered by a “housekeep” utility to be developed by Dave Wilson.
This utility will periodically issue an SNMP GET for a number of predefined attributes in the BEA and HP
MIBs (see the document BEA Manager MIB Summary for details of the attributes to be monitored). This
“housekeeper” utility will then use DSI to pass these values to Measureware.

Page 21

10 Appendix C – BEA Manager High Availability Strategy.

HP EIA Project
BEA Manager: High Availability Strategy

10.1 Introduction

This document reviews the high availability solution implemented for the EIA project at HP. It also reviews
the high availability strategy that should be used to ensure that the BEAM Manager agents are running even
after failover occurs.

10.2 EIA HA Architecture

There has been a recent change to the HA architecture of the EIA project

The EIA architecture was always designed to use HP MC ServiceGuard to facilitate failover. However in the
earlier design the TUXEDO domain (for each region) was configured to run in multiple machine mode. The
EIA architecture has recently been updated and the TUXEDO domain is now configured to run in single
machine mode

10.3 Multiple Machine Mode

In the original multiple machine mode most of the system components ran on the Master Machine. The
Master machine held the application queues and transaction log on a mounted directory (/tuxq). Most of the
TUXEDO servers ran on the Master machine. The backup machine ran a limited number of TUXEDO server
s including a workstation listener (WLS), cr3fcin and the workflow agents (eg sapwfa).

10.3.1 Implications for BEA Manager

None. Even in a multiple machine configuration it is still only necessary to run the tux_snmpd agent on the
Master machine. The /Q components are only installed on the Master machine. Furthermore all of aspects of
the TUXEDO application on both the Master and also the Backup machines can be obtained by the
tux_snmpd agent running on the master machine.

10.4 Single Machine Mode

In this architecture all components of the EIA application including the TUXEDO server and /Q run on the
Master machine. The Backup machine is powered up and available as a hot standby machine.

10.4.1 Implications for BEA Manager

All TUXEDO and /Q components run exclusively on the Master machine. As a result the tux_snmpd need
only run on the Master machine. TUXEDO is not running on the Backup machines and consequently there is

Page 22

nothing to monitor. However it should be noted that many of the traps defined for EIA monitor the health of
inter-machine communications. These are no longer needed in a single machine configuration.

10.5 SNMP Agent Architecture

The SNMP agents running on each of the EIA managed node are essentially made up of two groups

1. The BEA Manager snmp_integrator and HP SNMP agents (snmp_integrator, snmpdm, mib2agt, hp_unixagt
and trapdestagt) will run continuously on all EIA servers (Master and Backup). All of these agents can only be
start and stopped by root. These agents will be started on every EIA machine whenever the UNIX operating
system is started using the UNIX inetd/rc facilities (which executes as root). The agents will run continually and
will not be stopped. This provides a baseline ‘TUXEDO ready’ configuration of SNMP agents on each EIA
machine. Even when TUXEDO is not running the HP UNIX MIB (implemented by the hp_unixagt) and the BEA
RULE_ACTIONS (implemented by the snmp_integrator) can be queried using SNMP.

2. The TUXEDO agent (tux_snmpd) will only run those machines that run the TUXEDO application (the active

node). In contrast the HP agents and snmp_integrator this agent can be started and stopped by the TUXEDO
administration account (eiaadm) This will be achieved by including the command to start and stop the tux_snmpd
agent in the start_eia and stop_eia command (this is already the case).

The tux_snmpd agent connects as a client the TUXEDO application. Consequently the order in which TUXEDO
agents are started and stopped is significant.

BEA
snmp_integrator

HP Master Agent
snmpdm

mib2agttux_snmpd hp_unixagt

SMUX

SNMP Peer Agent

trapdestagt

Emanate

OpenView
Node Manager

Port 161 Managed NodePort 1161

Page 23

The start_eia command should boot TUXEDO and then start the tux_snmpd agent.
The stop_eia command should stop the tux_snmpd agent first and then shutdown the TUXEDO application.

10.6 Failover and the BEA Manager TUXEDO Agent

• Under normal circumstances the EIA TUXEDO application and the TUXEDO snmp agent will run on only one

of the two machines in each domain (the ‘Master’ machine).
• TUXEDO and the TUXEDO tux_snmpd agent will not be running on the ‘backup’ machine.
• MC ServiceGuard will detect a fatal system error.
• ServiceGuard will then ‘failover’ the EIA TUXEDO application and tux_snmpd agent to the Backup machine.
• This will be done by stopping TUXEDO and tux_snmpd on the master machine (using stop_eia) and then

starting TUXEDO and tux_snmpd on the backup machine (using start_eia).

Page 24

11 Appendix D – BEA Manager User Defined Trap List.

11.1 Background

This document gives details of each of the user defined traps that I will be implementing and testing over the
next few days for the EIA project.

These traps when issued will be associated with;

1. A user defined trap number
2. The rule name and state change
3. Enterprise OID (where this OID is .1.3.6.1.4.1.140.1.1.0.’Trap number’)

See the section trap output for further details

Two traps will be raised for each rule. Odd numbered traps (eg 101) indicate a change from OK to error
state. Even numbered traps (eg 102) indicate a change from error to OK state.

11.2 Trap Table

Trap
Number

State Change Severity Textual Description

100 TUXEDO Traps
101 Rule domState

triggered from
OK to ERR state

ERROR Domain State is not active

102 Rule domState
triggered from
ERR to OK state

INFO Domain State has returned to Active

103 Rule mcState
triggered from
OK to ERR state

ERROR Machine State is Partitioned

104 Rule mcState
triggered from
ERR to OK state

INFO Partitioned machine id now active

105 Rule grpState
triggered from
OK to ERR state

ERROR Group State is no longer active

106 Rule grpState
triggered from
ERR to OK state

INFO Group State returned to active

107 Rule svrState
triggered from
OK to ERR state

ERROR Server state is not active

108 Rule svrState INFO Server state returned to active

Page 25

triggered from
ERR to OK state

109 Rule sysevtUp
triggered from
OK to ERR state

ERROR The TMSYSEVT server status is not active

110 Rule sysevtUp
triggered from
ERR to OK state

INFO The TMSYSEVT server status has returned to active

111 Rule sqState
triggered from
OK to ERR state

ERROR The Server Queue status is not active

112 Rule sqState
triggered from
ERR to OK state

INFO The Server Queue status has returned to active

113 Rule svcState
triggered from
OK to ERR state

ERROR The service state is not active

114 Rule svcState
triggered from
ERR to OK state

INFO The service state has returned to active

115` Rule wshState
triggered from
OK to ERR state

ERROR The Workstation Handler is not active

116 Rule wshState
triggered from
ERR to OK state

INFO The Workstation Handler status has returned to
active

117 Rule wslState
triggered from
OK to ERR state

ERROR The Workstation Listener is not active

118 Rule wslState
triggered from
ERR to OK state

INFO The Workstation Listener status has returned to
active

119 Rule tlnState
triggered from
OK to ERR state

ERROR The tlisten is not active

120 Rule tlnState
triggered from
ERR to OK state

INFO The tlisten status has returned to active

121 Rule brdState
triggered from
OK to ERR state

ERROR The bridge is not active

122 Rule brdState
triggered from
ERR to OK state

INFO The bridge status has returned to active

123 Rule devState
triggered from

ERROR The device is not active

Page 26

OK to ERR state
124 Rule devState

triggered from
ERR to OK state

INFO The device status has returned to active

125 Rule tranState
triggered from
OK to ERR state

ERROR The transaction status is aborted

126 Rule tranState
triggered from
ERR to OK state

INFO The abort transaction has been committed

200 SAP Application Queue
201 Rule qss_sap

triggered from
OK to ERR state

ERROR SAP Queue Space: Status is not active

202 Rule qss_sap
triggered from
ERR to OK state

INFO SAP Queue Space: Status is active

203 Rule qsm_sap
triggered from
OK to ERR state

ERROR SAP Queue Space: Number of messages on this
queue space exceeds the maximum allowed

204 Rule qsm_sap
triggered from
ERR to OK state

INFO SAP Queue Space: Number of messages on this
queue space has fallen back below the maximum
allowed

205 Rule qse_sap
triggered from
OK to ERR state

ERROR SAP Queue Space: There is a message on the error
queue

206 Rule qse_sap
triggered from
ERR to OK state

INFO SAP Queue Space: There is a no longer a message
on the error queue

220 ODY Application Queue
221 Rule qss_ody

triggered from
OK to ERR state

ERROR ODY Queue Space: Status is not active

222 Rule qss_ody
triggered from
ERR to OK state

INFO ODY Queue Space: Status is active

223 Rule qsm_ody
triggered from
OK to ERR state

ERROR ODY Queue Space: Number of messages on this
queue space exceeds the maximum allowed

