Profiling Support on HPUX 11i version 1.5

PROFI LI NG SUPPORT ON HPUX 11i VERSION 1.5
MOHI T SI NHA
HEWLETT- PACKARD, ESDI,
29, CUNNI GHAM ROAD,
BANGALORE- 560052
| NDI A
(91) (80) 2251554 Ext 1047
nmohi t s@ ndi a. hp. com
nmohi t _si nha@p. com
Fax (91)(80) 220-0196

Abstract

Performance is a key differentiator for high-end applications.
Profiling helps developers to analyze and inprove the perfornance of their
applications on UNX platforms. Gorof style profiling generates the timng
information and call graph for the wuser application. Single Shared Library
Profiling (SSLP) Support has been introduced starting HP-UX 11i,which has been
extended to Miltiple Shared Library Profiling (MSLP) in subsequent versions.
Profiling requires gprof tool and gprof library. To profile an application, the
user needs to conpile his sources using appropriate conpiler options. These
options will link gprof library inmplicitly with user application, resulting in
runtine invocation of profiling routines. At term nation of the application all
the profiling information is dunped into a file named gnon.out. The gprof tool
then can be used to generate the timng and call graph information using
gnmon.out. This paper explains how profiling works and how you can use it to
nmeasure and i nprove the performance of your applications/libraries. Especially it
will be interesting to learn how to interpret call graphs and tinming information
for inter/intra-library calls. At the end of the paper, references of sanple
exanpl es are given with a step-by-step expl anation.

The MSLP support involved devel opnent of a new library |ibgprof and
nodi fications in the existing gprof command to interpret the information dunped
in the profile file, gnon.out.The format of gnon.out has to be changed in order
to account for profiling of Miultiple | oad nodul es.

The flow of the paper will be as foll ows:

» Introduction to profiling (what is profiling, what is profil syscall,
_nmcount routine, nmonitor routine and various techniques of profiling).

» Wiy Shared library Profiling.

» Tricks/Tips of gprof.

» Sanple exanples, with a step-by-step explanation, to educate users on how
to interpret gprof output.

» Concl usi on.

» Acknowl edgenents.

Profiling Support on HPUX 11i version 1.5

1. Introduction to profiling:

Profiling means providing the user with statistics of tine taken by
various routines along with the percentage of CPU time. The user can then use
these statistics to either fine tune their applications or change them in an
optimzed manner. The HP-UX operating system provides two instrunmentation
techni ques for profiling the execution of programs: program counter sanpling, and
procedure call counting. Program counter (PC) sanpling inplemented within the OS
at the clock interrupt level, provides statistical information about how much
time is spent at different points in the program enabling a progranmer to
determ ne what routines are responsible for nbst of the execution time. Procedure
call counting, inmplemented by code added to each procedure at conpile tine,
provi des an exact count of the nunber of times each procedure was call ed.

These two techniques are usually enployed together in conjunction with
the prof and gprof tools. The -p (prof) & -G (gprof) conpiler options have two
effects:

O Wen used at conpile time, they cause the conpiler to generate code in each
procedure that counts the call

O Wen used at link tine, the conpiler passes the options to the linker,
whi ch arranges for appropriate program startup code to enable PC sanpling
and to wite the profiling results to a data file when the program
t er m nat es.

An instrumented program accumul ates the profiling information in a
buffer while it is executing, and then wites the data to a file when it
term nates. The prof or gprof tool can then correlate this data to the synbol
table of the appropriate |oad nodule and produce a profile report. These two
tools differ in the anpunt of data collected and the details provided in the
report; gprof collects call-graph information, and allocates tine spent in each
procedure proportionally to the callers of that procedure ("charge back"), in
addition to giving flat profiling i nformati on about routines |ike prof.

Profiling involves the followi ng conponents fromruntinme architecture:

O The conpilers. Wth the -p and -G options, conpilers instrunent the
conpil ed code by inserting calls to the _ntount routine.

Q The startup files crt0.0, ncrt0.0, and gcrt0.o0.Depending on Ilink-tine
options an application is linked with one of these startup scripts. |If
neither -p nor -G is specified then application is linked with crtO. o,
which contains a null _ntount routine (a dunmy reference). The _ntount
routine will be discussed in detail later in the paper. If -p is
specified, the application is linked with ncrt0.0, which contains code to
start profiling, a real version of _ntount and a code to wite the
accunul ated profiling data to a file when program ternminates. If -G is
specified application links with gcrt0.o0 which contains simlar code but
accunul ates nore information to be used by gprof. These startup scripts
are present only for PA32 runtine. For PA64 and 1A64 runtine
architectures, the profiling related codes have been nmoved from these

startup files to equivalent libraries Iibprof and |ibgprof.
O The Clibrary. It contains a prof conpatible version of nmonitor API, which
is a front end for profil syscall. For gprof, the conpatible version of

nonitor is present in gcrt0.0.This is there only for PA32.For PA64 and
| A64 the standard versions of nonitor has been nmoved fromlibc or gcrt0.o0
to libprof and |ibgprof respectively.

— 2

Profiling Support on HPUX 11i version 1.5

Q Prof and gprof tools. These analysis tools read the data files produced by
an instrunented application, and generate the profile reports.

1.1. Program counter sanpling: the profil/sprofil systemcall

The profil/sprofil syscall are used to request the OS to start sanpling
or to stop sanpling. Wen sanpling is on, the OS sanples the program counter (PC)
at certain intervals, maps the program counter to a "bucket" in the sanple
buffer, and increnents the counter in that bucket. The parameters to profil
control the location and size of the sanple buffer, which is in user space, the
starting address of the code region being profiled, and a scale factor, ranging
fromO0.0 to 1.0,that deternines the mapping of PC values to the buckets. Larger
scal e factors provide greater granularity in the sanpling data.

