
Running IA-32 Code on IA-64
Christophe de Dinechin
Hewlett-Packard Always-On Infrastructure Division

ddd@cup.hp.com
Abstract

IA-64, the processor architecture designed by
Hewlett-Packard and Intel, has the capability to run a vast
majority of the existing IA-32 (Pentium) code. This
includes in particular most Windows or Linux binaries cur-
rently available. Today’s versions of Windows and Linux
for IA-64 offer this feature, in a way largely transparent to
users. HP is also working to add similar support in HP-UX
using a virtual machine. IA-64, however, is not merely a
new IA-32; it is a new and different architecture. To run IA-
32 code, IA-64 requires specific operating system or appli-
cation support. In the long term, operating system support
will be critical in getting reasonable performance for IA-
32 code running on IA-64.

1. Introduction
When HP and Intel joined forces a few years ago to

design the IA-64, they had different and somewhat con-
flicting needs. HP was looking for a cost-effective and
high-performance successor to their PA-RISC architecture.
Intel wanted a share of the profitable high-end segment of
the market, largely dominated by proprietary RISC chips.

To meet the performance requirements and offer room
for future growth in that area, the IA-64 architecture had to
significantly break from the past. As is now well known,
IA-64 is the first widely available explicitly parallel archi-
tecture, meaning that the compilers can give the processor
multiple operations to perform in parallel. And explicit
parallelism is only one of its many innovative aspects.

But breaking with the past has its drawbacks. Most
notably, a new CPU architecture will not directly execute
existing applications designed for older CPUs. Intel had a
legacy of thousands of Pentium applications, while HP had
to deal with a smaller, but still very significant amount of
existing 32-bit and 64-bit PA-RISC code. Transitioning
this valuable legacy to the new architecture was a key ele-
ment of the IA-64 strategy, as illustrated on Figure 1.

HP took a software-based approach to supporting their
legacy [1]. The HP-UX operating system for IA-64 ships

with software that dynamically translates PA-RISC code to
IA-64 code on the fly, as illustrated in Figure 2. This trans-
lation process is totally transparent to users: they just run
their existing 32-bit or 64-bit PA-RISC application on IA-
64 as they would do on a PA-RISC machine, and they can
freely mix and match IA-64 and PA-RISC applications.

Thus, HP-UX on IA-64 achieves real application binary
compatibility with previous HP-UX versions on PA-RISC,
although this binary compatibility is implemented in soft-
ware. In practice, this approach takes advantage of the
numerous similarities between PA-RISC and IA-64. It was
also reasonable because HP alone controls the HP-UX
operating system.

IA-64IAIA--6464

HP-UX Linux

> 50,000 Applications
(32-bit and 64-bit)

Windows

Pervasive
Technology

Binary Compatibility

PA Apps IA-32 Apps

PA-RISC IA-32

MPE

Figure 1: The Unifying Architecture

Figure 2: Transparent execution of PA-RISC
binaries on HP-UX for IA-64

A similar approach would also have been technically
feasible for executing IA-32 code on IA-64, and has been
attempted for several other RISC chips [2]. On the other
hand, the number of IA-32 operating systems and applica-
tions both suggested direct architectural support for IA-32
code. The IA-64 credibility as a successor for IA-32 would
probably have been much lower without such direct archi-
tectural support.

In addition, Intel does not directly control any operating
system running on their IA-32 architecture. Microsoft, the
Open Source community, and many other partners deliver
operating systems for Intel CPUs. Expecting each of these
operating systems partners to build a binary translation
technology was not realistic.

Instead, the IA-64 Architecture definition specifies the
capability to execute most IA-32 code, as well as the possi-
bility to mix IA-32 and IA-64 code, even in the same
application [3] [4]. This support, however, is not enough to
be able to run IA-32 applications on an IA-64 system. Sig-
nificant operating-system support is still required to be able
to run IA-32 binaries on an IA-64 operating system, as will
be explained in Section 5.

