
Optimal Oracle9i on HP-UX 11i*

Sanhita Sarkar
Oracle Corporation,

500 Oracle Parkway, M/S 401ip3
Redwood Shores, CA 94065
Sanhita.Sarkar@oracle.com

Phone: (650) 506-4611
Fax: (650) 413-0166

Keywords and Phrases.- Oracle9i, HP-UX 11.0, HP-UX 11i, Performance tools, HP C compiler and linker, profile based
optimization, asynchronous I/O, lightweight timer, benchmarks, tuning, SQL, etc.

ABSTRACT

It is the joint task of any database and system vendor to tune their respective features in order to achieve the desired level of
performance. Oracle9i is a highly optimizable software product taking advantage of the platform-specific features and
capabilities. This paper discusses various features and aspects of performance tuning of Oracle9i on HP-UX 11i platform.
The most common types of performance bottlenecks are CPU, memory and disk I/O contention. Performance tuning involves
detecting and solving these bottlenecks at both system and database level This paper first tabulates the different HP-UX and
Oracle performance tools and then describes the ways to use some of these tools in detecting and tuning each of these
bottlenecks. It also enlists some of the new performance features like optimizer hints and initialization parameters in Oracle9i
that may help in enhancing the overall server performance. During the course of the discussion, it refers to several tunable
Oracle features like the database buffers, redo buffers and shared pool and also recommends tuning at SQL level. As
operating system and database level tuning are not always enough, one technique for improving performance is to create
efficient machine code and optimal programs by optimizing at the compiler and linker levels. This paper mentions the
importance of proper utilization of HP C compiler and linker flags for building an optimal Oracle9i executable on HP-UX
11i. As optimality of oracle executables on HP-UX 11.0 is guaranteed to be forward compatible, all flags/options used for an
optimal oracle build on HP-UX 11.0 should work on HP-UX 11i as well. In addition to the above, designing and profiling
the application for optimality also enhances performance in general. This paper mentions the advantage of Profile-based
optimization of Oracle9i on HP-UX. It also recommends configuring the system kernel parameters and granting some
privileges best suited for an optimal execution of Oracle9i on HP-UX. Also described in this paper are some of the HP
platform-specific new enhancements in Oracle9i. These are the enhanced features of asynchronous I/O; implementation of
the HP Lightweight timer; enabling the SCHED_NOAGE process scheduling policy, etc. To summarize, this paper discusses
some methodologies towards a well-tuned HP-UX system with an optimal Oracle9i database and an efficient application
running against it.

* HP World 2001: Chicago, Illinois, USA

1. INTRODUCTION

Performance strategies vary in their
effectiveness, the type of applications running against an
existing database and also on system level tuning. Well-
designed applications play an important role in achieving
better performance. These involve proper table design,

optimal SQL statements, robust index designing and
choice of good software. System performance is usually
designed and built into a system. Performance problems
usually occur as a result of some system resource being
exhausted or the database not being optimally tuned.
When a system resource is exhausted, the system is
unable to scale to higher levels of performance.
Performance tuning is based on careful planning and

2

design of the database, to prevent system resources from
becoming exhausted and causing downtime. By
eliminating resource conflicts, systems can be made
scalable to the levels required by the business.

Tuning optimizes system performance by
overcoming bottlenecks. The most common types of
performance bottlenecks at the system and database level
are a) CPU resource contention, b) memory contention
and c) disk I/O contention. One may use the different
HP-UX performance monitoring tools and Oracle Tuning
tools and new features to analyze the system activity and
database performance. The different types of tools and
features followed by ways to tune these bottlenecks using
some of these tools and features are described in the
ensuing sections.

1.1. HP-UX and Oracle
Performance Tools and Features

This section enlists the several Oracle and HP-
UX tools commonly used for detecting and monitoring
performance problems both at system and database level.
It also tabulates some of the new performance features
including that of the optimizer in Oracle9i which are very
useful for database level tuning.

1.1.1. HP-UX tools

Tables 1 and 2 describe the different HP-UX
utilities and analysis tools useful for monitoring and
analyzing system activity and database performance.