The profil systemcall has the follow ng prototype:

void profil (

unsi gned short int *buff,
size_t bufsiz,
void *of fset,

unsi gned int scale

)
The first argument, buff, is a pointer to the base of the sanple
buffer, and the second argunent, bufsiz, is the size of this buffer in bytes. The
third argunent, offset, is a pointer to the base of the text region to be

profiled, and the fourth argunent scale, specifies the scale factor to be used in
mappi ng locations in the text segnment to buckets, which effectively defines the
size of the text region.

The sanple buffer is an array of 16-bit buckets, to which instructions
in the text region are mapped according to the scale factor. The scale factor is
a fixed-point fraction between 0.0 and 1.0,with an inplied radix point 16 bits
fromthe right. If scale is 0 or 1, sanpling is turned off. The third argunent,
offset, is expected to be the actual address of the beginning of the region of
the code to be profil ed.

The current profil system call dates back to the first inplenmentation
of UNIX, and suffers fromthis in tw respects. First, it allocates the sanple
buffer as an array of 16-bit counters, as a result of which the bucket wl
overflow if it receives more than 65,535 hits (alnmpst 11 minutes of CPU tine at
100 Hz). The OS provides no overflow indication. Second, the interface allows for
only a single text region to be profiled. This has been a serious linmtation for
doi ng performance analysis on shared libraries. So a new syscall sprofil has been
i mpl enented in order to allow profiling of Miultiple | oad nodul es (text segnents).
The sprofil systemcall has the follow ng prototype:

int sprofil (struct prof *profp,
i nt profcnt,
struct tinmeval *tvp,
unsi gned int flags
)

The first argunent, profp, is a pointer to an array of prof structures;
the second argunent, profcnt, is the nunber of elenments in the array. Each
element of the array specifies one text region that should be profiled. Wen
called with a non-zero value of profcnt, profiling is enabled for each text
region specified in the array; if profiling was already enabled for sonme regions,
it is disabled for those regi ons before being enabled for the new set of regions.
VWen called with a zero value of profcnt, profiling is disabled. If non-NULL, tvp

— 3

Profiling Support on HPUX 11i version 1.5

points to a struct tineval, which on return wll <contain the tine value
corresponding to one clock tick. The flags argunment can be used to choose 16-bit
or 32-bit buckets. If set to PROF_USHORT, profiling will treat the sanple buffer
as an array of 16-bit buckets; if set to PROF_U NT, profiling will treat it as an
array of 32-bit buckets. (There should be no need for 64-bit buckets, since 32-
bits allow counts to reach many CPU-years.) The prof structure has four fields,
corresponding to the four arguments to the original profil system call, and is
defined as foll ows:

struct prof (void *pr_base; /* buffer base */

unsigned int pr_size; /* buffer size */

unsigned int pr_off; /* pc offset */

unsi gned int pr_scale; /* pc scaling */
);

The field pr_base is a pointer to the base of the sanple buffer for
this region, and pr_size is the size of this buffer, in bytes. The field pr_off
is a pointer to the base of the text region to be profiled, and pr_scale
specifies the scale factor to be used in mapping | ocations in the text segnent to
buckets, which effectively defines the size of the text region

The extension of Miltiple Shared Library Profiling (MSLP) on HPUX 11
version 1.5 was nmainly possible as a result of devel opnent of this new syscall.
The details of MSLP are covered |ater in the paper.

1.2. Procedure call counting: the _ntount routine

VWen conpiling code wth the -p or -G option, the conpiler
instruments each procedure by inserting a call to _ntount at the beginning of
each procedure (following the procedure prologue). This procedure has the
follow ng interface:

void _ntount (unsigned |ong rp,
unsi gned | ong pc,
unsi gned int **counter_ptr);

The first argument, rp, is a copy of the return pointer that is,
address of the call site. This gives gprof the call graph information it needs
for charge back

The second argument, pc, is a pointer to an arbitrary instruction in
the instrumented procedure itself (rp and pc parameters of _ntount allowit to be
i mpl enented in high | evel |anguage instead of assenbly.).

The third argument, counter ptr, is a pointer to a statically allocated
double word in the .sbss section. The conpiler nust allocate one of these double
words for each instrumented procedure. When _ntount is called from a procedure

for the first tinme, it wll find *counter ptr initialized to zero. Counters
shoul d be 32 bit unsigned integers.
There will be three versions of the _ntount routine:

QO The C library will contain an enpty version, to satisfy references from
code instrunmented at conpile time, but linked into a non-instrunented
program

Q The prof library will have a version that accumul ates basic call counting
information. For this version, the rp argunment is not used, since prof
does not do charge back. When conpiling with -p instead of -G, the
conpil er may choose to set this paraneter to zero

Q The gprof library will have a version that accunulates full call counting

information. Current gprof inplenentation of _ntount does not use this
third paraneter.

— 4

Profiling Support on HPUX 11i version 1.5

1.3. The nonitor library routine

The nonitor routine is a higher-level interface to profil syscall. It
sets up program counter sanpling, allocates data structures for both sanpling and
call counting, turns off profiling, and wites the profiling data to a disk file.
It has the follow ng interface:

void nonitor (void (*lowpc)(),
voi d (*highpc) (),
| ong *buffer,
i nt bufsize,

i nt nfunc);

The first two arguments define the range of addresses that wll be
profiled. These two argunents nust be valid function pointers. For convenience in
profiling the whole text segment in a statically bound program the |inker
defines two synbols, _ text _start f and _ _etext f, which are the beginning and

endi ng addresses, respectively, of the text segnent. These synbols are declared
in the header file <crt0.h> and nay be used as paranmeters to nmonitor. The third
and fourth argunents define the starting address and length of a buffer for the
sanpl e buckets, and the final argument is the total nunber of procedure call
counters that should be allocated.