Note that the Intel specification does not preclude a soft-
ware-only implementation of this IA-32 support in future
iterations of the architecture. As we shall see in Section 6,
such support may make sense, since a software solution
might outperform hardware implementations in a not so
distant future. However, Itanium, the first implementation
of the IA-64 architecture, supports the IA-32 instruction set
largely in hardware.

In the rest of this article, we will describe how and why
users may want to use IA-32 support on IA-64, and how
HP plans to take advantage of that feature in HP-UX.

2. Why Run Existing IA-32 Code?
If you use an IA-64 system, why can’t you just run

native IA-64 applications? In particular, why not recompile
all IA-32 applications to IA-64 to get the best possible per-
formance?

The main reason is that recompiling an application, or
building a different binary has a cost, and that cost may not
be justifiable, at least initially. The cost of deploying an IA-
64 version of an application includes: development time to
make the application “64-bit clean”, possibly rewriting the
machine-dependent pieces (notably any assembly code),
testing and certifying the IA-64 version, shipping a differ-
ent physical medium, and having to support more than one
platform.

Because of these costs, many software developers will
develop only for the dominant platform. IA-32 is this dom-

inant platform today and for the immediate future. Even in
the most optimistic scenarios, IA-64 will not displace IA-
32 in the next few years. This means that many applica-
tions will not be ported, or at least not immediately. They
will remain available only for IA-32.

Windows Applications: This is particularly true for
applications that would see no real benefit in running on
IA-64. The kind of application that does not improve when
ported to IA-64 includes in particular office applications
such as Microsoft Office, since most users are not limited
by CPU power for these applications. So we should not
expect Microsoft to port their Office suite to IA-64 anytime
soon: it simply does not make much business sense.

Similarly, thousands of indispensable Windows pro-
grams that are not CPU bound, like file transfer utilities,
terminal emulators and a myriad of shareware or freeware
would see no visible benefit if recompiled for IA-64. In
many cases, the developers would not even consider buy-
ing the required IA-64 hardware to simply attempt the port.
Therefore, this software is unlikely to become available in
an IA-64 binary version in the near future.

Linux Applications: For Linux, the problem is
slightly different. Contrary to Windows applications, Linux
applications are most often given in source code form. And
the experience gained by running Linux on other 64-bit
platforms, such as Compaq Alpha, increase the chances
that recompiling these applications for Linux on IA-64 will
“just work.” For this very reason, the initial releases of
Linux for IA-64 already contain a vast majority of IA-64
code.

Yet, there are many applications that are available for
Linux only in binary form. This includes very popular tools
such as Netscape Communicator, office suites (Applix-
Ware), video games, or enterprise infrastructure applica-
tions such as HP’s TopTools. Contrary to open source
Linux code, which is generally mostly portable across pro-
cessors, these applications are often only available for the
Pentium processor, as any user of Linux on PowerPC or
Alpha can testify. Usually, versions for other processors
would be only “a simple recompilation” away. But even the
minor effort of this recompilation does not occur.

OS Support: Since many IA-32 applications will not
immediately be available in IA-64 binary form, being able
to run IA-32 applications will be of significant value during
the initial transition period. This is the reason why both
Windows and Linux versions for IA-64 will offer support
for their respective flavor of IA-32 applications. This
makes it possible to run IA-32 Windows binaries on Win-
dows for IA-64, and similarly to run IA-32 Linux binaries
on Linux for IA-64.

Figure 3 illustrates the IA-32 version of Netscape Com-
municator for Linux running on the IA-64 version of
Linux. Figure 4 shows various common PC applications
running on a prototype of the IA-64 version of Windows.

HP-UX users: HP-UX users are not used to executing
IA-32 code, although various software emulation solutions
have been developed with limited success. The use of IA-
32 applications for IA-64 HP-UX users will most likely fall
in one of two categories:
• Workstation users would typically use IA-32

applications for productivity (Office applications). This
can alleviate the need for a second workstation or PC.

• Server users can use IA-32 support to transition
existing server applications such as Exchange and
consolidate then on IA-64 machines.
Actually, being able to run IA-32 code on IA-64 HP-UX

machines is not a primary goal for HP. Instead, it is a posi-
tive side effect of a software partitioning solution that HP is
developing to allow multiple operating systems to share
CPUs and other resources.