224 Rule qsm_ody
triggered from
ERR to OK state

INFO ODY Queue Space: Number of messages on this
queue space has fallen back below the maximum
allowed

225 Rule qse_ody
triggered from
OK to ERR state

ERROR ODY Queue Space: There is a message on the error
queue

226 Rule qse_ody INFO ODY Queue Space: There is a no longer a message

Page 27

triggered from
ERR to OK state

on the error queue

240 ITRC Application Queue
241 Rule qss_itc

triggered from
OK to ERR state

ERROR ITRC Queue Space: Status is not active

242 Rule qss_itc
triggered from
ERR to OK state

INFO ITRC Queue Space: Status is active

243 Rule qsm_itc
triggered from
OK to ERR state

ERROR ITRC Queue Space: Number of messages on this
queue space exceeds the maximum allowed

244 Rule qsm_itc
triggered from
ERR to OK state

INFO ITRC Queue Space: Number of messages on this
queue space has fallen back below the maximum
allowed

245 Rule qse_itc
triggered from
OK to ERR state

ERROR ITRC Queue Space: There is a message on the error
queue

246 Rule qse_itc
triggered from
ERR to OK state

INFO ITRC Queue Space: There is a no longer a message
on the error queue

247 Rule qqn_itc
triggered from
OK to ERR state

ERROR ITRC Queue Space: Number of messages on the
ERROR queue exceeds a threshold value

248 Rule qqn_err
triggered from
ERR to OK state

INFO ITRC Queue Space: Number of messages on the
ERROR queue has fallen back below the threshold
value

260 ERROR Application Queue
261 Rule qss_err

triggered from
OK to ERR state

ERROR ERROR Queue Space: Status is not active

262 Rule qss_err
triggered from
ERR to OK state

ERROR ERROR Queue Space: Status is active

263 Rule qsm_err
triggered from
OK to ERR state

ERROR ERROR Queue Space: Number of messages on this
queue space exceeds the maximum allowed

264 Rule qsm_err
triggered from
ERR to OK state

ERROR ERROR Queue Space: Number of messages on this
queue space has fallen back below the maximum
allowed

265 Rule qse_err
triggered from
OK to ERR state

ERROR ERROR Queue Space: There is a message on the
error queue

266 Rule qse_err
triggered from
ERR to OK state

ERROR ERROR Queue Space: There is a no longer a
message on the error queue

Page 28

267 Rule qqn_err
triggered from
OK to ERR state

ERROR ERROR Queue Space: Number of messages on the
ERROR queue exceeds a threshold value

268 Rule qqn_err
triggered from
ERR to OK state

ERROR ERROR Queue Space: Number of messages on the
ERROR queue has fallen back below the threshold
value

11.3 Trap Output

This is the example output printed by the BEA snmptrapd program. This is a utility (part of the agent
development kit) that sits on the 162 port and prints the details of the any traps received to the standard
output. This can then be redirected to a file.

This output was received after the TMSYSEVT sever was re-booted on the master machine (15.95.224.11)
The first trap received was the standard trap 23 (server state change). This was followed after several
seconds (representing the rule polling interval) by a user defined trap 109 (sysevtup).

11.4 Standard Trap (.1.3.6.1.4.1.140.300.0.23: server state trap)

15.95.224.11: Enterprise Specific Trap (23) Uptime: 0:00:00
Name: private.enterprises.bea.tuxedo.tuxEvents.tuxEventTrapVars.tuxEventsName

OCTET STRING- (ascii): .SysServerState
Name: private.enterprises.bea.tuxedo.tuxEvents.tuxEventTrapVars.tuxEventsSeverity
 INTEGER: info(3)
Name: private.enterprises.bea.tuxedo.tuxEvents.tuxEventTrapVars.tuxEventsLmid
 OCTET STRING- (ascii): MMB_ctss121_EIA
Name: private.enterprises.bea.tuxedo.tuxEvents.tuxEventTrapVars.tuxEventsTime
 INTEGER: 955044512
Name: private.enterprises.bea.tuxedo.tuxEvents.tuxEventTrapVars.tuxEventsUsec
 INTEGER: 600492
Name: private.enterprises.bea.tuxedo.tuxEvents.tuxEventTrapVars.tuxEventsDescription
OCTET STRING- (ascii): INFO: .SysServerState: TMSYSEVT, group EVENTGRP1, id 20 state change to
ACTIVE
Name: private.enterprises.bea.tuxedo.tuxEvents.tuxEventTrapVars.tuxEventsClass

OCTET STRING- (ascii): T_SERVER
Name: private.enterprises.bea.tuxedo.tuxEvents.tuxEventTrapVars.tuxEventsUlogCat

OCTET STRING- (ascii): LIBTUX_CAT
Name: private.enterprises.bea.tuxedo.tuxEvents.tuxEventTrapVars.tuxEventsUlogMsgNum

INTEGER: 1518
Name: private.enterprises.bea.beaDomainList.beaDomainListEntry.beaDomainID

OCTET STRING- (ascii): AP_DOM
Name: private.enterprises.bea.beaDomainList.beaDomainListEntry.beaDomainKey

INTEGER: 113757
Name: private.enterprises.bea.beaDomainList.beaDomainListEntry.beaLogicalAgentName.0

OCTET STRING- (ascii): tux_snmpd

Page 29

11.5 User Defined Trap (.1.3.6.1.4.1.140.1.1.0.110: user defined trap 110)

15.95.224.11:Enterprise Specific Trap (110) Uptime: 0:00:00
Name: private.enterprises.bea.beaSystem.beaTrapDescr.0

OCTET STRING- (ascii): Rule id <sysevtUp> has triggered from ERR to OK state

Page 30

12 Appendix E – BEA Tuxedo MIB Definitions

HP EIA Project
BEA Manager: A Review of the BEA MIB Definitions

12.1 Introduction

This document reviews the structure of the SNMP MIB supplied as part of the BEA manager 2.0 product.
This MIB enables the use of SNMP to manage BEA TUXEDO and some aspects of the underlying UNIX
operating system.

In the architectural design of the management system for the EIA project, the BEA Manager Product (agent
integrator together with its TUXEDO and Unix SNMP agents) will be used to generate default SNMP traps;
user defined SNMP traps and will be used to enable the collection of performance metrics.

12.2 Default SNMP Traps

The BEA Manager TUXEDO SNMP agent generates 32 standard default SNMP traps ‘out of the box’. This
document reviews the nature of these default TUXEDO SNMP traps and give guidance on their relevance to
the EIA project and mechanisms that can be used to trigger these traps for testing purposes.

12.3 User defined SNMP Traps

User defined traps will be specified and collected by the BEA Manager agent integrator. The agent integrator
will be configured to periodically poll a selected number of the MIB attributes. If any of these exceed a
specified threshold a user defined the agent integrator will generate trap. This is achieved by adding a
RULE_ACTION to the BEA Manager Configuration file (/etc/beamgr.conf).

The following RULE generates a trap if the machines CPU is busier than 80% and another when it fall back
below 80%.

RULE_ACTION cpu 600 if (VAL(140.11.1.0) > 80) { TRAPID_ERR = 104 TRAPID_OK = 105 }

In this case the monitored attribute (.140.11.1.0) is the beaSysPerfCpu attribute in the beaSysPerf group of
the BEA MIB which is managed by the unix_snmpd agent.

A RULE_ACTION can be specified for any MIB attribute associated with any SNMP agent managed by the
agent integrator. Consequently any of the attributes specified by the BEA MIB (and also the HP MIB) can be
used to generate user-specified traps.

This document reviews those attributes in the BEA MIB (that relate to both the TUXEDO and also the UNIX
OS) that are of particular relevance to the EIA project and should therefore be monitored to generate user
defined SNMP traps.

Page 31

12.4 Performance Metrics

On the EIA project performance metrics will be gathered and logged to Measureware. This will be achieved
by the development of a ‘housekeeping’ process. This housekeeping process will periodically issue SNMP
gets against attributes in the SNMP MIBs that relate to systems performance.

This document therefore reviews those MIB attributes that can be used to provide a measurement of system
performance.

Page 32

13 Overview of the BEA MIB

The BEA MIB is defined in the documents bea.asn1 and bea_lc_trap.asn1. The document bea_lc_trap.asn1
defines attributes that are used by the BEA Manager Log Central product (which is not going to be used on
the EIA project).

The bea.asn1 document defines a number of MIB’s from the BEA enterprise root OID located at
.1.3.6.1.4.1.140 (ISO.ORG.DOD.INTERNET.PRIVATE.ENTERPRISES.BEA).

The whole BEA MIB comprises a total of 790 attributes. Most of these are read only and can only support
SNMP GET requests. However 290 MIB attributes are read write and can support both SNMP GETs and
SETs.