The nmonitor routine wll automatically calculate the proper scale
factor and call the profil systemcall to enable sanpling. It will also allocate
an array of procedure call counters and the data structures necessary for _ntount
to allocate counters fromthis array dynamically.

There will be two versions of the nmonitor routine:

O The prof library will have a version that allocates data structures for
basic call counting information and dunps the data in a prof-conpatible
format .

Q The gprof library will have a version that allocates data structures for

full call counting information and dunps the data in a gprof-conpatible
format. New |ibgprof does not have this routine. Instead it defines a new
interface snonitor, conpatible with sprofil. This is discussed later in the
paper .

1.4. Linking for use wth prof and gprof

VWhen linking a program for use with prof, the conmpiler will pass the
“-lprof" (lower-case L) option to the linker. The -l option causes the linker
to load the prof library before the C library, where it will find prof versions
of the monitor and _ntount routines. Wen |inking a program for use with gprof,
the conpiler will pass the -l gprof option to the linker. The -| option causes

the linker to load the gprof library before the C library, where it wll find
gprof versions of the nonitor and _ntount routines.

The prof and gprof libraries will be delivered in shared forns only
starting 11.20. The shared forns are normal DLLs (Dynanically | oadable
libraries), and will be |oaded automatically when the programis executed. Wen
linking a program for either profiler tool, the conmpiler will also pass the -L

fusr/ccs/libl/hpux32/1libp option to the Ilinker. This option adds an extra
directory to the library search path, where instrunented versions of selected
system libraries may be found. These libraries will have been conpiled with the -
G option, so that they are instrunented for procedure call counting.

— 5

Profiling Support on HPUX 11i version 1.5

Note that |inker does not support the -p or -G options for
profiling. These options are neaningful only to compiler drivers, which in turn
pass the appropriate options to the linker. To invoke the linker directly, the
i nker options nentioned above must be used instead. Note also that no separate
crt0.o files are required.

1.5. Running the instrunmented program

VWhen an instrunented program starts execution, the initializer in the
.init section of the profiling library (libprof or Ilibgprof) is called before
control reaches main. The initializer will call nmonitor to start profiling on the
programi s text segment; allocate the data structures used for sanpling and call
counting; and arrange, via atexit, to call nmonitor again to stop profiling at the
end of the program

As the programis running, the OS in the buffer allocated for it wll
accunul ate program counter sanpling data. Any code conpiled with instrunmentation
will call the _ntount routine each tinme it is called to accunmulate the call
counti ng dat a.

VWhen an instrumented programterninates, one of its atexit actions wll
be to call nonitor to disable profiling and to wite the profiling data to a disk
file.

2. Wiy Shared library profiling

Shared library offers many advantages as conpared to archive libraries.
As there was continuous stress on discontinuing shipping of archive versions of
system libraries to keep HPUX alive in this conpetitive world and inprove
performance, the need to support profiling of shared libraries was also felt. If
HPUX continued profiling of applications alone call-graph and timng information
will be broken and users would not have the liberty to identify potential
bottl enecks in their application. HPUX 11i saw the introduction of Single Shared
library Profiling (SSLP) and after that Miltiple shared library profiling was
i ntroduced for HPUX 11i version 1.5.As HPUX 11i version 1.5 is not shipping
archive versions of systemlibraries so shared library profiling becomes all the
nore inmportant and offers wuser trenendous flexibility to fine tune his
application conpletely.

2.1 History of profiling support on HPUX

The tabl e bel ow shows the history of profiling on HPUX:

Application | SSLP MSLP C C++ FORTRAN PASCAL
profiling
11.0 v v v v v
11. v v (For v v v
32 bits
only)
110 v v v v v v Compiler
version (only | not
' F90) supported

— 6

Profiling Support on HPUX 11i version 1.5

2.2 Technical Overview of Shared Library profiling Support

HP- UX supported profiling of fully archive bound applications up till
11.11. Starting 11.11, the support for profiling of single shared library was
introduced for 32 bits. The rest of the paper wll talk about gprof style of
profiling only. Al the support of profiling Shared libraries has been introduced
only for gprof style profiling. Prof based profiling exists still for application
profiling al one. Users should not get confused on this aspect.

For charge back, SSLP used runtine instrunentation of procedures with
_callcount. The basic design involved patching of PLT's & dynanmically generated
OPD s. Wenever the routines of shared library, that was to be profiled, were
called then instead of the routine, "_gprof_stub"” should be called. The reason
was " _gprof _stub" would first call the "_call_count" routines, which would do the
instrunentation, after that control would come back to " _gprof _stub”, now it
would call the original routine. So this was the functionality of " _gprof_stub",
which was witten in I A assenbly. Now we had to feed the address of " _gprof_ stub"
in both PLT and OPD entries because if we call a function normally, call would be
routed through PLT entries and if we call the function using function pointers it
woul d be routed through OPDs.