1.1.2. Oracle9i Tuning Tools and New
Performance Features

Throughout its operation, Oracle maintains a set
of "virtual" tables that record current database activity.
These tables are called dynamic performance tables.
Dynamic performance tables are not true tables and may
be accessed only by the user SYS or SYSTEM. However,
database administrators can query and create views on the
tables and grant access to those views to other users.
These views are sometimes called fixed views because
they cannot be altered or removed by the database
administrator.

The Oracle9i new features of the optimizer and
other enhancements comprise the overall effort to
optimize server performance [3]. Tables 3, 4 and 5
provide information on dynamic performance views, SQL
tuning tools and performance packs and new 9i features
from Oracle that can help investigate and analyze
problems with system resources, database and application
performance.

TABLE 1: HP-UX Standard Utilities

Utilities Use

gprof Creates execution profile for programs.

monitor Monitors program counter and calls to certain functions.

netfmt Formats binary trace and log data collected from network tracing

netstat Displays statistics for network interfaces and protocols.

nfsstat Displays statistical information about the NFS and RPC interfaces to the kernel.

nettl Captures network events or packets by logging and tracing.

prof Creates execution profile of C programs.

profil Dumps program counter information into a buffer. It controls execution time profiling.

sar Samples cumulative activity counters at specified intervals from the OS.

top Displays top processes on the system and periodically updates the information.

vmstat Reports process, virtual memory, disk, paging and CPU activity on HP, depending on the command switches.

iostat Reports terminal and disk activity depending on the command switches.

swapinfo Reports about swap space usage. Shortage of swap space may cause system hang and slow response time.

3

tusc Provides system call tracing functionality when attached to a process.

TABLE 2: HP-UX Performance Monitoring Tools

Analysis tools Use

GlancePlus/UX Online diagnostic tool displaying dynamic information about the system’s I/O, CPU, memory usage and also
resource usage by individual processes.

HP PAK (HP Programmer’s Analysis
Kit)

Consists of two tools - a) Puma, that collects performance statistics during a program run and provides
graphical analysis and b) Thread Trace Visualizer (TTV) that displays trace files produced by the

instrumented thread library in a graphical format.

TABLE 3: Oracle Dynamic Performance Views

Fixed Views Information Type from the
View

Use

V$LOCK Current State View Locks currently held/requested on the
instance

V$LATCH_HOLDER Current State View Sessions/processes holding a latch

V$OPEN_CURSOR Current State View Cursors opened by sessions on the
instance

V$SESSION Current State View Sessions currently connected to the
instance

V$SESSION_WAIT Current State View Different resources sessions are currently
waiting for

V$MYSTAT Summary since instance startup Resource usage summary for your own
session

V$SESSION_EVENT Summary since instance startup Session-level summary of all the waits
for current sessions

V$SESSTAT Summary since instance startup Session-level summary of resource usage
since session startup

V$DB_OBJECT_CACHE Summary since instance startup Object level statistics in shared pool

V$FILESTAT Summary since instance startup File level summary of the I/O activity

V$LATCH Summary since instance startup Latch activity summary

V$LATCH_CHILDREN Summary since instance startup Aggregate summary for each type of
latch

V$LIBRARYCACHE Summary since instance startup Namespace level summary for shared
pool

V$ROLLSTAT Summary since instance startup Rollback activity summary

V$ROWCACHE Summary since instance startup Data dictionary activity summary

V$SQL Summary since instance startup Child cursor details for V$SQLAREA

V$SQLAREA Summary since instance startup Shared pool details for
statements/anonymous block

V$SYSSTAT Summary since instance startup Summary of resource usage

V$SYSTEM_EVENT Summary since instance startup Instance wide summary of resources
waited for

V$UNDOSTAT Summary since instance startup Undo space summary for a ten minute
interval

4

V$WAITSTAT Summary since instance startup Break down of buffer waits by class

V$PARAMTER and

V$SYSTEM_PARAMETER

Information View Parameters values for one’s session.
Instance wide parameter values

V$PROCESS Information View Server processes (background and
foreground)

V$SQL_PLAN Information View Execution plan for cursors that were
recently executed

V$SQLTEXT Information View SQL text of statements in the shared pool

TABLE 4: Oracle Tools for Performance tuning

Oracle Tuning tools Purpose

EXPLAIN PLAN statement Displays execution plans chosen by the Oracle optimizer for SELECT, UPDATE, INSERT, and DELETE
statements. It also helps one to understand the optimizer decisions and explains the performance of a query.