13.1 BEA MIB GROUPS

The BEA Mib is divided into a number of sub MIB’s. These are:

OID MIB Name Description
BEA 1 BeaSyste

m
This MIB contains general-purpose objects such as operating system name and
version and some of the fields in the beamgr.conf configuration file. Fields in the
configuration file can be changed through an SNMP SET on the corresponding
MIB object. The unix_snmpd subagent provided with Agent Integrator supports
this MIB.

BEA 2 BeaUnix This MIB includes such objects as the process table, file system table, the ipcs
tables, the performance measurements rstat, and the pstat –s command. The
unix_snmpd subagent provided with Agent Integrator supports this MIB.

BEA 4 BeaPm The process monitor MIB is found in the BEA Manager MIB file (bea.asn1) and
defines objects that support the Log Central process monitor. This MIB is
supported by the pm_snmpd subagent provided with the Agent Integrator.

BEA 5 BeaSmgr The shared memory manager MIB specifies attributes for each block of shared
memory used by TUXEDO. It is supported by the unix_snmpd subagent shipped
with the Agent Integrator.

BEA 11 BeaSysPe
rf

BEA System Performance MIB supports attributes that are similar to those
supported by the Sun pefmeter on Sun workstations. It is supported by the
unix_snmpd subagent shipped with the Agent Integrator.

BEA 12 BeaNt This MIB represents system performance attributes specific to the Windows NT
system. This MIB group is supported by the nt_snmpd subagent shipped with the
Agent Integrator.

BEA 21 BeaTrap The Log Central Traps MIB can be found in the file bea_lc_trap.asn1 and
contains Log Central attributes that are used as variables in the traps.

BEA 200 BeaIntAgt This MIB is supported directly by the Agent Integrator master agent. The
beaIntAgtTable permits the addition or deletion or modification of RULE_ACTION
entries that are used to control local polling by the Agent Integrator. Each entry

Page 33

(row) in the beaIntAgtTable supports a particular polling rule. The beaIntAgtStatus
object is a read-write object that can be used to de-activate or activate polling
execution by particular rules.

BEA 300 TUXEDO This is the largest group and allows an SNMP management console to query and
in some cases set TUXEDO system attributes. Its sub groups are described in
detail below

BEA 305 DomainLis
t

This is part of the TUXEDO MIB described in detail below

= Number of attributes specified in this MIB

The BEA Manager product is supplied with 4 SNMP agents (tux_snmpd, unix_snmpd, nt_snmpd, and
pm_snmpd) and an agent integrator. Each of these is responsible for managing different sub-MIBs within the
BEA MIB as represented below.

Mib file Agent MIB Group
Bea.asn1 Tux_snmpd TUXEDO, DomainList
 Unix_snmpd BeaSystem, BeaUnix, BeaSmgr, BeaSysPerf
 Snmp_integrato

r
BeaIntAgt

 Nt_snmpd BeaNt
Bea_lc_tra
p.asn1

Pm_snmpd BeaPm, BeaTrap

Note: The EIA project is not using either Log Central or NT and so the BeaNt, BeaPm and BeaTrap MIBs will
not be examined.

13.2 The TUXEDO MIB

The TUXEDO MIB is the largest defined by BEA and is managed by the TUXEDO SNMP agent (tux_snmpd).
This MIB is further divided into the 24 groups described below.

These groups are in turn consolidated into 7 TUXEDO Sub MIBs. The largest of these is the Core TUXEDO
Mib. The TUXEDO system Core MIB defines the set of groups through which the fundamental aspects of an
application may be configured and managed. This includes management of machines, servers, networking,
and load balancing. The TUXEDO Core MIB defines the basic objects that form a TUXEDO application

Other TUXEDO sub MIBs include the Workstation, TUXEDO Domain, Application Queue, ACL, Event and
M3 sub MIB.

OID Group
Name

Sub
MIB

Description

Tux 1 TuxW
smib

Work
statio

n

This MIB is an extension of the TUXEDO Core MIB and specifies the
information required to control access to a TUXEDO application from
multiple workstations.
The TUXEDO Workstation subsystem consists of a workstation

Page 34

clients (WSC) library, the workstation listener (WSL) executable, and
the workstation handler (WSH) executable. The Workstation MIB
specifies information about workstation listeners and workstation
handlers.

Tux 2 TuxEv
ents

Event The Event Broker MIB defines the characteristics of an event
subscription. You can use the Event Broker MIB to obtain the
characteristics of current event subscriptions, define new
subscriptions, or invalidate subscriptions. To enable both system
event and application event notification, you need to define the
system event broker and the application event broker in the TUXEDO
Core MIB.

Tux 3 TuxTd
omain

Core This group represents the global application attributes for the domain
to which the TUXEDO SNMP agent is currently connected. These
object values serve to identify, customize, size, secure, and tune a
TUXEDO System/T application. Many of the object values
represented here serve as application defaults for other groups
represented in this MIB.

Tux 4 TuxTg
roup

Core This group represents application attributes pertaining to a particular
server group. These attribute values represent group identification,
location, and DTP information

Tux 5 TuxT
machi

ne

Core This group represents application attributes pertaining to a particular
machine. These attribute values represent machine characteristics,
per-machine sizing, statistics, customization options, and UNIX
system filenames

Tux 6 TuxT
msg

Core This group represents runtime attributes of the TUXEDO System/T
managed UNIX system messages

Tux 7 TuxTq
ueue

Core This group represents the runtime attributes of the queues in an
application. These attribute values identify and characterize allocated
TUXEDO System/T request queues associated with servers in a
running application. They also track statistics related to application
workloads associated with each queue object

Tux 8 TuxTr
outing

Core The group represents configuration objects of routing specifications
for an application. These object values identify and characterize
application data dependent routing criteria with respect to field
names, buffer types, and routing definitions.

Tux 9 TuxTu
log

Core This group represents runtime attributes of userlog files within an
application.

Tux 10 TuxTs
vc

Core This represents configuration attributes of services within an
application. These attribute values identify and characterize
configured services. A TuxTsvc object provides activation time
configuration attributes for services not specifically configured as part
of the group

Tux 11 TuxTA
cl

ACL The ACL MIB enables a system manager to administer TUXEDO
security through authenticating users, setting permissions, and
controlling access. The ACL MIB defines the objects controlled by the
ACL facility

Page 35

Tux 12 TuxTA
ppQ

Appli
catio

n
Queu

e

The TUXEDO Application Queue MIB provides the administrative
environment required for managing and controlling access to
application queues. The Application Queue MIB defines the structure
of the application queues. In TUXEDO applications, messages are
stored on a queue, and queues are defined within a particular queue
space. Queuing and de-queuing is done within a transaction. The
Application Queue MIB consists of five different groups for defining
queue access, queues, messages, queues spaces, and queue
transactions

Tux 14 BeaEv
entFilt

ers

Core This MIB group represents all the event filters defined for the Agent
Connection. These are used to determine the collection of events to
be forwarded as SNMP trap notifications.

Tux 16 TuxTb
ridge

Core This group represents those runtime attributes pertaining to the
connectivity between logical machines that make up an application.
These attribute values represent connection status and statistics.

Tux 17 TuxTcl
ient

Core This group represents runtime attributes of active clients within an
application. These attribute values identify and track the activity of
clients within a running application.

Tux 18 TuxTc
onn

Core This group represents runtime attributes of active conversational
servers within an application.

Tux 19 TuxTd
evice

Core This represents configuration and runtime attributes of raw disk slices
or UNIX system files being used to store TUXEDO System/T device
lists. This class allows for the creation and deletion of device list
entries within a raw disk slice or UNIX system file.

Tux 20 TuxTs
erver

Core This group represents configuration and runtime attributes of servers
within an application. These attribute values identify and characterize
configured servers as well as provide runtime tracking of statistics
and resources associated with each server object.

Tux 21 TuxTli
sten

Core This group represents runtime attributes of /T listener processes for a
distributed application

Tux 23 TuxTr
anacti

on

Core This table represents runtime attributes of active transactions within
the application

Tux 28 TuxTn
etGro

up

Core This table represents application attributes of network groups.
Network groups are groups of logical machine IDs that can
communicate over the network

Tux 33 TuxTn
etMap

Core The rows in this table identify which logical machines belong to which
network groups.

Tux 48 M3 M3 This is the 5 MIB tables that are specific to the M3 product. To access
these MIB objects, the M3 version of the Agent Connection should be
running on the machine where M3 application resources are
accessible

BEA 305 BeaD TUX This MIB group represents information about the TUXEDO domain

Page 36

omain
List

EDO
DOM
AIN

the agent is monitoring, as specified at startup

= Number of attributes specified in this sub MIB

Note: The EIA project TUXEDO domain will not use publish and subscribe (events), data dependant routing,
access control conversational servers or M3 (WLE). Consequently the Event MIB, TuxRouting group, ACL
MIB, TuxTconn group and M3 MIB has not been reviewed.