The catch was we couldn’'t sinply replace the address of routine that
has to be profiled with the address of "_gprof_stub". Since " _gprof_stub" needs
the address of routines that had to be profiled (for later restoration &
subsequent branching to that address) and address woul d be available only at run
time, we had to put sone pl acehol ders (0x00000000) for the follow ng things:

O Address of routines that had to be call ed,

O Gobal data pointer (gp) of Ilibrary that had to be profiled
(which is known as "libltptr")

Q Address of " _call_count”

QO G value of libgprof (this is required for " call _count" & is
popul arly called as prof Itptr).

Now at run tinme we would be having these addresses. So we had to patch
" _gprof _stub"” with these addresses. To patch it we wuld count how nany
instruction bundles "gprof_ stub" would have. Now we would figure out which
particular bits in a particular instruction bundle would have our placehol ders.
After getting this we will put the run tine addresses in those bits. There were
specific macros witten for this purpose to feed the runtime bits at exact
position in the correct instruction bundle. Explicit bundling was used to
sinmplify the things a little. Now of course shared library that has to profile
may have nore than one routine. So if we want to profile nore than one routine
" gprof _stub" will have to be different for all the routines because the address
of the routine that has to be profiled will be unique, popularly called in our
i mpl enentation as "to_pc". So for every routine in the library we were profiling,
we need a local copy of " gprof_stub”. In this local copy of gprof _stub we feed
in the runtinme values of "to_pc", "call _count_addr", "prof ltptr" & "lib Itptr".
Finally we replace the address of routine with address of stub .So now whenever
the routine, of the library we are profiling, is called control used to go to
"gprofstub", then "call count routine” back to gprof stub where actual routine
address was restored & finally to routine & then back.

SSLP suffered fromfoll ow ng drawbacks:

O Since profil syscall was used, it could profile only one text segnment at a
tinme.

— 7

Profiling Support on HPUX 11i version 1.5

QO It was not possible to patch BOR events. So the library had to be built
with -W, -B inmediate option
O It uses runtime instrumentation, which was a big overhead.

To overcone these drawbacks, profiling of Miultiple shared libraries was
taken up. MSBLP required a lot of changes in profile file (gnon.out) fornat, gprof
conmand, |ibgprof, linker & compiler. The remaining sections discuss these
changes one by one.

2.2.1. Changed profile file format

The gnon.out file format has to be changed conpletely in order to
account for Miltiple Shared Library Profiling. The new file is nuch nore
structured as conpared to the old profile file, as it has to contain information
about nultiple |oad nodules now. It contains various headers having information

like how many |oad nmodules are getting profiled, what are the profil and cal
count dunp sizes for each | oad nodul es and where exactly are these dunps starting
fromin the profile file. The new file will have an overall structure |like this:
Gron. out

<Fi | e Header >

<Loadabl e Modul e Key tabl e>

<Array of Loadabl e nmobdul e headers>(one for each | oad nodul es)
<Dat a Dunp> one for each | oadabl e nodul e.

Expl anati on:

This is the first structure that will be stored at the beginning of the file.
This will have information about how nmany | oadable nodules are there, whether
it’s the new format or old format gnon.out file, version strings etc.

struct Idmkey {int |dmkey;/* Unique key for each |oad nodule */
int 1dm pathsize;/* Contains the size of the path nanme */

char *ldmnane;/* Contains the path nane of the |oad nmodule */

<Loadabl e nodul e header entries>

Every tinme any l|oadable nodule is |oaded and then unloaded the call count
information and the profil information naintained for that nodule has to be
dunped to the gnon.out file. This header is used to give details about the buffer
and its location in the file and to which file it belongs to. It also stores in
the profile file the offset fromwhere the profil and call count dunp will start
for that |oad nobdule, their respective sizes etc.

— 8

Profiling Support on HPUX 11i version 1.5

The data portion will be a byte stream The byte stream can be | ooked as:
<The call count dunp for |oad nodul e 1><The profil dunp for |oad nodul e 1><The
call count dump for |oad nodul e 2><The profil dump for |oad nmodule 2> ..
<The call count dunmp for |oad nodul e n><The profil dump for | oad nodul e n>

In order to account for this new format both |ibgprof & gprof command
has to be changed. Libgprof should dunmp information at application termnation
into the profile file gnmon.out in the specified format, which gprof command
should be able to parse and correlate with the synbol table of the appropriate
| oad nodul e.

2.2.2. Devel opnent of |ibgprof:

A new library, libgprof, has to be developed to account for Miltiple
Shared library profiling. The new libgprof uses sprofil syscall to account for
profiling of Multiple |oad nodules. Wth this "gprof" library user always has the
options to profile as many | oadabl e nodul es as desired. Loadable nodul e m ght be
"a.out" or shared library. Load nodules to be profiled should be specified in
"LD _PROFI LE" environnent variable. "LD PROFILE" is a colon-separated list of the
| oad nodul es nanes, not the path names. It should be noted that if dld is Ioading
"l'ibc.so" and user wants to profile "libc.so", name of shared library specified
in "LD PROFILE" should be "libc.so" only. It should not be "libc.so.1" etc. The
nanes of the |oad nodul es can be found out either by running Idd or chatr on the
execut abl e.

The basic design of new libgprof requires registering certain user
routines with DLD events. DLD events, which we are interested in, are:

Q POST INT The routine registered with this event wll do all the
initialization.

O LOAD COVPLETE The routine registered with this event will call "sprofil".
Al the paraneters to be passed to "sprofil" are already in place.

O TERM NATE START This is a new event registered with dld specifically for
the purpose of Miltiple Shared library profiling. This event marks the
begi nning of the process when |oader starts unloading the libraries. The
routine registered with this event will dunp all the information collected,
both profiling and call count, up till now in the profile file (gnon.out)
in the format specified above.