Usage: EXPLAIN PLAN FOR <SQL Statement>

SQL Trace Facility and
TKPROF

Allows one to accurately assess the efficiency of the SQL statements an application runs.

Usage: ALTER SYSTEM SET SQL_TRACE = true;

One needs to run TKPROF to translate the trace file created in the previous step into a readable output
file.

Autotrace in SQL*PLUS Automatically generates a report on the execution path used by the SQL optimizer and the statement
execution statistics. The report is generated after successful SQL DML (that is, SELECT, DELETE, UPDATE and

INSERT) statements.

Usage: SET AUTOTRACE ON

The AUTOTRACE report includes both the optimizer execution path and the SQL statement execution
statistics.

Statspack The Statspack package builds off the traditional UTLBSTAT/UTLESTAT tuning scripts. Statspack automates the
gathering of data, stores data and statistics, and generates performance reports. Statspack takes "snapshots" of data to

work with, letting one to choose the snapshot levels and thresholds to be used.

TABLE 5: Oracle9i - New Performance Features

Oracle9i New Performance
Features

Purpose

FIRST_ROWS_n Optimization Setting the initialization parameter OPTIMIZER_MODE to FIRST_ROWS_n, the optimizer uses a cost-based
approach, regardless of the presence of statistics, and optimizes with a goal of best response time to return first n

number of rows (where n can equal 1, 10, 100, or 1000).

Literal Replacement with bind
variables

CURSOR_SHARING parameter

The cost based optimizer now peeks at the values of user-defined bind variables on the first invocation of a cursor.
When bind variables are used in a statement, it is assumed that cursor sharing is intended and that different

invocations are supposed to use the same execution plan.

A new CURSOR_SHARING parameter can now be set to SIMILAR to force similar statements to share SQL by
replacing literals with system-generated bind variables. Replacing literals with bind variables improves cursor sharing

with reduced memory usage, faster parses, and reduced latch contention.

Identifying Unused Indexes One can find indexes that are not being used by using the ALTER INDEX MONITORING USAGE functionality
over a period of time that is representative of one’s workload.

System Statistics For each plan candidate, the optimizer computes estimates for I/O and CPU costs. It is important to know the system
characteristics to pick the most efficient plan with optimal proportion between I/O and CPU cost.

Optimizer Hints The following hints are new with 9i: NL_AJ, NL_SJ, CURSOR_SHARING_EXACT, FACT, NO_FACT and
FIRST_ROWS_ n.

5

Outline Editing While the optimizer usually chooses optimal plans for queries, there are times when users know things about the
execution environment that are inconsistent with the heuristics that the optimizer follows. By editing outlines
directly, one can tune the SQL query without having to alter the application. The DBMS_OUTLN package

(synonym for OUTLN_PKG) and the new DBMS_OUTLN_EDIT package provide procedures used for managing
stored outlines and their outline categories.

CPU Costing The optimizer now calculates the cost of access paths and join orders based on the estimated computer resources,
including I/O, CPU, and memory.

Tuning Oracle-Managed Files Oracle internally uses standard file system interfaces to create and delete files as needed for tablespaces, tempfiles,
online logs, and controlfiles.

FAST_START_MTTR_TARGE
T Parameter

One may now specify in seconds the expected "mean time to recover" (MTTR), which is the expected amount of
time Oracle takes to perform recovery for an instance.

SQL Working Memory
Management

With release 9i, it is now possible to simplify and improve the way the PGA is allocated in DSS systems. There is an
automatic mode to dynamically adjust the size of the tunable portion of the PGA memory allocated by an instance.

The size of that tunable portion is adjusted based on an overall PGA memory target explicitly set by the DBA.

1.2. Analyzing and Tuning
Performance Bottlenecks

This section will discuss in details the common
bottlenecks, ways of detecting and tuning them using
some of the HP-UX and Oracle tools listed in the
previous section 1.1. For more information regarding
tuning at system and Oracle level, please refer to [1], [4],
[5], [6], [8] and [9].

1.2.1. Tuning CPU Resources

If one suspects a problem with CPU usage, it is
recommended to check two areas: a) CPU Utilization by
the system and b) CPU Utilization by Oracle.