Performance Limitations: IA-32 code executing on
an IA-64 machine will not, in general, run as fast as on the
latest and greatest IA-32 machine. This is discussed more
in detail in Section 6. The bottom line is that you should
not run performance critical IA-32 code on an IA-64
machine. If you need performance, use native IA-64 code.

3. How to Run IA-32 Code
Thanks to this integrated operating system support for

IA-32 binaries in IA-64 versions of Linux and Windows,
the process for running IA-32 applications is quite straight-
forward on both platforms. To the user, IA-32 and IA-64
applications behave largely identically. In other words, run-

ning an IA-32 application on both platforms is not really
different than running an IA-64 application.

WOW64: For Windows, support of IA-32 code on IA-64
is quite similar in principle to support for 16-bit code in 32-
bit versions of Windows. Just as there is a “Windows-on
Windows” (WOW) layer in 32-bit Windows that executes
16-bit code in a sandbox, there is a 64-bit Windows-on-
Windows (WOW64) that supports the execution of IA-32
code.

An IA-32 application runs on an IA-64 machine just like
it would on any PC, as shown in Figure 4. Only a few
minor differences are visible, mostly in the way applica-
tions are installed. Shared libraries containing IA-32 code
cannot be used for IA-64 applications, and conversely.
Practically, shared libraries containing IA-32 and IA-64
code are stored in different locations. This is reminiscent of
the 16-bit to 32-bit transition, which saw the introduction
of the WINDOWS\SYSTEM32 for 32-bit code, alongside
the traditional WINDOWS\SYSTEM directory containing
16-bit shared libraries.

On the IA-64 version of Windows1, a similar solution is
used. Interestingly, an empty WINDOWS\SYSTEM still
appears. Two other directories in the WINDOWS directory
are more interesting: SYSTEM32 and SysWOW64. At
first sight, they appear to contain more or less the same list
of files, including a large number of DLLs.

But sampling various DLLs indicates that they don’t
have the same size at all. For instance, KERNEL32.DLL is

Figure 3: IA-32 Netscape on IA-64 Linux

1. This information is based on preliminary software,
but should remain essentially valid on the released
product.

Figure 4: IA-32 Apps on IA-64 Windows

approximately 800K in SysWOW64, versus approximately
1.6MB in SYSTEM32. As a general rule, almost all files
are roughly twice as big in SYSTEM32 as they are in
SysWOW64. The reason is that the files in SYSTEM32 are
actually (rather counter-intuitively) IA-64 native 64-bit
code, whereas the files in SysWOW64 are (again, a bit sur-
prisingly) the classical 32-bit equivalents. IA-64 code is
generally significantly larger than equivalent IA-32 code.

Applications also install at different places. 64-bit IA-64
applications install in Program Files, while IA-32
applications install in Program Files (x86). In gen-
eral, old 16-bit applications cannot install on IA-64.

Linux: When you launch a Linux application (for
instance from the command line), Linux automatically
detects if it is an IA-32 application, in which case it starts
executing it in the IA-32 subsystem. Since the operation is
done by the kernel, it is possible to mix IA-32 and IA-64
applications for instance in scripts, makefiles, or in client-
server setups.

As with Windows, IA-32 and IA-64 shared libraries are
stored in different places. IA-64 libraries reside in /lib or
/usr/lib, while a directory under /usr contains sep-
arate /lib and /usr/lib for IA-32 libraries. This direc-
tory is called /usr/glibc21-i386 on some
distributions, but the name might change between Linux
versions. IA-32 libraries are automatically picked up by the
IA-64 version of the dynamic loader when running IA-32
applications.

HP-UX: Running IA-32 applications on HP-UX will
involve one more step compared to other operating sys-
tems. HP-UX does not and probably will never support IA-
32 applications natively. Instead, a software partitioning
solution, or “virtual machine”, will be used to boot IA-64
operating systems such as Windows for IA-64 or Linux for
IA-64. Such a virtual machine allows an operating system,
called a “guest” to run as an application of another operat-
ing system. In effect, it partitions a CPU between operating
systems in software, hence the other name of “software
partitioning.” This is illustrated in Figure 5.