O UNLOAD POST FINI The routine registered with this event is called whenever
any of the libraries is unloaded. The routine checks whether the actua
term nation of application has started or it is just some nodule getting

unl oaded (due to shl _unload etc). In the latter case the routine will have

to stop "sprofil” syscall, condense the profp array & then start the
"sprofil" syscall again

The new | i bgprof also provides user with a new APl, smonitor, a higher-

level interface to sprofil. The snobnitor is an extension of nmonitor for Miltiple

text segnents, as sprofil is of profil syscall. Using snonitor, user can allocate

all the profiling buffers hinself, start sprofil & get all the profiling

information in his specified buffers. In effect using snmonitor user can take up

— 9

Profiling Support on HPUX 11i version 1.5

profiling control under his charge as against l|ibgprof in normal program User
can then use gprof tool to interpret & get a listing of profile information.
snonitor has the followi ng interface
void snmonitor (struct text_region *regions,
i nt nregions,
voi d *buffer,
size_t bufsize,
i nt nfunc,
unsi gned fl ags
)

The first argunment regions is an array of structures of type
text _regions defined in <non.h> header file. The structure has the follow ng
fields:

struct text_region (unsigned |long text_start;
unsi gned | ong text_end;
char *nane;
);

nregions is the nunber of elenments in the array regions.
buffer is the starting address of a buffer to collect sanpling information.

bufsize is the length of buffer. buffer is the only menory region used by
snonitor () to collect profiling information, so it should be big enough for al
specified regions. snonitor () does not initialize buffer. Wth nore than one
call to snonitor () in the same process, snonitor () dunps the sanpling
information collected with the last call. Snonitor () does not discard the
information collected in previous calls if it is present in the buffer passed to
last call of smonitor ().

nfunc i s unused and kept for future usage.

flags are wused to choose 16-bit or 32-bit buckets to «collect sanpling
information. If flags is set to PROF_USHORT, snonitor () treats the buffer as an
array of 16-bit buckets; if set to PROF_U NT, snmonitor () treats the buffer as an
array of 32-bit buckets.

snonitor is largely influenced by environnent variable LD PROFILE settings, which
is discussed later in the paper

2.2.3. Changes done to gprof command:

Gorof command also required substantial nodifications in order to
account for Miultiple shared library profiling. The old gprof conmand was capabl e
of parsing a single file & reading & correlating that with the synbol table of
either the application or the single library. Gorof command was now nodified to
read the synbol tables of all Iload nodules, populate a global structure
nmodul e_info for each |oadable nodules, nake nl structures for the functions of
the load nmodules that are getting profiled & finally correlate the profiling &
call count information with synbol table of the appropriate |load nodule. Finally
it produces a listing of all the function with the conplete call graph. In the
flat profile report a new colum on nodul e index was added specifying that the
said function is present in which of the |oadable nodule. In the end a list of
all | oadable nmpodules & their corresponding nodule indices is reported. In the

L 10

Profiling Support on HPUX 11i version 1.5

begi nning of the report itself, a listing is given as to which |oad nodul es are
not getting profiled.

Gorof has a linmtation. If synbol table of any of the load nodules is
chopped (i.e. conmpiled with -x linker option) then gprof won't be able to find
the parent of this call & wll report this as a warning.

2.2.4. Changes done in |linker:
The foll owi ng changes were done in |inker:

O A new event was defined in the loader to mark the beginning of the
termi nation of the application. This event was required because with this
we can start dumping all the profiling information into the profile file.

O A new option +profil ebucketsize [16]32] was introduced to specify the
counter size as required by sprofil syscall, fromthe link line. User can
specify the values of 16 or 32 here. Default value is 16.This value wll
be overridden if any valid value is specified at runtime through
environnent variable LD PROFILEBUCKET SI ZE. This variable wll be
di scussed in detail later in the paper.

2.2.5. Changes done in conpiler:

The conpiler saw the introduction of one new command |ine option. A new
option +profil ebucketsize= [16|32] was introduced. This option will be passed to
the linker, which will set the appropriate counter size. The valid values for
this option are 16 & 32, with 16 as default. The value can be overridden wth
runtine sel ection.

2.2.6. External |nfluences:

MSLP is largely influenced by the foll owi ng environnment vari abl es:
LD PROFI LE determ nes the nodules to be profiled as foll ows.
LD _PROFI LE=ALL
Profile all | oad nodules. That is, report tinmng and call count
i nformati on for all |oadabl e nmodul es, including a.out.
LD _PROFI LE=I dml: | dn®
Profile only | oadable nodules Idnl and | dnR.ldml and | dnR2 are not
full pathnames; they are the names recorded in the executables, which can be
di spl ayed using chatr (1).
If LD PROFILE is not set, gprof behaves as though LD PROFI LE=ALL.
LD PROFI LEBUCKET _SI ZE controls the size of profiling counters. The acceptable

value for this variable is 16 or 32. Counter size can also be specified at
conpile time using the +profil ebucketsize option. The runtinme value overrides
the conpile tine val ue. A warning is issued if the counter size is set to a

value other than 16 or 32; in this case the value specified at conmpile tine is
used. The default value of the counter is 16, which is used if a valid value is
not specified. See the description of the cc (1) +profilebucketsize option for
nore details.

In addition the behavior of follow ng environnent variable has been
retained as it is:
GPROFDIR controls the nane of the file created by a profiled program |f GPROFDI R
is not set, gnmon.out is produced in the current directory when the program

L 11

Profiling Support on HPUX 11i version 1.5

t er m nat es. I f GPROFDI R=string, string/pid.prognane is produced, where prognane
is argv [0] with any path prefix removed, and pid is the programis process ID.
If GPROFDIR is set to a null string, no profiling output is produced.