1.2.1.1. Tuning CPU utilization by the system

Oracle statistics report CPU use by Oracle
sessions only, whereas every process running on one’s
system affects the available CPU resources. Therefore,
tuning non-Oracle factors can also improve Oracle
performance. HP-UX monitoring tools may be used to
determine what processes are running on the system as a
whole. If the system is too heavily loaded, it is better to
check the memory, I/O, and process management areas
described as follows.

The sar utility (usage: sar -uM <time>
<interval>) on a HP-UX system helps determining per-
CPU utilization as well as the average CPU utilization of
all the active processors on the entire system in specified
“interval”s of the “time” in secs. CPU utilization is
described in statistics showing user time, system time,
idle time, and time waiting for I/O. A CPU problem exists
if idle time and time waiting for I/O are both close to zero

(less than 5%) at a normal or low workload. Tuning
system CPU resources include tuning the a) memory
management issues; b) I/O management issues and c)
process management issues.

Memory management issues

Paging and Swapping: Paging and swapping
consume a lot of CPU resources. One may use tools such
as sar (usage: sar -w <time> <interval>) or vmstat
(usage: vmstat -S <interval> <count>) to get the reports
for paging and swapping in “interval”s of “time” or
”count” number of times during an “interval”. One may
need to either increase the total memory on the system or
decrease allocated memory.

Oversize Page Tables: If the processing space
becomes too large, it can result in very large page tables.
This may use up lot of CPU time in loading large page
tables.

I/O management issues

Thrashing: One should ensure that the workload
fits into memory, so the machine is not thrashing
(swapping and paging processes in and out of memory).
The operating system allocates fixed portions of time
during which CPU resources are available to one’s
process. If the process wastes a large portion of each time
period checking to be sure that it can run and ensuring
that all necessary components are in the machine, then the
process might be using only 50% of the time allotted to
actually perform work.

Client/Server Round Trips: The latency of
sending a message can result in CPU overload. An
application often generates messages that need to be sent

6

through the network over and over again, resulting in
significant overhead before the message is actually sent.
To alleviate this problem, it is recommended to batch the
messages and perform the overhead only once. For
example, one can use array inserts, array fetches, and so
on.

Process management issues

Scheduling and Switching: The operating
system can spend excessive time scheduling and
switching processes. So it is better to examine the way in
which one is using the operating system, because one
could be using too many processes.

Context Switching: Due to operating system-
specific characteristics, the system could be spending a
lot of time in context switches. Context switching can be
expensive, especially with a large SGA. Programmers
often create single-purpose processes, exit the process,
and create a new one. Doing this re-creates and destroys
the process each time; thus necessitating page table
rebuilds each time. Such logic uses excessive amounts of
CPU, especially with applications that have large SGAs
(SGA stands for shared global area) and hence large
number of pages and page table entries. The problem is
aggravated when one pins or locks shared memory,
because one has to then access every page. For example,
with 1 gigabyte SGA, one might have page table entries
for every 4K, and a page table entry might be 8 bytes. So
one could end up with (1G/4K) * 8B entries. This may
become very expensive, because one needs to load so
many entries each time the page table is rebuilt.

1.2.1.2. Tuning CPU Utilization by Oracle

This section explains how to examine CPU
problems caused by Oracle processes running on the
system. Three dynamic performance views provide
information on Oracle processes: a) V$SYSSTAT shows
Oracle CPU usage for all sessions. The statistic "CPU
used by this session" shows the aggregate CPU used by
all sessions. b) V$SESSTAT shows Oracle CPU usage
per session. One can use this view to determine which
particular session is using the most CPU. c)
V$RSRC_CONSUMER_GROUP shows CPU utilization
statistics on a per consumer group basis if one is running
the Oracle Database Resource Manager. For example, if
one has eight CPUs, then for any given minute in real
time, one has eight minutes of CPU time available. At any
given moment, one may want to know how much time
Oracle has used on the system. So, if eight minutes are
available and Oracle uses four minutes of that time, then
one knows that 50% of all CPU time is used by Oracle.