The IA-32 support of these guest operating systems will
then be used to execute IA-32 applications. This solution is
slightly less convenient than directly executing IA-32 code.
On the other hand, it offers better performance and compat-
ibility, since it reuses the compatibility layers designed by
the Linux and Windows architects, rather than reinvent its
own. More importantly, this solution is looking forward
rather than backwards.

Mixing IA-32 and IA-64 libraries: Currently, it is
not possible to have a single Windows or Linux application
that uses both IA-32 and IA-64 shared libraries at the same
time. The only exception are IA-64 shared libraries used by

the system to allow execution of IA-32 code. We will dis-
cuss the reasons for this limitation in Section 5. In practice,
this limitation imposes a duplication of many shared librar-
ies, if these shared libraries have to be used both by IA-32
and IA-64 applications.

4. IA-64 Architecture Support for IA-32
How does IA-64 execute IA-32 code? As we said ear-

lier, the IA-64 architecture specifies how IA-64 processors
execute IA-32 instructions. To simplify slightly, IA-64 pro-
cessors support application-level instructions in hardware,
but offers little, if any, support of “privileged” IA-32
instructions, which would be used by IA-32 operating sys-
tems. A few IA-32 instructions also behave slightly differ-
ently than on a real IA-32 processor. This is described in
more details in Chapter 6 of "IA-64 Architecture Software
Developer’s Manual Volume 1: Application Architecture"
[3], entitled “IA-32 Application Execution Model in an IA-
64 System Environment.”

Instruction Set Transition: There are two ways to
switch from one execution model to the other, as illustrated
on Figure 6.
• The br.ia and jmpe instructions allow IA-64 and

IA-32 code, respectively, to branch to code written for
the other instruction architecture. These instructions
allow applications to switch from one instruction set to
the other.

• While IA-32 code is executing, any interruption will
transfer control to the operating system and implicitly
switch to IA-64 code execution. The return from
interruption (rfi) instruction will switch back to IA-
32 execution after the interruption processing is
complete.
The instruction set transitions can be disabled using a

specific bit in the processor status register. Thus, IA-64

Figure 5: Virtual Machine

HP-UX

Windows Linux HP-UX
App.

Virtual Machine

operating systems need not all support IA-32 code execu-
tion. Even operating systems that allow execution of IA-32
code can select to disable instruction set transition within
an application if they do not support mixed mode execu-
tion. In all cases, even when IA-32 application code is run-
ning, the operating system itself still executes using the IA-
64 instruction set.

IA-32 Registers: IA-32 registers are stored in specific
registers of the IA-64. For instance, IA-64 register GR8
holds the value that corresponds to EAX on the IA-32. This
organization allows an IA-64 operating system to access
the IA-32 state, for instance to save the state of an IA-32
process, much in the same way it would for any other part
of the IA-64 state.

The IA-32 floating-point stack and the IA-32 MMX reg-
isters MM0 through MM7 are stored in IA-64 floating-point
registers FR8 through FR15. Since these IA-64 registers
are wider than their IA-32 counterparts (82-bit on IA-64 vs.
80-bit on IA-32), software may need to ensure that valid
IA-32 values are stored in these registers before executing
floating-point IA-32 code.

A few IA-64 registers are reserved to store values that
are useful only to IA-32 code execution. These registers are
not used by normal IA-64 code. For instance, application
register AR24 contains the EFLAG IA-32 register. An oper-
ating system that does not directly support IA-32 code,
such as HP-UX, may ignore these registers completely.

Last, many IA-64 registers are corrupted in an unde-
fined manner when executing IA-32 code. These registers
are used for IA-32 code execution. For instance, IA-64 reg-
isters GR1 through GR3 may be destroyed by the execution
of IA-32 code.