13.3 The Standard TUXEDO SNMP traps

The TUXEDO SNMP agent (tux_snmpd) is capable of raising 32 standard SNMP trap notifications. These are provided
‘out of the box’ and cannot be configured. These standard TUXEDO traps are associated with 12 variables
(attribute/value pairs) in the variable bindings of the trap packet. These are

1. BeaDomainId: The id of TUXEDO domain that generated the trap
2. BeaDomainKey: IPC key of TUXEDO domain
3. BeaLogicalAgentName Logical name of SNMP agent. Will be either tux_snmp/unix_snmpd or the name

supplied as –l when agent started
4. TuxEventsLmid The logical Machine Identifier of the machine where trap originated
5. TuxEventsName String that uniquely identifies trap
6. TuxEventsSeverity Severity of trap (Error=1, Warn=2, Info=3)
7. TuxEventsTime Long that contains the event detection time in seconds. Taken from local system

clock
8. TuxEventsUsec Long that contains the event detection time in milliseconds. Taken from local

system clock
9. TuxEventsDescription A one line string summarizing the event
10. TuxEventsClass The MIB class of the object associated with this event
11. TuxEventsUlogCat TUXEDO catalog name from which message was derived
12. TuxEventsUlogMsgNum Catalog message number

13.4 List of Standard TUXEDO SNMP Traps

In the table presented below each of the 32 standard TUXEDO SNMP traps is categorized with a severity
level. These levels are the same as those used by application programmers to categorize any application
errors they encounter

These are:

1/FATL Fatal (1). This is an error condition. The system cannot function properly and this error must be
immediately corrected and the system recycled.

2/FUNC Functional (2). This is an error condition. It should be immediately fixed, however some part of the
system will continue to function while this error is being investigated

3/WARN Warning (3). This represents an event that should be investigated for relevance and impact on
system functionality

4/INFM Information (4). This has been generated during the norm execution of the system. No action is
required.

Page 37

5/DEB Debug (5). This is an error message category that should never result in a SNMP trap being
generated

Trap Description Remedy Level
MachineMsgQTrap A server posting a

message encountered
a blocking condition
while putting a
message on a
message queue

Configure larger
message queues
and/or distribute the
load equally on all the
machines.

1/FATL

MachinePartionedTrap The TUXEDO system
(DBBL(has partitioned
the machine either
because BBL was slow
in responding or
network link to master
has been broker

Check network
BBL, BRIDGE
processes are
running
tlisten

The software is
capable of un-
partitioning the
machine if things
stabilize.

1/FATL

NetworkDroppedTrap Network Link between
machines has been
dropped abnormally

Check Machine
Bridge
tlisten

1/FATL

NetworkFailureTrap Connection failure
between bridge
processes

Machine
Bridge
tlisten

1/FATL

NetworkStateTrap A server has died and
the BBL has cleaned
up the slot occupied by
that server

Debug and fix server
before it is restarted

1/FATL

ServerCleaningTrap Server has died
abnormally and BBL
has cleaned up slot
owned by server

Debug and fix server
before it is restarted

1/FATL

ServerDiedTrap Server has died
abnormally and the
BBL has detected this
during its periodic scan
of the BB

Debug server fix and
restart

1/FATL

ServerInitTrap Server tpsrvinit failed
during startup and
therefore couldn’t be
booted

Debug, fix and restart
Could also be due to
TUX resource limit

1/FATL

ServerMaxgenTrap Re-startable Server Debug server and 1/FATL

Page 38

has died Maxgen-1
time during the
specified grace period

restart

MachineBroadcastTra
p

This trap implies that a
broadcast delivery
(tpbroadcast) has
failed

Configure larger
message queues and
load balance clients
and servers such that
excessive load in not
put on certain
machines

2/FUNC

MachineFullMax
AccessorsTrap

Maximum number of
assessors has been
reached for this
machine LMID

Increase the
MAXACCESSERS
value for the
particular machine.
Or, if the
hardware/software
limits have been
reached for the
maximum number of
users on the machine,
move additional users
to other machines.

2/FUNC

MachineFullMax
ConvTrap

The limit has been
reached on the
number of concurrent
conversations
supported by this
machine LMID

Increase the value of
MAXCONV for the
particular machine to
the point that this
event is not
generated.

2/FUNC

MachineFullMax
GttTrap

The limit has been
reached on the
number of concurrent
transactions supported
by this machine LMID

Increase the value of
MAXGTT for the
particular machine to
the point that this
event is not
generated

2/FUNC

MachineFullMax
WsClientsTrap

The limit has been
reached on the
number of workstation
clients that can be
supported by this
machine LMID

Increase the value of
MAXWSCLIENTS for
the particular machine
to the point that this
event is not
generated.

2/FUNC

MachineSlowTrap The BBL on a non
master machine is
slow in generating the

Check network traffic
and performance
BBL

3/WARN

Page 39

heartbeat sent to he
Master

Bridge

NB This problem
could be intermittent

ServerRestartingTrap Server died abnormally
and has being
successfully restarted

Server should not
have died in first
place – debug, fix and
recycle

3/WARN

ClientDiedTrap Client exited without
doing a tpterm

None – Warning
However application
developers should
always endure that
clients perform a
tpterm before exiting

3/WARN

ClientSecurityTrap Client failed security
validation when trying
to join TUXEDO

Warning – makes
sure no unauthorized
access is being
attempted

3/WARN

TransHeurisic
AbortTrap

Database performed
heuristic abort for a
particular transaction

Check that
transaction manager
is still running

3/WARN

TransHeurisic
Commitrap

Database performed
heuristic commit for a
particular transaction

Check that
transaction manager
is still running

3/WARN

EventDeliveryTrap Event server failed to
perform at least one
notification of a posted
event

Make sure
notifications are
doable

3/WARN

EventFailureTrap The event server has
failed during a self-
check. Cannot put
message on own
message queue

Configure larger
message queues or
distribute the load in
the application
equally among all the
machines.

3/WARN

ResourceConfigTrap This trap is generated
whenever the system
configuration changes

None – Informational

4/INFM

MachineConfigTrap Change in machine
configuration

None – Informational 4/INFM

MachineStateTrap The Machine has
changed its state

None – Informational 4/INFM

NetworkConfigTrap Network Link between
machines has changed
state

None – Informational 4/INFM

NetworkFlowTrap The virtual circuit None – Informational 4/INFM

Page 40

between 2 machines
has changed to a new
state

ServerConfigTrap Configuration
Parameters for server
has been updated

None – Informational 4/INFM

ServerStateTrap Server has changed
state

None – Informational 4/INFM

ServerTpExitTrap Server received a
request but did a
tpreturn while server
was executing
application specific
code

None – Informational 4/INFM

ClientConfigTrap Client has change
configuration

None – Informational 4/INFM

ClientStateTrap Client has changed
state

None – Informational 4/INFM

13.5 Raising the standard SNMP Traps in a Test Environment

Trap Cause How to trigger
ResourceConfigTrap This trap is generated

whenever the system
configuration changes

Use the tmconfig utility to make a dynamic change to a
value in resources section of the bulletin board (e.g.
increment the MAXSERVICES by 1)

MachineBroadcastTra
p

This trap implies that a
broadcast delivery
(tpbroadcast) has
failed

This trap should not be tested since we are using the
tpbroadcast facility on the EIA project.

MachineConfigTrap Change in machine
configuration

Use the tmconfig utility to make a dynamic change to a
value in machine section of the bulletin board (e.g.
increment the MAXSERVICES by 1)

MachineFullMax
AccessorsTrap

Maximum number of
assessors has been
reached for this
machine LMID

Use the tmconfig utility to set the MAXACCESSORS
value in the machine section of the bulletin board to the
current number of accessors on that machine –1

MachineFullMax
ConvTrap

The limit has been
reached on the
number of concurrent
conversations
supported by this
machine LMID

This trap should not be tested since we are using the
conversational servers on the EIA project.

MachineFullMax
GttTrap

The limit has been
reached on the
number of concurrent

Use the tmconfig utility to set the MAXGTT value in the
machine section of the bulletin board to a small
number. Then start a larger number of testclients and

Page 41

transactions supported
by this machine LMID

issues concurrent transactions

MachineFullMax
WsClientsTrap

The limit has been
reached on the
number of workstation
clients that can be
supported by this
machine LMID

Use the tmconfig utility to set the MAXCWSCLIENTS
value in the machine section of the bulletin board to a
small number (e.g. 2) and then start more than this
number of workstation testclients.