3. Tricks/Tips OF GPRCF:

3.1. Reducing Statistical Sanpling Error

The run-tine figures that gprof gives you are based on a sanpling
process, so they are subject to statistical inaccuracy. If a function runs only a
smal | anpbunt of tine, so that on the average the sanpling process ought to catch
that function in the act only once, there is a pretty good chance that user wll
actually find that function zero tines, or twice in the report. By contrast, the
nunber-of-calls and basic-block figures are derived by counting, not sanpling.
They are conpletely accurate and will not vary fromrun to run if your programis
determ ni stic.

The sanpling period that is printed at the beginning of the flat
profile says how often sanples are taken. The rule of thumb is that a run-tine
figure is accurate if it is considerably bigger than the sanpling period. The
actual anount of error can be predicted. For n sanples, the expected error is the
square root of n. For example, if the sanpling period is 0.01 seconds and foo's
run-time is 1 second, n is 100 sanples (1 second/0.01 seconds), sqrt (n) is 10
samples, so the expected error in foo's run-tinme is 0.1 seconds (10*0.01
seconds), or ten percent of the observed value. Again, if the sampling period is
0.01 seconds and bar's run-time is 100 seconds, n is 10000 sanples, sqrt (n) is
100 sanples, so the expected error in bar's run-time is 1 second, or one percent
of the observed value. It is likely to vary this nuch on the average from one
profiling run to the next. (Sonetimes it will vary nore). This does not nean that
a small run-tine figure is devoid of information. If the programis total run-tine
is large, a snmall run-tinme for one function does tell you that that function used
an insignificant fraction of the whole programs time. Usually this nmeans it is
not worth optim zi ng.

One way to get nmore accuracy is to give your programnore (but simlar)

i nput data so it will take longer. Another way is to conbine the data from
several runs, using the “-s' option of gprof. Here is how

1. Run your program once.

2.1ssue the command " nv gnon. out gnon. sumn .

3. Run your program again, the same as step 1

4. Merge the new data in “grmon.out' into “gnon.sum wth this command:

gprof -s executable-file gnon.out gnon.sum

5. Repeat steps 3,4 as often as you wi sh

6. Anal yze the cumul ative data using this comrand:

gprof executable-file gnon.sum > output-file

3.2. Estimating children Tines

Sone of the figures in the call graph are estimates--for exanple, the
children tine values and all the time figures in caller and subroutine I|ines.
There is no direct information about these measurenents in the profile data
itself. Instead, gprof estimates them by maki ng an assunpti on about your program
that mght or m ght not be true.

The assunption nade is that the average tinme spent in each call to any
function foo is not correlated with who called foo. If foo used 5 seconds in all

L 12

Profiling Support on HPUX 11i version 1.5

and 2/5 of the calls to foo came from a, then foo contributes 2 seconds to a's
children tine, by assunption. This assunption is usually true enough, but for
some prograns it is far fromtrue. Suppose that foo returns very quickly when its
argunent is zero; suppose that a always passes zero as an argunent, while other
callers of foo pass other argunents. In this program all the tine spent in foo
isin the calls fromcallers other than a. But gprof has no way of know ng this;
it will blindly and incorrectly charge 2 seconds of tine in foo to the children
of a.

We hope sonme day to put nore conplete data into “gnon.out', so that
this assunption is no |onger needed, if we can figure out how For the nonce, the
estimated figures are usually nore useful than m sl eading.

4. EXAMPLES AND | NTERPRETATI ON OF GPROF OUTPUT:

Gorof reports two types of listings, the flat profile followed by call
graph listing. The flat profile shows the total ampount of time your program spent
executing each function. Unless the "-z' option is given, functions with no
apparent tinme spent in them and no apparent calls to them are not nentioned
Note that if a function was not compiled for profiling, and didn't run |ong
enough to show up on the program counter histogram it will be indistinguishable
froma function that was never call ed.

This is part of a flat profile for a small program
4.1. Flat profile:
Each sanple counts as 0.01 seconds.

% cunul ati ve sel f sel f t ot al Modul e
time seconds seconds calls ms/call ns/ cal | | ndex nane
33.34 0.02 0.02 7208 0.00 0.00 2 open
16. 67 0.03 0.01 244 0.04 0.12 2 of ftine
16. 67 0.04 0.01 8 1.25 1.25 2 menccpy
16. 67 0. 05 0.01 7 1.43 1.43 2 wite
16. 67 0. 06 0.01 mcount
0.00 0. 06 0.00 236 0.00 0.00 2 tzset
0.00 0. 06 0.00 192 0.00 0.00 2 t ol owner
0.00 0. 06 0.00 47 0.00 0.00 2 strlen
0.00 0. 06 0.00 45 0.00 0.00 2 strchr
0.00 0. 06 0.00 1 0.00 50. 00 0 mai n
0.00 0.06 0.00 1 0.00 0.00 2 mencpy
0.00 0. 06 0.00 1 0.00 10. 11 0 print
0.00 0. 06 0.00 1 0.00 0.00 1 profi
0.00 0. 06 0.00 1 0.00 50. 00 1 report

The functions are sorted by decreasing run-tine spent in them The
functions “ntount' and “profil' are part of the profiling apparatus and appear in
every flat profile; their tinme gives a measure of the amount of overhead due to
profiling.