One then needs to identify the processes that are using
CPU time. Possible areas to research why the processes
are using so much CPU time and the resolution include,
but are not limited to the following: Reparsing SQL
Statements, Checking Read Consistency, Scalability
Limitations within the Application, Detecting Wait Time
and Latch Contention.

Reparsing SQL Statements

When Oracle executes a SQL statement, it parses
it to determine whether the syntax and its contents are
correct. This process can consume significant overhead.
Once parsed, Oracle does not parse the statement again
unless the parsing information is aged from the memory
cache and is no longer available. Ineffective memory
sharing among SQL statements can result in reparsing.
One may use the following procedure to determine
whether reparsing is occurring: Get the “parse time cpu”
and CPU figures used by this session from the
"Statistics" section of the utlestat report or from
V$SYSTAT, as follows:

SELECT * FROM V$SYSSTAT
WHERE NAME IN('parse time cpu', 'parse
time elapsed', 'parse count (hard)'); [1]

From the report generated by SQL statement (1)
one can detect the general response time on parsing. The
more one’s application is parsing, the more contention
exists, and the more time the system spends waiting.

a) If “parse time cpu” represents a large
percentage of the CPU time, then time is being spent
parsing instead of executing statements. If this is the case,
then it is likely that the application is using literal SQL
and not sharing it, or the shared pool is poorly configured.

To find the frequently reparsed statements one
can query V$SQLAREA as follows:

SELECT SQL_TEXT, PARSE_CALLS,
EXECUTIONS
FROM V$SQLAREA
ORDER BY PARSE_CALLS; [2]

and try tuning the statements with the higher number of
parse calls.

b) If “parse time cpu” is only a small
percentage of the total CPU used, then one should
determine where the CPU resources are going. There are
several things one can do to help with this.

7

• Find statements with large number of “buffer_gets”,
because these are typically heavy on CPU. The
following statement finds SQL statements that
frequently access database buffers. Such statements
are probably looking at many rows of data. One may
do as follows:

SELECT ADDRESS, HASH_VALUE,
BUFFER_GETS, EXECUTIONS, BUFFER
GETS/EXECUTIONS "GETS/EXEC",
SQL_TEXT
FROM V$SQLAREA
WHERE BUFFER_GETS > 50000
AND EXECUTIONS > 0
ORDER BY 3; [3]

The report from SQL statement (3) shows which
SQL statements have the most “buffer_gets” and using
the most CPU. The statements of interest are those with a
large number of gets per execution, especially if
execution is high. It is beneficial to have an
understanding of the application components in order to
know which statements are expected to be expensive. The
50,000 cut-off value is an arbitrary starting point and
should be increased or decreased gradually until the top
10 to 20 statements are listed. This statement does not
highlight CPU-intensive PL/SQL blocks.

• After candidate statements have been isolated, the
full statement text can be obtained using the
following query, substituting relevant values for
ADDRESS and HASH_VALUE pairs. One can do as
follows:

SELECT SQL_TEXT FROM V$SQLTEXT
WHERE ADDRESS='&ADDRESS_WANTED'
AND HASH_VALUE=&HASH_VALUE
ORDER BY piece; [4]

The statement can then be explained using
EXPLAIN PLAN or isolated for further testing to see
how CPU-intensive it really is. If the statement uses bind
variables and if one’s data is highly skewed, then the
statement might only be CPU-intensive for certain bind
values.

• Find which sessions are responsible for most CPU
usage. The following statement helps locate sessions
that have used the most CPU:

SELECT v.SID, SUBSTR(s.NAME,1,30)
"Statistic", v.VALUE
FROM V$STATNAME s, V$SESSTAT v
WHERE s.NAME = 'CPU used by this session'
AND v.STATISTIC# = s.STATISTIC#

AND v.VALUE > 0
ORDER BY 3; [5]

After any CPU-intensive sessions have been
identified, the V$SESSION view can be used to get more
information. At this stage, it is generally best to revert to
user session tracing (SQL_TRACE) to determine where
the CPU is being used.

• Trace typical user sessions using the SQL_TRACE
option to see how CPU is apportioned amongst the
main application statements. After these statements
have been identified, one has the following three
options for tuning them: a) Rewrite the application so
that statements do not continually reparse; b) Reduce
parsing by using the initialization parameter
SESSION_CACHED_CURSORS and c) If the parse
count and execute count are small, and the SQL
statements are very similar except for the WHERE
clause, then one might find that hard-coded values
are being used instead of bind variables. Using bind
variables will reduce parsing in this case.