MachineMsgQTrap A server posting a
message encountered
a blocking condition
while putting a
message on a
message queue

Cause the message queue to block. This will be fairly
difficult to achieve. Can I suggest that you implement a
service call LOOPSVC. This should either loop forever
or sleep for a very long time before it returns. During
the test make a large number of requests to
LOOPSVC. Only the first of these requests will be
processed. The others will queue on the services input
queue. Eventually this queue will fill and block raising
the MachineMsgQTrap.

MachinePartionedTrap The TUXEDO system
has been partitioned
the machine either
because BBL was slow
in responding or
network link to master
has been broker

Kill the BRIDGE process on the one master machine.
Kill the tlisten process. This will ensure that the
machine remains partitioned

MachineSlowTrap The BBL on a non
master machine is
slow in generating the
heartbeat sent to he
Master

Kill the BRIDGE process on the one master machine.
Kill the tlisten process. This will ensure that the
machine remains partitioned and no heartbeat will be
sent.

MachineStateTrap The Machine has
changed its state

Kill the Bridge on the none master machine. This
machine should be marked as partitioned until the
Bridge process is restarted when it will change its state
back to un-partitioned

NetworkConfigTrap Network Link between
machines has changed
state

Kill the Bridge on the none master machine. This
machine should be marked as partitioned until the
Bridge process is restarted when it will change its state
back to un-partitioned.

NetworkDroppedTrap Network Link between
machines has been
dropped abnormally

Kill the BRIDGE process on the one master machine.
Kill the tlisten process. This will ensure that the
machine remains partitioned

NetworkFailureTrap Connection failure
between bridge
processes

Kill the BRIDGE process on the one master machine.
Kill the tlisten process. This will ensure that the
machine remains partitioned

NetworkFlowTrap The virtual circuit
between 2 machines
has changed to a new

Since we only have 2 machines in the domain there
can only be 1 virtual circuit and therefore this trap
should never be generated.

Page 42

state
NetworkStateTrap A server has died and

the BBL has cleaned
up the slot occupied by
that server

Kill the testserver using the kill –9 command

ServerCleaningTrap Server has died
abnormally and BBL
has cleaned up slot
owned by server

Kill the testserver using the kill –9 command

ServerConfigTrap Configuration
Parameters for server
has been updated

Use Tmconfig to set the MAXGEN of the testserver to
4.

ServerDiedTrap Server has died
abnormally and the
BBL has detected this
during its periodic scan
of the BB

Kill the testserver using the kill –9 command

ServerInitTrap Server tpsrvinit failed
during startup and
therefore couldn’t be
booted

Re-link the testserver with a tpsrvinit that returns an
error when the servers starts.

ServerMaxgenTrap Re-startable Server
has died Maxgen-1
time during the
specified grace period

Configure a the testserver to be restartable with the
entry
RESTART=Y MAXGEN=3 GRACE=3600

This will instruct TUXEDO to restart the sever 3 times
within 60 minutes.

Issue a kill against the testserver. Wait until TUXEDO
restarts the testserver and issue another kill. At this
point testserver will have died MAXGEN-1 times and
the ServerMaxgenTrap should be generated.

ServerRestartingTrap Server died abnormally
and has being
successfully restarted

Kill a restartable server (e.g. testserver). This trap
should be generated when the server is started by the
system

ServerStateTrap Server has changed
state

Change the state of the server. Perform a selective
shutdown on this server (tmshutdown –s testserver).

ServerTpExitTrap Server received a
request but did a
tpreturn while server
was executing
application specific
code

Call a service that performs a tpreturn with TPEXIT
(EXITSVC). This will cause the server to exit and will
generate this trap.

ClientConfigTrap Client has change
configuration

Force a change in the client’s configuration. This can
be done by running the testclient, which will change
state from Active to Dead when it terminates execution.

Page 43

ClientDiedTrap Client exited without
doing a tpterm

Develop a test client application that makes a call to
the TOUPPER test service but then exits without
performing a tpterm. This should result in the
generation of the ClientDiedTrap.

ClientSecurityTrap Client failed security
validation when trying
to join TUXEDO

This trap should not be tested since we are using
TUXEDO based authentication on the EIA project.

ClientStateTrap Client has changed
state

Force a change in the client’s state. This can be done
by running the testclient, which will change state from
Active to Dead when it terminates execution.

TransHeurisic
AbortTrap

Database performed
heuristic abort for a
particular transaction

This trap should not be tested since we are using this
capability on the EIA project.

TransHeurisic
Commitrap

Database performed
heuristic commit for a
transaction

This trap should not be tested since we are using this
capability on the EIA project.

EventDeliveryTrap Event server failed to
perform at least one
notification of a posted
event

This trap should not be tested since we are using the
publish and subscribe facility on the EIA project.

EventFailureTrap The event server has
failed during a self-
check. Cannot put
message on own
message queue

This trap should not be tested since we are using the
publish and subscribe facility on the EIA project.

13.5.1 Trap Test Software

Test Client: This client connects to TUXEDO (tpinit) successfully calls the TOUPPER service but then
terminates execution without performing at tpterm to disconnect from TUXEDO.

TestServer: This server should have a tpsrvinit that can be replaced with one that returns failure on startup
(so that ServerInitTrap can be raised). It should publish three services – TOUPPER LOOPSVC and
EXITSVC.
The EXITSVC will simply call tpreturn with TPEXIT to test ServerTpExit trap.
The LOOPSVC will loop forever or sleep for a long period of time before it returns
The ubb entry for this server should specify that it is a restartable server (e.g. RESTART=Y MAXGEN=3
GRACE=3600)

13.6 A Review of the BEA MIB

It is clear that the BEA MIB defines a bewildering array of near 800 attributes across a large number of
groups and functionality areas.

Page 44

Which of these attributes should be used on the EIA project for the generation of user defined traps or should
be monitored to provide performance metrics?

I would suggest it might clarify the situation if we were to derive further (functional) classification of these MIB
attributes.

Functional Area Mib Group
The Unix
Operating System

BeaSystem, BeaUnix, BeaSmgr, BeaSysPerf, TuxTdevice

BEA Manager BeaIntAgt, BeaEventFilter
TUXEDO
Application

BeaDomainList, TuxTdomain, TuxTmachine, TuxTgroup TuxTserver, TuxTsvc,
TuxTqueue, TuxTmsg, TuxTTulog,,

TUXEDO
Communications

Workstation, TuxTclient, TuxTnetGroup, TuxTnetmap, TuxTlisten,
TuxTbridge

Transactions TuxTransaction,
Application
Queues

TuxTAppQ

Not Applicable BeaNt, BeaPm, BeaTrap, Tux Event, TuxTAcl, TuxTrouting,
TuxTconn

The EIA project TUXEDO application is built on the UNIX operating system and makes extensive use of application queues
(/Q).

The EIA operations team have expressed an interest in measuring the activity of transactions within the system and the number
of messages held on application (/Q) queues.

Clearly the Functional groups that would be of prime interest are

1. Those relating to the underlying UNIX operating system (disk & CPU utilization etc).
2. The /Q group.
3. The BeaIntAgt group that allows RULE_ACTIONS to be maintained dynamically
4. The Tuxedo application and Tuxedo communications groups that allows the health of the TUXEDO

application to be monitored.

13.7 The Unix Operating System

The unix_snmpd agent supplied with the agent integrator product uses can monitor a number of mib groups
including beaSystem, BeaUnix, BeaSmgr and BeaSysPerf. All of the attributes associated with these groups
are read only.

13.7.1 BeaSystem

This group provides access to basic Unix OS characteristics. All of these attributes are read only and would
not be suitable either a basis for raising user defined traps or for generating performance metrics.