Memory and I/O Accesses: In general, the IA-64
virtual memory model supersedes the traditional IA-32
segmented memory model when executing IA-32 code on
an IA-64 machine. For instance, IA-32 uses a segmented
32-bit address space, while IA-64 uses a 64-bit flat address
space. However, IA-32 code executing on IA-64 first con-
verts all IA-32 addresses to a flat 32-bit virtual address, and
then zero-extend it to a 64-bit virtual address, before using
the IA-64 virtual memory to convert that virtual address to
a physical address.

Thus, IA-32 code can only access a fraction of the
whole 64-bit virtual address space. On the other hand, since
IA-32 code only generates virtual addresses and the IA-64
virtual memory management remains fully in effect, even
IA-32 code can access memory located anywhere in the 64-
bit physical address space. This is shown in Figure 7.

I/O port accesses are handled slightly differently. IA-64
has no notion of an I/O space, contrary to IA-32, which has
special IN and OUT instructions. So IA-32 I/O operations
are converted to normal memory operations. Thus, IA-64
implements “memory mapped I/O”. The base of the IA-32
I/O space is specified with a dedicated register, KR0 (also
called IOBASE.) The 64KB IA-32 I/O space then maps to
a 64MB range in the IA-64 virtual memory space. The
extension from 64K to 64MB allows different I/O devices
to be mapped in different IA-64 virtual memory pages.
This is also illustrated in Figure 7.

Since IA-64 virtual memory remains in effect for IA-32
code, all virtual memory attributes are taken from the IA-
64 side, and any attempt to specify them from IA-32 code
will cause a fault.

IA-32 Faults and Traps: An IA-64 operating system
always executes IA-64 code. Therefore, it needs to inter-
cept all interruptions that occur while executing IA-32
application code. Selected IA-32-related interruption con-
ditions map to one of two reserved IA-64 interruption vec-
tors (IA-32 Exception and IA-32 Intercept).
• IA-32 Exception is used for interruptions that exist on

IA-32, but don’t map correctly on their IA-64
counterpart. For instance, an IA-32 General Exception
condition transfers control to the IA-32 Exception
vector.

Figure 6: Instruction Set Transitions

IA-64 IA-32

br.ia

jmpe

interruption

rfi

Figure 7: IA-32 Memory and I/O on IA-64

segmented 32-bit virtual 64-bit virtual 64-bit physical

se
gm

en
ta

tio
n

ze
ro

-e
xt

en
d

IA
-6

4
VM

I/O port IA-64 I/O 64-bit virtual 64-bit physical

re
m

ap
pi

ng

ad
d

IO
BA

SE

IA
-6

4
VM

 (64MB)(64K)

• IA-32 Intercept is used for interruption conditions that
would not occur or might not occur on a real IA-32
hardware. For instance, executing an IA-32 privileged
instruction invokes the IA-32 Intercept vector. Some
conditions that would not trap on a real IA-32 machine
can also be made to trap on IA-64,

• Other interruption conditions are treated identically
whether they occur while running IA-32 or IA-64 code.
This includes in particular most memory-related faults,
which the IA-64 operating system is expected to handle
identically whether the code causing the fault uses the
IA-32 or IA-64 instruction set. In particular, IA-32 code
may cause interruptions that do not even exist on IA-32
at all, such as TLB miss faults (IA-64 uses some
software support for TLB misses, while IA-32 does it
entirely in hardware.)

Other Differences: In addition to privileged IA-32
instructions, a few other instructions behave differently on
IA-64 than they do on a “real” IA-32 implementation. In
general, instructions that would affect the system state of
an IA-32 machine may be configured to cause an IA-32
Intercept interruption on IA-64.

These instructions include POPF, PUSHF, STI and CLI
(when they affect the interruption state), CALL and RET
(when they affect privilege level), locking instructions, or
instructions affecting the stack segment. Several branch
instructions may also take an additional taken branch trap if
the taken-branch-trap bit in the IA-64 processor status reg-
ister is set.

With this support, it is possible to execute an IA-32
operating system on an IA-64 system, provided the various
faulting conditions are intercepted and emulated by appro-
priate software.