The sanpling period estinmates the margin of error in each of the tine
figures. Atine figure that is not nmuch larger than this is not reliable. In this
exanple, the “self seconds' field for “ncount' mght well be "0 or “0.04" in
anot her run.

Here is what the fields in each |ine nean:
%time

This is the percentage of the total execution tine your programspent in this
function. These should all add up to 100%

L 13

Profiling Support on HPUX 11i version 1.5

curmul ati ve seconds

This is the cunulative total nunber of seconds the conmputer spent executing
this functions, plus the tine spent in all the functions above this one in this
tabl e.

sel f seconds
This is the nunber of seconds accounted for by this function alone. The flat
profile listing is sorted first by this nunber.

calls

This is the total nunber of tinmes the function was called. |f the function
was never called, or the number of times it was called cannot be determ ned
(probably because the function was not conpiled with profiling enabled), the
calls field is blank.

sel f ns/cal

This represents the average number of mlliseconds spent in this function per
call, if this function is profiled. Oherwise, this field is blank for this
function.

total ns/cal

This represents the average number of nilliseconds spent in this function and
its descendants per call, if this function is profiled. Oherwise, this field is
bl ank for this function

nodul e i ndex
This gives the correspondi ng nunber of the |oad nodul e where the particul ar
function resides.

nane
This is the name of the function. This field sorts the flat profile
al phabetically after the self seconds field is sorted.

4.2. Call-graph

The second part of gprof output contains a call graph listing. The cal
graph shows how nuch tinme was spent in each function and its children. Fromthis
i nformati on, you can find functions that, while they thenmsel ves may not have used
much tinme, called other functions that did use unusual anmounts of tine.
Here is a sanple call graph from a snmall program This call came from the sane
gprof run as the flat profile exanple.
granul arity: each sanple hit covers 2 byte(s) for 20.00% of 0.05 seconds

i ndex %tinme self children call ed nane
<spont aneous>

[1] 100.0 0. 00 0. 05 start [1]

0. 00 0. 05 1/1 main [2]

0. 00 0. 00 1/2 on_exit [28]

0. 00 0. 00 1/1 exit [59]

0. 00 0. 05 1/1 start [1]

0. 00 0. 05 1 main [2]

0. 00 0. 05 1/1 report [3]

14

Profiling Support on HPUX 11i version 1.5

0. 00 0. 05 1/1 mai n [2]
[3] 100.0 0. 00 0. 05 1 report [3]
0. 00 0.03 8/ 8 timel ocal [6]
0. 00 0.01 1/1 print [9]
0. 00 0.01 9/ 9 fgets [12]
0. 00 0. 00 12/ 34 strncnp <cycle 1> [40]
0. 00 0. 00 8/ 8 [ookup [20]
0. 00 0. 00 1/1 fopen [21]
0. 00 0. 00 8/8 chewt i ne [24]
0. 00 0. 00 8/ 16 ski pspace [44]
[4] 59.8 0.01 0.02 8+472 <cycle 2 as a whol e> [4]
0.01 0.02 244+260 of ftime <cycle 2> [7]
0. 00 0. 00 236+1 tzset <cycle 2> [26]

The lines full of dashes divide this table into entries, one for each function.
Each entry has one or nore lines. In each entry, the primary line is the one that
starts with an index nunber in square brackets. The end of this |ine says which
function the entry is for. The preceding lines in the entry describe the callers
of this function and the following lines describe its subroutines (also called
children when we speak of the call graph). The entries are sorted by tine spent
in the function and its subroutines. The internal profiling function _ntount is
never nentioned in the call graph

4.2.1. The Primary Line

The primary line in a call graph entry is the line that describes the function,
which the entry is about and gives the overall statistics for this function. For
reference, we repeat the primary line fromthe entry for function report in our
mai n exanpl e, together with the heading line that shows the nanes of the fields:
index %tine self children called name

[3] 100.0 0. 00 0. 05 1 report [3]
Here is what the fields in the primary |ine nean:

i ndex

Entries are numbered with consecutive integers. Each function therefore has
an i ndex number, which appears at the beginning of its primary line.

Each cross-reference to a function, as a caller or subroutine of another,
gives its index nunber as well as its name. The index nunber guides you if you
wi sh to look for the entry for that function.

% tinme

This is the percentage of the total time that was spent in this function
including time spent in subroutines called fromthis function

The time spent in this function is counted again for the callers of this
function. Therefore, adding up these percentages i s meaningl ess.

sel f

This is the total anmpbunt of tinme spent in this function. This should be
identical to the nunmber printed in the seconds field for this function in the
flat profile.

L 15

Profiling Support on HPUX 11i version 1.5

children

This is the total anpbunt of time spent in the subroutine calls nade by this
function. This should be equal to the sumof all the self and children entries of
the children listed directly below this function

call ed

This is the nunber of times the function was called.

If the function called itself recursively, there are two nunbers, separated
by a "+ . The first nunmber counts non-recursive calls, and the second counts
recursive calls.

In the exanple above, the function report was called once from nain.

name

This is the nane of the current function. The index nunber is repeated after
it.

If the function is part of a cycle of recursion, the cycle nunber is printed
between the function's name and the index nunber. For exanple, if function gnurr
is part of cycle nunber one, and has index nunmber twelve, its prinmary |ine would
be end like this:

gnurr <cycle 1> [12]

4.2.2. Lines for a Function's Callers

A function's entry has a line for each function it was called by. These
lines fields correspond to the fields of the primary line, but their meanings are
di fferent because of the difference in context.