13.7.2 BeaUnix

All of the attributes in this group are read only
beaPsTable - Process table

Page 45

beaPsPid
beaPsCpu Percentage of CPU capacity in use
beaPsMem Percentage of real memory being used by process
beaPsSize combined size of data and stack segments – kB
beaPsStatus R,T,P,D,I,Z

beaDfTable – Filesystem
beaDfIndex Index of file system entry
beaDfkbytes Size of file system in Kb
beaDfUsed The number Kb used
beaDfCapacity Percentage of total capacity used
beaPstat –
beaPstatSwAlloc Amount swap space KB allocated to private pages
beaPstatSwapUser Total swap space allocated or reserved (kB).
BeaPstatSwapAvail Total swap space available (kB)

BeaMqTable – IPC message queues
BeaMqCbytes Number of bytes outstanding on queue
BeaMqQnum Number of messages on queue
BeaMqQBytes Max number bytes allowed on queue

BeaShmTable – IPC shared memory
BeaShmSeqgsz Size of shared memory segment
BeaSemTable IPC semaphores

BeaLclDfTable – local File System
beaLclDFilesystem name of file system entry
beaLclDfkbytes Size of file system in Kb
beaLclDfUsed The number Kb used
beaLclDfCapacity Percentage of total capacity used

BeaSmgr – shared memory table

BeaShmgrIpcKey IPC key of shared memory
BeaSmgrShmAllocated Status of shared memory can be monitored to detect if shared memory is corrupted

BeaSmgrSubSystem Name of subsystem using shared memory
BeaSmgrMaxShmEntries Maximum number of entries configured for shred memory
BeaSmgrtCurrentShmEntries Current number of entries in shared memory
BeaShmgrPctShmUsed Percentage of entries in shared memory used

BeaSysPerf – workstation performance attributes – most of these are cumulative counters
BeaSysPerfCPu Percentage of CPU capacity being utilized
BeaSysPerfSwap cumulative counter of jobs swapped

BeaSysPerfPerfDisk Disk Traffic in number of blocks
BeaSysPerfintr Number of interrupts
BeaSysPerfPfLoad Size of run queue
BeaSysPerfPage Paging Activity
BeaSysPerfIfNumber Number of network interfaces
BeaSysPerfDiskDelta Number of blocks transferred since last poll

Page 46

BeaSysPerfLoadDelta Size of run queue since last poll
BeaSysPerfPageDelta Paging activity since last poll

BeaSysPerfIf - Interface Performance Attributes table

BeaSysPerflfDescr Description of interface
BeaSysPerfIfOperStatus Status of interface up(1) down(2) testing(3)
BeaSysPerfIfInPackets Total number of packets received on this interface
BeaSysPerfIfOutPackets Total number packets sent form this interface

13.8 TUXEDO Application /Q (TuxTAppQ)

The Application queue (/Q) MIB consists of five groups:

TuxTAppQctrl Controls and limits range of access via the other TuxTAppQ mib classes.
TuxTQspaceTbl Application Queue Space. This group can be used to modify or create a new queue space. To

create a new row in this table, a SET request should be issued with an index
(tuxTQspaceGrpNo) of 40000. This is a reserved value for row creation in the table.

TuxTAppQTbl Application Queues. One or more application queues may exist in a single application queue
space. Each row represents a separate queue. This mib group can be used to create a new
queue (row on tab le) by issue a SET request that specifies at least the values for the
tuxTAppQname, tuxTAppQspaceName, and tuxTAppQmConfig attributes

TuxTAppQmsgTbl Messages within Application Queues. A message is not created by an administrator; instead,
it comes into existence as a result of a call to tpenqueue. A message can be destroyed either
by a call to tpdequeue or by an administrator. Certain attributes of a message can also be
modified by an administrator. For example, an administrator can move a message from one
queue to another queue within the same queue space or change its priority.

TuxTQtransTbl Transactions associated with application queues.
TuxTAppCtrl - Control Table

These read-write attributes control access to queue spaces, queues and message managed by other groups
within the TuxTAppQ MIB. Using this group you can limit your TuxTAppQ access by machine, queue space,
queue, message priority (not used here at EIA) and time. If you don’t set specific values the defaults are
used

TuxTAppQctrlLmid R/W Machine. Local (1) or all (2).
TuxTAppQctrlQmConfig R/W Device. Default is ‘*’ - all
TuxTAppQctrlSpaceName R/W Queue Space. Default is ‘*’ - all
TuxTAppQctrlQname R/W Queue. Default is “*’ - all
TuxTAppQctrlMsgLoPrio R/W Lowest priority message to return. Default is 0 - none
TuxTAppQctrlMsgHiPrio R/W Highest priority message to return. Default is 0 - none

S StartTime R/W Start Date and time in format YYMMDDHHMMSS default is ‘*’ - all
TuxTAppQctrlMsgEndTime R/W End Date and time in format YYMMDDHHMMSS default is ‘*’ - all

TuxTappQSpaceTbl – Queue Space

This Table specifies each of the table spaces that have been created to hold the application queues. This
MIB group can be used to add a new queue space or modify certain attributes of an existing queue space.
Creating a New Queue Space

Page 47

To create a new row in this table, a SET request should be issued with an index (tuxTQspaceGrpNo) of 40000. This
is a reserved value for row creation in the table. The SET request also needs to specify values for at least
tuxTQspaceQmConfig, tuxTQspaceName, tuxTQspaceLmid, tuxTQspaceIpckey, tuxTQspaceMaxMsg,
tuxTQspaceMaxPages, tuxTQspaceMaxProc, tuxTQspaceMaxQueues, and tuxTQspaceMaxTrans. The newly created
instance (row) will not be visible until it is attached to some server group.

Deleting an Existing Queue Space
An existing queue can be deleted by setting the tuxTQspaceState attribute to invalid

Modifying an Existing Queue Space
The following attributes can be modified for an existing queue by issuing a SNMP SET.
State (tuxTQspaceState), Blocking factor (tuxTQspaceBlocking), Error Queue Name (tuxTQspaceErrQname), Initiation
Mode (uxTQspaceForceInit), IPC Key (tuxTQspaceIpckey), Max Messages (tuxTQspaceMaxMsg), Max Pages
(tuxTQspaceMaxPages), Max Procedures (tuxTQspaceMaxProc), Max Queues (tuxTQspaceMaxQueues), Max
Transactions (tuxTQspaceMaxTrans).

Each TuxTappQEntry row has the following attributes:

tuxTQspaceName R/W* Name of the application queue space
tuxTQspaceQmConfig R/W* Absolute pathname of the file/device where queue space is located
tuxTQspaceLmid R/W* Local Machine where queue space is located
tuxTQspaceGrpNo R/W* Group No of any server group for which this group is resource manager
tuxTQspaceState R/W SNMP GETs can return inactive(1), initializing(2), open(3), or active(4). SETS

can set to open(3), cleaning(5) or invalid(6). Setting to invalid will delete the queue
space

tuxTQspaceBlocking R/W Blocking factor. Default is 16
tuxTQspaceErrQname R/W Name of error queue associated with this table space.
tuxTQspaceForceInit R/W Do we initialize disk pages on new extents (yes(1), no(2).
tuxTQspaceIpckey R/W IPC key used to access queue space in shared memory
tuxTQspaceMaxMsg R/W The max numbers of messages this queue space can contain
tuxTQspaceMaxPages R/W Max disk pages for all queues in this queue space
tuxTQspaceMaxProc R/W The max number of processes that can attach to queue space
tuxTQspaceMaxQueues R/W The max number of queues
tuxTQspaceMaxTrans R/W The max number of simultaneous active transactions
tuxTQspaceCurExtent R/O The current number of extents used by queue space (< 100)
tuxTQspaceCurMsg R/O The current number of messages on all queues in queue space
tuxTQspaceCurProc R/O The current process accessing the queue space
tuxTQspaceCurQueues R/O The current number of queues
tuxTQspaceCurTrans R/O The current number of outstanding transactions
tuxTQspaceHwMsg R/O The highest number of messages in queue space since it as last open or

cleaned
tuxTQspaceHwProc R/O The highest number of processes simultaneously attached to the queue

space since it as last open or cleaned
tuxTQspaceHwQueues R/O The highest number of queues in queue space since it as last open or

cleaned
tuxTQspaceHwTrans R/O The highest number of transactions in queue space since it as last open or

cleaned
tuxTQspacePercentInit R/O The percentage of disk space initialized for the queue space.

Page 48

• Values that can only be set when a new row is created

TuxTappQTbl - Application Queue

The application queue table is made up of a sequence of TuxTappQEntry. This MIB group can be used to
add a new queue or modify certain attributes of an existing queue.
Creating a New Queue

The attributes TuxTAppQname, Tux,TappQspaceName, TuxTAppQmConfig, tuxTAppQlmid and TuxTAppQgrpNo
can only be modified when a new row (queue) is added and must then be specified.