5. Operating System Support
Since several registers are used differently by IA-64 and

IA-32 code, operating systems need to be aware if IA-32
code is executing. A special bit in the processor status reg-
ister indicates which instruction set architecture is currently
in effect. An operating system that supports IA-32 code
needs also to implement IA-32 specific interruption vec-
tors, and to support a virtual memory layout for IA-32
applications, restricted to the first 4GB of the 64-bit virtual
memory space.

But the most important aspect of IA-32 support is the
availability of an environment suitable for execution of IA-
32 code. IA-32 applications must be able to perform IA-32
system calls, to use IA-32 libraries, and more generally to
use any IA-32 method to access the underlying system.
This is illustrated in Figure 8.

Naturally, Windows for IA-64 supports the execution of
Windows 32-bit applications, while Linux for IA-64 sup-
ports the execution of Linux IA-32 binaries. In theory,
however, nothing would prevent for instance an IA-32
Windows subsystem such as Wine to be ported and run on
IA-64 Linux.

Windows: On Windows, the WOW64 is implemented in
the following components:
• wow64.dll provides stub functions to access for the

NT kernel (ntoskrnl.exe) from IA-32 applications.
• wow64win.dll offers a similar service for the Win32

subsystem functions.
• wow64cpu.dll implements IA-32 emulation and IA-

32 to IA-64 mode switch.
Most system DLLs found in SysWOW64 are largely

unmodified IA-32 versions. Only DLLs that share data
with IA-64 DLLs are aware of the existence of WOW64.
Another change is that the system call convention used on
IA-32 is not used by WOW64. Instead, stub functions con-
vert parameters from their IA-32 format to the IA-64 for-
mat in user space, and then perform a regular IA-64 system
call. This method reduces the overhead of switching from
user mode to kernel mode, and avoids the complexity of
maintaining two conventions for entering the IA-64 kernel.
And executing kernel code using the IA-64 instruction set
and calling conventions maximizes performance.

Stub functions are implemented only for selected entry
points. There is no general mechanism allowing an IA-32
library to call an IA-64 library or conversely. The reason is
that the conversion of parameters and data structures (also
called “arguments marshalling”) can only be done if their
types and layout are known in advance. Such conversion
cannot be done for arbitrary, unknown functions. As a
result, it is not possible to mix IA-32 and IA-64 code easily.

Figure 8: OS Support for IA-32 Code

IA-64 OS Kernel, VM, interrupts

IA-32 SysCalls

IA-32 Lib

IA-64 SysCalls

IA-32 App

IA-64 App

IA-64 Lib

Linux: Like Windows, Linux maintains a separate path
for IA-32 libraries. Some kernel support also exists, to
translate IA-32 system calls to IA-64 equivalents. This sup-
port had some impact on the design of Linux for IA-64 as a
whole:
• Linux uses identical system call, errno and signal

numbers on IA-32 and IA-64.
• Linux for IA-64 by default reserves the first region

(“region 0”) of the virtual memory space for use by IA-
32 applications.
The kernel support for IA-32 Linux binaries on IA-64

Linux can be found largely in the arch/ia64/ia32
source directory of Linux. Most of the work there is to con-
vert parameters from their IA-32 format to the correspond-
ing IA-64 format. Contrary to Windows, this is done
mostly in kernel space.

In many cases, only some very simple conversions need
to happen (mostly to convert from IA-32 calling conven-
tions to IA-64 calling conventions), and the rest of the sys-
tem call path is then identical with an IA-64 system call. In
a few cases, more significant conversion is required. For
instance, the IA-32 version of ioctl() recognizes and
converts many types of ioctl() arguments. As we said
earlier, there is no general method for converting argu-
ments from IA-32 to IA-64 format, so “private” ioctl()
values implemented by some rare custom drivers would not
get converted correctly.

HP-UX: In the case of HP-UX, no specific OS support for
IA-32 code exists. HP-UX “32-bit support” is much geared
towards supporting binary or source compatibility with PA-
RISC 32-bit applications. For instance, region 0 in the vir-
tual memory space is reserved for 32-bit applications or for
sharing data between 32-bit and 64-bit applications.