Checking Read Consistency

A system might spend excessive time rolling
back changes to blocks in order to maintain a consistent
view. Let us consider the following scenarios: a) If there
are many small transactions and a long query running in
the background on the same table where the inserts are
taking place, then the query might need to roll back many
changes; b) If the number of rollback segments is too
small, then the system could also be spending a lot of
time rolling back the transaction table. A solution is to
make more rollback segments or to increase the commit
rate. For example, if one batches ten transactions and
commit them once, then one reduces the number of
transactions by a factor of 10; c) If the system has to scan
too many buffers in the foreground to find a free buffer,
then it wastes CPU resources. To alleviate this problem,
the DBWR process(es) should be tuned to write more
frequently. One can also increase the size of the buffer
cache to enable the database writer process(es) to keep
up.

Scalability Limitations within the Application

In most of this CPU tuning discussion, we have
been assuming that one can achieve linear scalability, but
this is never actually the case. How flat or nonlinear the
scalability is indicates how far away from optimal
performance a system is. Problems in one’s application
might be adversely affecting scalability. Examples of this

8

include too many indexes, right-hand index problems, too
much data in the blocks, improper partitioning of the data.
These types of contention problems waste CPU cycles
and prevent the application from attaining linear
scalability.

Detecting Wait Time

Whenever an Oracle process waits for
something, it records it as a wait using one of a set of
predefined wait events. One may check
V$EVENT_NAME for a list of all wait events. Some of
these events can be considered as idle events i.e., the
process is waiting for work. Other events indicate time
spent waiting for a resource or action to complete. By
comparing the relative time spent waiting on each wait
event and the "CPU used by this session" (see SQL
statement (5)), one can see where the Oracle instance is
spending most of its time. To get an indication of where
time is spent, one may find the following steps useful:

• Review either the V$SYSTAT view or the wait
events section of the UTLBSTAT/UTLESTAT
report.

• Ignore any idle wait events. Common idle wait
events include: Client message, SQL*Net message
from client, PMON timer, SMON timer, Parallel
query dequeue, etc.

• Ignore any wait events that represent a very small
percentage of the total time waited.

• Add the remaining wait event times, and calculate
each one as a percentage of total time waited.

• Compare the total time waited with the “CPU used
by this session” figure (see SQL statement (5)).

• Find the event with the largest wait event time. This
may be the first item one needs to tune.

Detecting Latch Contention

Latch contention is a symptom of CPU
problems; it is not usually a cause. To resolve it, one must
locate the latch contention within the application, identify
its cause, and determine which part of the application is
poorly written. In some cases, the spin count may be set
too high. It’s also possible that one process is holding a
latch that another process is attempting to secure. The
process attempting to secure the latch might be endlessly
spinning. After a while, this process might go to sleep and
later resume processing and repeat its ineffectual
spinning. To resolve this, one may do as follows:

• Check the Oracle latch statistics. The "latch free"
event in V$SYSTEM_EVENT shows how long
processes have been waiting for latches. If there is no
latch contention, then this statistic does not appear. If
there is a lot of contention, then it might be better for
a process to go to sleep at once when it cannot obtain
a latch rather than use CPU time by spinning.

• Look for the ratio of CPUs to processes. If there are
large numbers of both, then many processes are able
to run. But, if a single process is holding a latch on a
system say, with 10 CPUs, then reschedule that
process so it is not running. But 10 other processes
might run ineffectively trying to secure the same
latch. This situation wastes in parallel some CPU
resources.

• Check V$LATCH_MISSES to figure out where in
the Oracle code most of the contention is taking
place.

Memory
Management

I/O Management

Process
Management

O
R
A
C
L
E

S
Y
S
T
E
M

T
U
N
I
N
G

C
P
U

U
S
A
G
E

SQL Tuning

Tuning Read
Consistency

Check

Application
Scalability Tuning

Tuning Latch
Contention

Tuning wait
Events

Paging and
Swapping

Thrashing

Oversize
Page tables

Network
Round Trips

Scheduling
and Switching

Context
Switching

Figure 1. Tuning CPU resources both at system and
Oracle level.