Deleting an Existing Queue.
An existing queue can be deleted by setting the TuxTAppQstate attribute to invalid

Modifying an Existing Queue
The following attributes can be modified for an existing queue by issuing a SNMP SET.
State (TuxTAppQstate), Order (TuxTAppQorder, High Water Mark (TuxTAppQcmdHw), Low Water Mark
(TuxTAppQcmdLw) High/Low Water Mark Command (TuxTAppQcmd), Max Number Retries
(uxTAppQmaxRetries), Out of Order Processing (TuxTAppQoutOforder) and Retry Delay (TuxTAppQretryDelay

Each TuxTappQEntry row has the following attributes:

TuxTAppQname R/W* Name of application queue
TuxTAppQspaceNameR/W* Queue Space
TuxTAppQmConfig R/W* Absolute path of Queue space Device
TuxTAppQlmid R/W* Identifier of the logical machine where the application queue space is

located.
TuxTAppQgrpNo R/W* Group No of any server group for which this queue is resource manager
TuxTAppQstate R/W Valid(1), invalid(2). Issuing a SET with invalid deletes the specified queue
TuxTAppQorder R/W Order in which messages on the queue are to be processed. Valid values are PRIO,

FIFO or time. Default is FIFO
TuxTAppQcmd R/W The command to be executed when high water mark is reached
TuxTAppQcmdHw R/W The queue high water mark
TuxTAppQcmdLw R/W The queue low water mark
TuxTAppQmaxRetries R/W Max number of retires for a failed queue message. When exhausted message is

place on error queue. Default is 0.
TuxTAppQoutOforder R/W The way in which out of order message is to be handled (valid values are none(1)
top(2), msgid. Default is none
TuxTAppQretryDelay R/W The delay in seconds between retries for a failed message. Default is 0.
TuxTAppQcurBlocks R/O The number of disk pages currently consumed by the queue
TuxTAppQcurMsg R/O The number of messages currently in the queue.

• Values that can only be set when a new row is created

13.8.1 TuxTAppQmsg – Messages

The TuxTAppQmsgTbl made up of on or more tuxTAppQmsgEntry. The values returned by this MIB are
controlled by tuxTAppQctrl.

Page 49

Creating a New Message

New Message rows cannot be created

Deleting an Existing Message

An existing message can be deleted by setting the tuxTAppQmsgState attribute to invalid

Modifying an Existing Message

A message can be moved to a new queue(tuxTAppQmsgNewQname), it priority changed (tuxTAppQmsgState) or
order (tuxTAppQmsgPrior) or time (tuxTAppQmsgTime) of processing altered if applicable.

Each Row has the following attributes

TuxTAppQmsgId R/O Message identifier
tuxTAppQmsgSerNo R/O
tuxTAppQmsgGrpNo R/O Server Group No
tuxTAppQmsgQname R/O Application Queue Name
tuxTAppQmsgQmConfig R/O Device Holding Queue Space
tuxTAppQmsgQspaceName R/O Queue Space Name
tuxTAppQmsgLmid R/O Logical Machine ID holding Queue Space
tuxTAppQmsgState R/W Message Status Valid (1) invalid(2). Setting the value to will delete the

message from the queue
tuxTAppQmsgNewQname R/W Name of Queue into which to move message
tuxTAppQmsgPrior R/W Priority for the message. Valid only for Priority based queues
tuxTAppQmsgTime R/W The time when the message will be processed. Valid only for TIME based

queues
tuxTAppQmsgCorId R/O Correlation Identifier provided by tpenqueue
tuxTAppQmsgCurRetries R/O Number of Retries attempted for this message
tuxTAppQmsgSize R/O Size of the message in Bytes.

13.8.2 TuxTQtransTbl – Transactions

This is primarily a read only group. The only attributes of a queued transaction that can be set is Transaction
state which can be set to either aborted or committed.

TuxTQtransXid R/O The transaction identifier
tuxTQtransIndx1 R/O Transaction index
tuxTQtransIndx2 R/O Transaction index
tuxTQtransIndx3 R/O Transaction index
tuxTQtransIndx4 R/O Transaction index
tuxTQtransIndx5 R/O Transaction index

tuxTQtransGrpNo R/O The group number of server group for which queue space is resource manager
tuxTQtranSpaceName R/O Queue Space Name
tuxTQtransQmConfig R/O Path of device holding the Queue Space
tuxTQtransLmid R/O The Machine holding the Queue Space

Page 50

tuxTQtransState R/W Transaction State. GETS can return actdive(1), abort-only(2), aborted(3), com-
called(4), ready(5), decided(6), suspended(7). SETS can set habort(8), hcommit(9)

13.9 None Queued Transactions

The BEA MIB can be used to track transactions through the TUXEDO core components (servers, messages,
queues etc). The TUXEDO MIB also provides a transaction table (tuxTranTbl) that is managed by the
tux_snmpd agent and represents the runtime attributes of active transactions within the application.

The transaction table is made up of one or more rows. Each row in this table is identified and/or indexed
using the attributes TuxTranCoordLmid, TuxTPTranId, tuxTranXid, tuxTranIndx1, tuxTranIndx2,
tuxTranIndx3, tuxTranIndx4, or tuxTranIndx5.

TuxTranCoordLmid R/O Logical machine identifier of server group coordinating the transaction.
TuxTranState R/W This attribute can hold the values of active(1), abort-only(2), aborted(3), com-called(4),

ready(5), decided(6) and suspended(7). SNMP sets can be used to set the value only to
aborted.

TuxTranTimeOut R/O Time left in seconds before transaction times-out.
TuxTranGrpCnt R/O Number of groups that participate in transaction
TuxTranGrpNo R/O Group number of participating group
TuxTranGState R/W Group status can be active(1), aborted(2), rd-only(3), ready(4), hcommit(5),

habort(6), done(7) . SNMP sets can be used to set the value to either
hcommit(5) orhabort(6)

13.10 List of Attributes to be Polled for User Defined Traps Mechanism

User defined traps are specified by adding a RULE_ACTION to the BEA Manager configuration file
(beamgr.conf). These rules can poll any attribute in any MIB accessible from the agent integrator. In the EIA
architecture this means that it can poll any attribute in either the BEA or HP (peer agent) mib.

RULE syntax

RULE_ACTION <name> <polling frequency in seconds> <condition> <action>
Example (CPU > 80% busy)

RULE_ACTION cpu 600 if (VAL(140.11.1.0) > 80) { TRAPID_ERR = 104 TRAPID_OK = 105 }

Name
Must be unique and less than 8 characters
Condition
Can be made up of one or more Boolean operation. Each operation has the basic format
(VAL(OID) relation value). Operations are combined using the OR (||), AND (&&) operator. Relationships may
be expressed using any of the following operators (==, != , <, >, >=, <=).
Action
There are four action types;

1. TRAPID_ERR = specific trap number. This trap generated when state of rule transitions from OK to

ERR
2. TRAPID_OK = specific trap number. This trap generated when state of rule transitions from ERR to OK

Page 51

3. COMMAND_ERR = “command” Where command is the path for a executable or script (e.g.
/usr/errscript.sh).

4. COMMAND_OK = “command”

Traps pass the following information.

• The user defined trap number
• Rule name and state change
• Enterprise ID (OID)

13.11 Changing Rules Dynamically using SNMP (beaIntAgt)

The agent integrator support the MIB group beaIntAgt – The BEA intelligent agent group. This group contains
the beaIntagtTable.

Each row in this table specifies an individual RULE_ACTION. All of the attributes in this table are read write
and SNMP (either direct from Openview Node Manager or using Snmpwalker) can be used to add, delete or
modify RULE_ACTIONS.

Each Row is made up of the following attributes:

BeaIntAgtRuleId The name of the rule
BEAIntAgtScanIntvl Polling interval in seconds
BeaIntAgtRuleAction The RULE, condition and action (e.g. “if (VAL(140.11.1.0) > 80) { TRAPID_ERR = 104

TRAPID_OK = 105”)
BeaIntAgtStatus active, invalid or inactive. If set to invalid the rule is deleted. If set to inactive polling is

disabled but row not deleted.

13.12 UNIX RULES

These allow us to raise a trap if any of the underlying UNIX system resource is over utilized or nearing
exhaustion.

If the CPU is more than 80% busy
RULE_ACTION cpu 600 if (VAL(140.11.1.0) > 80) { TRAPID_ERR = 104 TRAPID_OK = 105 }

If any disk capacity in use is greater than 90%,
RULE_ACTION df 600 if (VAL(140.2.22.1.5.*) > 90) { TRAPID_ERR = 102 TRAPID_OK = 103 }

13.13 TUXEDO COMMUNICATION RULES

These detect errors encountered by TUXEDO when attempting to communicate between machines within
the same domain. When the Master machine cannot reach a machine its status is set to partitioned and
remains partitioned until communications are re-established.

Partitioning can occur because of machine and network failures or slow downs and also if the BBL or
BRIDGE process are slow or inactive.

Page 52

Note: Many of these partitioning conditions are already covered by the 32 standard SNMP traps.
Consequently the value of generating additional TUXEDO communication user defined traps must be
questioned.

Check if any machine the domain got partitioned. (tuxTmachineState)
RULE_ACTION mcState 60 if (VAL(140.300.5.1.1.6.*) == 3) { TRAPID_ERR = 302 TRAPID_OK = 303 }

13.14 TUXEDO APPLICATION RULES

These allow us to monitor the health of the components within the TUXEDO application.