The work that is being done in HP-UX with respect to
IA-32 code execution is limited to what is needed to sup-
port a software partitioning solution and to run multiple IA-
64 operating systems simultaneously on a single CPU.

6. Performance
Even if it is implemented in hardware, IA-32 support on

early IA-64 implementations is far from being on a par
with the most recent implementations of IA-32 such as the
Intel Pentium IV. What’s more, since IA-64 is so different
from a traditional IA-32 CPU, the performance results will
vary dramatically depending on the application.

In general, the user experience running IA-32 code can
be compared to that of a 200MHz to 300MHz Pentium sys-
tem. But the performance of a given application is very dif-
ficult to predict.

On one hand, a ray tracing application that we tested ran
about 15 times slower than on a 650MHz laptop. On the
other hand, Quake produces very acceptable frame rates.
Microsoft Word and other Office applications are com-
pletely usable, but show noticeable delays displaying some
graphic types. RealPlayer runs MPEG video smoothly, but
some other players won’t run at all. Even time-honored
benchmarks like SPEC do not show much more consis-
tency across individual tests. Some traditional Windows
benchmarks fail to install, and the error message indicates
that this is because of 16-bit code.

Providing point performance data is therefore almost
meaningless, even less so considering that the software and
hardware we used was still prototype at the time we con-
ducted our experiments. A more interesting analysis, based
on experience using various applications and recompiling
various performance kernels, is to try to understand what
really impacts performance of IA-32 code running on an
IA-64 machine. Since this is based on early software and
hardware, the picture may still vary a lot in the months or
years to come.

Figure 9 illustrate how various kinds of applications
may behave, based on their respective usage of the proces-
sor. As this figure shows, there is no general rule, and
applications may exhibit many different behaviors.

In general, the factors that seem to influence perfor-
mance the most include:
• Does the application spend its time in user or kernel

space? Since kernel code executes at full IA-64 speed,
kernel-intensive applications will generally behave
better.

• How does the application use memory? IA-64 caches
and memory subsystem are designed to take advantage
of compiler hints (prefetching, speculation). Cache

Figure 9: IA-32 Performance Scenarios
Relative to recompiled IA-64 code

R
el

at
iv

e
to

 b
es

t I
A-

32
 h

ar
dw

ar
e

FP-intensive
(CAD, Ray tracing)

H/W Accelerated
(3D Games)

Branch intensive
(C++ perf kernel)

Integer-intensive
(compression)

Multimedia
(RealPlayer)

System / I/O
(file or web server)

Interactive
(Office)

recompile

run on ia-64run then recompile

stay on ia-32

locality in particular will play a larger role on IA-64
than for a native IA-32 CPU.

• Does the application use floating-point? In our
experience, IA-32 floating-point applications perform
poorly, whether compared to a native IA-32 machine or
to recompiled IA-64 code. If you have a floating-point
intensive application, chances are you want to
recompile it.

• Does the application use indirect calls a lot? In
particular, some C++ applications, where performance
of virtual function calls matters, may see a significant
impact, since dynamic branch prediction is very good
in recent IA-32 implementations. This is one case
where recompiling for IA-64 did not yield much
improvement. Compiler-directed branch prediction is
still in infancy, in particular on Linux.
In conclusion, the most reasonable guidelines to select

which IA-32 applications will run reasonably on IA-64 sys-
tems is: try it!

7. Long-Term Vision
IA-32 code is not going away. For IA-64 to be success-

ful, it has to keep up with IA-32 performance for as long as
IA-32 remains a major player. Supporting IA-32 code is
only the first and necessary step in this process. But it is
unreasonable to dedicate ever-increasing silicon space to
this IA-32 support. IA-64 will never execute 32-bit code as
well as a dedicated processor, just as the Pentium Pro never
executed 16-bit code as well as original Pentium chips.