1.2.2. Tuning Memory Allocation

Oracle stores information in memory and on
disk. Memory access is much faster than disk access;
therefore, it is better for data requests be satisfied by
accessing memory instead of accessing the disk. For best
performance, it is better to store as much data as possible
in memory. However, memory resources on an operating
system are likely to be limited. Tuning memory allocation
involves distributing available memory to Oracle memory
structures. Oracle’s memory requirements again depend
on one’s application. Therefore, it is desirable to tune
memory allocation after tuning the application and SQL

9

statements. Also, it is recommended to tune memory
allocation before tuning I/O. Allocating memory
establishes the amount of I/O necessary for Oracle to
operate. This section describes how to allocate memory to
perform as little I/O as possible.

Resolving memory issues involve mainly a)
Tuning Operating System Memory Requirements b)
Tuning the Redo Log Buffer c) Tuning the Shared Pool
and d) Tuning the Buffer Cache.

1.2.2.1. Tuning Operating System memory
Requirements

Tuning the operating system is centered around
areas like a) Reduction of Paging and Swapping, b)
Fitting the System Global Area into Main Memory and
c) Allocating Adequate Memory to Individual Users.

Reducing Paging and Swapping

An operating system can store information in
real memory, virtual memory, expanded storage, or on
disk. The operating system can also move information
from one storage location to another. This process is
known as paging or swapping. Many operating systems
page and swap to accommodate large amounts of
information that do not fit into real memory. Excessive
paging or swapping can reduce the performance of many
operating systems and indicates new information often
being moved to memory. In that case, the system’s total
memory might not be large enough to hold everything for
which one has allocated memory. So as a solution to this
problem, it is recommended to either increase the total
memory on the system or decrease the amount of memory
allocated.

Fitting the System Global Area into Main
Memory

Because the purpose of the System Global Area
(SGA) is to store data in memory for fast access, the SGA
should always be within main memory. If pages of the
SGA are swapped to disk, then its data is no longer
quickly accessible. On most operating systems, the
disadvantage of excessive paging significantly outweighs
the advantage of a large SGA. Although it is best to keep
the entire SGA in memory, the contents of the SGA are
split logically between hot and cold parts. The hot parts
are always in memory, because they are always being
referenced. Some cold parts can be paged out, and a
performance penalty might result from bringing them
back in. A performance problem likely occurs, however,

when the hot part of the SGA cannot remain in memory.
One may actually cause Oracle to read the entire SGA
into memory when starting up the Oracle instance.
Operating system page table entries are then pre-built for
each page of the SGA. This setting can increase the
amount of time necessary for instance startup because
every process that starts must attach itself to the SGA.
But it is likely to decrease the amount of time necessary
for Oracle to reach its full performance capacity after
startup. The advantage that this strategy of locking the
whole SGA into memory can afford depends on the OS
page size. HP-UX permits Oracle to set the largest virtual
memory page size available (up to 1 Gigabyte) resulting
in only a few pages to be touched to refresh the SGA.

Allocating Adequate Memory to Individual
Users

On some operating systems like HP-UX, one may
have control over the amount of physical memory
allocated to each user. One must make sure that all users
are allocated enough memory to accommodate the
resources they need to use their application with Oracle.
These resources include: The Oracle executable image,
the SGA, Oracle application tools and Application-
specific data. On HP-UX, Oracle software can be
installed so that a single executable image can be shared
by many users, thus reducing the amount of memory
required by each user.

1.2.2.2 Tuning Oracle Memory Resources

Tuning Oracle memory resources mainly
involves a) Tuning the Redo Log Buffer; b) Tuning the
Shared Pool and c) Tuning the Buffer Cache.

Tuning the Redo Log Buffer

When the Oracle Log Writer process (LGWR)
writes redo entries from the redo log buffer to a redo log
file or disk, user processes can copy new entries over the
entries in memory that have been written to disk. LGWR
normally writes fast enough to ensure that space is always
available in the buffer for new entries, even when access
to the redo log is heavy. The statistic REDO BUFFER
ALLOCATION RETRIES reflects the number of times a
user process waits for space in the redo log buffer. One
may query as follows:

SELECT NAME, VALUE FROM V$SYSSTAT
WHERE NAME = ’REDO BUFFER
ALLOCATION RETRIES’; [6]

10

The value of REDO BUFFER ALLOCATION
RETRIES should be close to zero. If this value
increments consistently, then processes have had to wait
for space in the buffer. The wait can be caused by the log
buffer being too small or by checkpointing. If that’s the
case, one needs to increase the size of the redo log buffer
by changing the value of the initialization parameter
LOG_BUFFER or alternatively, improve the
checkpointing or archiving process.