For reference, we repeat two lines from the entry for the function
report, the primary line and one caller-line preceding it, together with the
headi ng Iine that shows the names of the fields:

index %tinme self children called nane
0. 00 0. 05 1/1 main [2]
[3] 100.0 0. 00 0. 05 1 report [3]

Here are the neanings of the fields in the caller-line for report called from
mai n:

sel f
An estimate of the amount of tine spent in report itself when it was called
from mai n.

chil dren

An estimate of the anpunt of tinme spent in subroutines of report when report
was called from nmain.

The sum of the self and children fields is an estinate of the amount of tine
spent within calls to report from main.

cal |l ed

Two nunbers separated by a slash (/): the nunber of times report was called
from main, followed by slash and the total nunmber of non-recursive calls to
report fromall its callers.

L 16

Profiling Support on HPUX 11i version 1.5

name and i ndex number

The nanme of the caller of report to which this Iine applies, followed by the
caller's index nunber.

Not all functions have entries in the call graph; sone options to gprof
request the omission of certain functions. When a caller has no entry of its own,
it still has caller-lines in the entries of the functions it calls.

If the caller is part of a recursion cycle, the cycle nunber is printed
bet ween t he name and the index number.

If the identity of the callers of a function cannot be determ ned, a dunmy
caller-line is printed which has "“<spontaneous> as the "caller's nane" and al
other fields blank. This can happen for signal handl ers.

4.2.3. Lines for a Function's Subroutines

A function's entry has a line for each of its subroutines--in other
words, a line for each other function that it called. These lines' fields
correspond to the fields of the primary line, but their neanings are different
because of the difference in context.

For reference, we repeat two lines fromthe entry for the function main,
the primary line and a |line for a subroutine, together with the heading line that
shows the nanes of the fields:

index %tinme self children called nane
[2] 100.0 0.00 0.05 1 main [2]
0. 00 0. 05 1/1 report [3]

Here are the neanings of the fields in the subroutine-line for main calling
report:

sel f
An estimate of the ampunt of tine spent directly within report when report
was called from nain.

children

An estimate of the anpbunt of tinme spent in subroutines of report when report
was called from main.

The sum of the self and children fields is an estimate of the total tine
spent in calls to report frommain

cal |l ed
Two nunbers, the number of calls to report from main followed by the tota
nunber of nonrecursive calls to report.

name

The nane of the subroutine of main, to which this line applies, followed by
t he subroutine's index nunber.

If the caller is part of a recursion cycle, the cycle nunber is printed
bet ween t he name and the index nunber.

L 17

Profiling Support on HPUX 11i version 1.5

4. 3. EXAWPLES
4.3.1. Profiling of application alone

$ cat a.c
void func ()

printf ("I amin func\n");

}

void main ()
{
printf ("I amin main\n");
func ();

$cc-Ga.c

$ 1dd a. out
libsin.so.1 => /fusr/lib/hpux32/libsin.so.1
i bgprof.so => /fusr/lib/hpux32/1ibgprof.so
libc.so.1 => /usr/libl/hpux32/1ibp/libc.so.1
libelf.so.1 => /usr/lib/hpux32/Ilibelf.so.1
l'ibdl.so.1 => fusr/lib/hpux32/1ibdl.so.1
[ibdl.so.1 => /usr/lib/hpux32/1ibdl.so.1

$ export LD PROFI LE=a. out

$ a.out

I amin main

I amin func

$ unset LD PROFILE

$ 1l a.out gnon.out a.c

S PWA WA W 1 vts ssgrp 99 May 24 12:27 a.c

- WX WX WX 1 vts ssgrp 16272 May 24 12:27 a.out
SrW-r--r-- 1 vts ssgrp 356278 May 24 12: 44 gnon. out
$ gprof >aa

4.3.2. Profiling of application and a shared library

$ cat test.c
void a()

printf("l amin a\n");

}

$cc -c +Z -Gtest.c
$1d-b-olibtest.so.1 test.o
$In-s ./libtest.so.1 |libtest.so
$ cat main.c
extern void a();
mai n()
{
printf("Hello world\n");
a();
}
$cc -Gmin.c -L. -ltest

$ export LD PROFILE=a.out:libtest.so

Profiling Support on HPUX 11i version 1.5

$ export LD PROFI LEBUCKET S| ZE=16
$./a.out
hello world
Il in a
$ unset LD _PROFILE
$ unset LD PROFI LEBUCKET Sl ZE
$ I's gnon. out
gnon. out
$ gprof >aal

5. CONCLUSI ON

The profiling support available starting HPUX 11i version 1.5
prom ses users tremendous flexibility to fine tune their applications. Full cal
graph can be generated for inter/intra library calls, including systemlibraries.
However in order to generate full call graph of a systemlibrary it is necessary
that synbol table of the library should not be chopped. This new feature pronises
user some great performance inprovenent in their applications. This information
can show you whi ch pi eces of your program are slower than you expected, and these
pi eces nmight be candidates for rewiting to nake your program execute faster. It
can also tell you which functions are being called nore or less often than you
expected. This may help you spot bugs that had ot herw se been unnoti ced.

6. ACKNOALEDGEMENTS

I would gratefully like to acknow edge and thank the follow ng people
for all the technical guidance and support extended during the enhancenent of
Shared Library Profiling Support on HPUX 11i version 1.5 and preparation of this
paper.

Cary Cout ant
Kumar Rangar aj an
Davi d Gross

Mar cel Mbol enar
Lor eena Wong

M ke Liaw
Shreekant h Prabhu
Mal ay Shah

Kri shna Chyt hanya V.
Shruthi K
Sudhanshu Gupt a

S oy Ay By

19