Alert if any server group is not active. (tuxTgroupState)
 RULE_ACTION grpState 60 if (VAL(140.300.4.1.1.4.*) != 1) { TRAPID_ERR = 300 TRAPID_OK = 301 }

Check if TMSYSEVT is active. (tuxTsrvrName & tuxTsrvrState)
RULE_ACTION sysevtUp 60 if ((VAL(140.300.20.1.1.3.*) >= "TMSYSEVT") && (VAL(140.300.20.1.1.5.*) !=
1)) { TRAPID_ERR = 304 TRAPID_OK = 305 }

Monitor server queue size. (tuxTsvcSrvrNqueued)
RULE_ACTION srvrQsz 60 if (VAL(140.300.10.2.1.15.*) > <THRESHOLD>) { TRAPID_ERR = 308
TRAPID_OK = 309 }

13.15 TRANSACTION RULES

These rules allow us to monitor transactions as they flow through the TUXEDO application.

Monitor Transaction States e.g. aborted(3). (tuxTranState)
RULE_ACTION tranState 60 if (VAL(140.300.23.1.1.9.*) == 3) { TRAPID_ERR = 306 TRAPID_OK = 307 }

13.16 APPLICATION QUEUE RULES

Application queues (/Q) lies at the heart of the EIA architectural design.

Monitor number of messages in application queues. (tuxTAppQcurMsg)
RULE_ACTION appqMsgs 60 if (VAL(140.300.12.1.1.15.*) > <THRESHOLD>) { TRAPID_ERR = 310
TRAPID_OK = 311 }

Page 53

13.17 List of Attributes to be Monitored to Provide Performance Metrics

Performance metrics are to be gathered by a housekeeping process and logged to Measureware using DSI.
The housekeeper periodically issue a SNMP Get (via Simpwalk) against predefined MIB attributes.

Which BEA MIB attributers should be polled to provide performance metrics;

1 Candidate attributes should provide a value that represents some aspect of the performance of
either the Operating System or the TUXEDO application

2 The DSI interface to Measureware requires a single integer value. Consequently tables of values
cannot be used

3 Candidate attribute should have a stable predetermined identifier. The housekeeping process will be
configured to request values for a finite list of attributes that must has a known unique identifier. So
for example rows from the beaPsTable cannot be used since there identifier (process id) will vary
and cannot be predetermined.

These requirements greatly restrict the number of candidates that can be identified from the nearly 800
attributes of the BEA Mib. It should be noted that additional performance metrics could also be raised against
attributes in the HP MIB – but this is outside the scope of the current study.

13.18 UNIX Attributes

Most of the UNIX attributes in the BEA MIB are in the form of tables .

Process Table
The process table (beaPsTable) provides attributes for all of the processes running on the managed
node. It provides 2 potentially useful measures of performance. These are

1 beaPsCpu - % of CPU being used by each process
2 beaPsMem % of real memory being used by each process

Unfortunately the identifier for this table is process id which cannot be predetermined.
File System Tables
Two Mib tables provide information about file system usage. The MIB table beaDfTable provides
details of each of the file systems mounted on this host. The Table BeaLclDfTable provides details of
the attributes of the local file systems. Both of these tables provide a measure of the percentage of
the filesystem in use. These are

1 BeaLclDfTable(beaLclDfCapacity - %filesystem in use)
2 BeaDfTable.beaDfCapacity
Each of the entries in these tables can be identified using the name of the filesystem

IPC Utilization
A number of BEA MIB tables provide details about IPC resource usage on the managed node
(BeaMqTable ()
BeaShmTable(), BeaSemTable()). None of these provide attributes that could be used to measure
system performance, and furthermore each is indexed by a none predetermined identifier (eg
BeaMqId).

The beaShmgrtable lists the attributes of each page in shared memory. While these are identified by
a none determinate index (beaSmgrIndex) it does provide some attributes that might be of interest

Page 54

1 BeaSmgrAllocated – provides an indication of shared memory status and will be set to no (1)
if the share memory is corrupted or absent.

2 BeaShmgrPctShmUsed – provides the percentage o entries in shared memory that are in
use

3
The System Performance Group (beaSysPerf)

This group provides a measure of system performance. Many of these are individual measures (rather than
table entries). Some of these scalar values are cumulative and represent the total value since TUXEDO was
last rebooted. However this group also provides a delta attribute for many of these that specifies change
since the last poll (SNMP GET).

1. beaSysPerfCpu – Percentage of CPU capacity utilized between polls
2. BeaSysPerfDiskDelta – Disk traffic in number of transfers in blocks since the last poll
3. BeaSysPerfIntrDelta – No device interrupts since the last poll
4. BeaSysPerfLoadDelta – Size of run queue since the last poll
5. BeaSysPerfPageDelta – Paging Activity in number of pages since the last poll.

The BeaSysPerf group also provides a BeaSysPerfIfTable that lists the attributes of each of the physical
interfaces to the system. Again each of these rows is identified by a none deterministic index, but provides
counts of the number of packets received and sent form an interface that could be summed across all
interface (table rows).

13.19 APPLICATION QUEUE Attributes

The Tuxedo Application Queues (/Q) lie at the heart of the EIA Tuxedo Domain. All Transaction pass through the various
system /Q’s and system performance can be readily monitored via the TuxTAppQ Mib Group.

The TuxTAppQ Mib group is made up of 5 sub groups. For our purposes the mose interesting of these is
likely to be the Queue Space Table. For the each machine in the EIA project there will be only one queue
space. In contrast there will at least 6 queues per queue space.

Therefore if we want to query scalar rather than tabular data the TuxTappQSpaceTbl is likely to provide the most useful
information. This table is likely to contain only one row. Several attributes of the TuxTappQSpaceTbl rows are likely to be of
interest when trying to gather performance metrics. These are:

1. tuxTQspaceCurMsg The current number of messages
2. tuxTQspaceCurProc The current number of processes
3. tuxTQspaceCurTrans The current number of outstanding transactions
4. tuxTQspaceHwMsg The highest number (high water mark) of messages in the queue space since it was last opened

or cleaned.
5. tuxTQspaceHwTrans The highest number (high water mark) of transactions in the queue space since it was last

opened or cleaned.

	Abstract
	Business Case
	Support Model
	High Availability Model

	Architectural Approach
	Implementation
	Conclusions
	Next Challenges
	Additional Reference
	Appendix A – EIA High Availability Architecture Principles.
	Introduction
	Approach
	Major Technology Additions (Wave 2)
	Software/Application Components
	Application Monitoring
	Process Monitoring
	Process Re-Start/Recovery
	Performance Monitoring
	Software Component Deployment
	Infrastructure
	Wave 2 (Lab Comment) Recommendations to Executive Sponsor

	Appendix B – BEA Manager Architecture
	Management Requirements
	The BEA Manager Components
	SNMP Agent Architecture
	Management Architecture
	Alerts
	Get and Sets
	Performance Metrics

	Appendix C – BEA Manager High Availability Strategy.
	Introduction
	EIA HA Architecture
	Multiple Machine Mode
	Implications for BEA Manager

	Single Machine Mode
	Implications for BEA Manager

	SNMP Agent Architecture
	Failover and the BEA Manager TUXEDO Agent

	Appendix D – BEA Manager User Defined Trap List.
	Background
	Trap Table
	Trap Output
	Standard Trap (.1.3.6.1.4.1.140.300.0.23: server state trap)
	User Defined Trap (.1.3.6.1.4.1.140.1.1.0.110: user defined trap 110)

	Appendix E – BEA Tuxedo MIB Definitions
	Introduction
	Default SNMP Traps
	User defined SNMP Traps
	Performance Metrics

	Overview of the BEA MIB
	BEA MIB GROUPS
	The TUXEDO MIB
	The Standard TUXEDO SNMP traps
	List of Standard TUXEDO SNMP Traps
	Raising the standard SNMP Traps in a Test Environment
	Trap Test Software

	A Review of the BEA MIB
	The Unix Operating System
	BeaSystem
	BeaUnix
	BeaSmgr – shared memory table
	BeaSysPerf – workstation performance attributes – most of these are cumulative counters

	TUXEDO Application /Q (TuxTAppQ)
	TuxTAppCtrl - Control Table
	TuxTappQSpaceTbl – Queue Space
	TuxTappQTbl - Application Queue
	TuxTAppQmsg – Messages
	TuxTQtransTbl – Transactions

	None Queued Transactions
	List of Attributes to be Polled for User Defined Traps Mechanism
	Changing Rules Dynamically using SNMP (beaIntAgt)
	UNIX RULES
	TUXEDO COMMUNICATION RULES
	TUXEDO APPLICATION RULES
	TRANSACTION RULES
	APPLICATION QUEUE RULES
	List of Attributes to be Monitored to Provide Performance Metrics
	UNIX Attributes
	Process Table
	File System Tables
	IPC Utilization
	The System Performance Group (beaSysPerf)

	APPLICATION QUEUE Attributes