Therefore, the success of IA-64 as a successor to IA-32
will depend on three factors:
• The native performance of IA-64 needs to increase

regularly, both because of faster chips and because of
improvements in compiler technology. If and when IA-
64 applications significantly outperform IA-32 code,
performance-critical software will naturally migrate to
IA-64, and the importance of IA-32 performance will
decrease.

• IA-64 must enable CPU technology developments that
would be impossible or too costly with IA-32 or RISC
chips. If and when IA-32 performance gains become
marginal despite massive investments, IA-64 will
become a natural successor.

• Dynamic translation technology must be developed,
that generates IA-64 code from IA-32 code on the fly.
A similar technology allowed Apple to replace the
Motorola MC68000 with the PowerPC, and in less than
two years to best any silicon implementation for

MC68000 code performance. Hopefully, IA-64 will
soon become the fastest way to execute IA-32 code.
HP is taking the necessary steps and investments one at

a time. Today, we are positioned with IA-64 in the high-end
markets. But we are already developing technologies that
will matter to you when you will install an IA-64 on your
desktop and want to run all your old applications.

8. Conclusion
For HP-UX users, virtual machine technology offers the

prospect to run multiple operating systems on their
machine at the same time, and for the first time, to gain
access to numerous Windows and Linux applications while
preserving their investment in PA-RISC and HP-UX code.

With this approach, HP both increases the value propo-
sition of IA-64 and ensures smooth transition for all its cus-
tomers. Virtual machine technology is a perfect illustration
of the new “Three OS strategy” that HP embraced in the
last years.

9. References
[1] PA-RISC to IA-64: Transparent Execution, No Recompila-
tion”. Cindy Zheng, Carol Thompson, IEEE Computer Society
Cover Feature, 3/2000
http://computer.org/computer/co2000/r3047abs.htm
[2] Digital FX!32: Combining Emulation and Binary Transla-
tion. Raymond J. Hookway and Mark A. Herdeg
http://www.digital.com/DTJP01/DTJP01HM.HTM
[3] IA-64 Architecture Software Developer’s Manual Volume 1:
Application Architecture. Version 1, July 2000
http://developer.intel.com/design/ia-64/downloads/24531702s.htm
[4] IA-64 Architecture Software Developer’s Manual Volume 2:
IA-64 System Architecture. Version 1, July 2000
http://developer.intel.com/design/ia-64/downloads/24531802s.htm
[5] Intel Architecture (IA-32) Software Developer’s Manual,
Volume 3: System Programming. Intel, 1999
http://developer.intel.com/design/pentium4/manuals/245472.htm

Christophe de Dinechin is working in the Always On Infra-
structure Division as software architect for HP-UX virtual
machine technology. In previous positions at HP, he
worked on rehosting and retargetting HP’s C and C++ com-
pilers to IA-64, and designed a real-time test executive
software for HP Test and Measurement (now Agilent Tech-
nologies.) He can be reached at ddd@cup.hp.com.

	1. Introduction
	Figure 1: The Unifying Architecture
	Figure 2: Transparent execution of PA-RISC binaries on HP-UX for IA-64

	2. Why Run Existing IA-32 Code?
	Windows Applications:
	Linux Applications:
	OS Support:
	Figure 3: IA-32 Netscape on IA-64 Linux
	HP-UX users:
	Performance Limitations:

	3. How to Run IA-32 Code
	WOW64:
	Figure 4: IA-32 Apps on IA-64 Windows
	Linux:
	HP-UX:
	Figure 5: Virtual Machine
	Mixing IA-32 and IA-64 libraries:

	4. IA-64 Architecture Support for IA-32
	Instruction Set Transition:
	Figure 6: Instruction Set Transitions
	IA-32 Registers:
	Memory and I/O Accesses:
	Figure 7: IA-32 Memory and I/O on IA-64
	IA-32 Faults and Traps:
	Other Differences:

	5. Operating System Support
	Figure 8: OS Support for IA-32 Code
	Windows:
	Linux:
	HP-UX:

	6. Performance
	Figure 9: IA-32 Performance Scenarios

	7. Long-Term Vision
	8. Conclusion
	9. References