Tuning the Shared Pool

The shared pool contains the library cache of
shared SQL requests, the dictionary cache, stored
procedures, and other cache structures that are specific to
a particular instance configuration. Proper sizing of the
shared pool can reduce resource consumption. For
example, parse time is avoided if the SQL statement is
already in the shared pool; application memory overhead
is reduced, because all applications use the same pool of
shared SQL statements and dictionary resources; I/O
resources are saved, because dictionary elements that are
in the shared pool do not require disk access, etc. One
might need to increase the shared pool size if the
frequently used set of data does not fit within it. A cache
miss on the data dictionary cache or library cache is more
expensive than a miss on the buffer cache. So it is
recommended to allocate sufficient memory to the shared
pool before allocating to the buffer cache. One can
determine the library cache and row cache (data
dictionary cache) hit ratios from the following SQL
queries (7). The results show the miss rates for the library
cache and row cache. If the ratios are close to 1, then one
does not need to increase the pool size.

SELECT (SUM(PINS - RELOADS)) /
SUM(PINS) "LIB CACHE"
FROM V$LIBRARYCACHE;

SELECT (SUM(GETS - GETMISSES -
USAGE - FIXED)) / SUM(GETS) "ROW
CACHE"
FROM V$ROWCACHE; [7]

Tuning the Buffer Cache

Physical I/O takes a significant amount of time,
typically more than 15 milliseconds. Physical I/O also
increases the CPU resources required, because of the path
length in device drivers and operating system event

schedulers. One’s goal should be to reduce this overhead
as much as possible by making it more likely that the
required block is in memory. The extent to which one can
achieve this is measured using the cache hit ratio. Within
Oracle, this term applies specifically to the database
buffer cache. One may monitor these statistics as follows:

SELECT NAME, VALUE
FROM V$SYSSTAT
WHERE NAME IN (’DB BLOCK GETS’,
’CONSISTENT GETS’, ’PHYSICAL
READS’);

[8]

The hit ratio for the buffer cache may be calculated using
the following formula:

Hit Ratio = 1 - ((physical reads - physical reads
direct) / session logical reads)

If the calculated hit ratio is low, say less than 60% or
70%, then one might want to increase the number of
buffers in the cache to improve performance. To make the
buffer cache larger, one needs to increase the value of the
initialization parameter DB_BLOCK_BUFFERS.

O
R
A
C
L
E

S
Y
S
T
E
M

T
U
N
I
N
G

M
E
M
O
R
Y

R
E
S
O
U
R
C
E
S

Tuning Redo
Log Buffer

Tuning Shared
Pool

Tuning Buffer
Cache

Paging and
Swapping

Allocating
User Memory

SGA and Main
Memory

Figure 2: Tuning memory allocation both at system
and Oracle level.

1.2.3. Tuning I/O Problems

Disk I/O contention is the result of poor memory
management (with subsequent paging and swapping), or
poor distribution of tablespaces and files across disks.
The I/O load should be spread evenly across all disks.
HP-UX monitoring tools may be used to determine what
processes are running on the system as a whole and to
monitor disk access to all files. Disks holding datafiles

11

and redo log files can also hold files that are not related to
Oracle. In that case, one should try to reduce any heavy
access to disks that contain database files. Tools, such as
sar (usage: sar -d <time> <interval>) on HP-UX, lets
one monitor the disk I/O activity for the entire system in
the specified “interval”s of “time” in secs. Also the iostat
utility (usage: iostat -t <interval> <count>) on HP-UX
reports terminal and disk activity “count” number of
times at specified “interval”s. It reports which disks are
busy and helps balancing the I/O loads.

To check on Oracle I/O utilization,
V$SYSTEM_EVENT can be queried by event to show
the total number of I/Os and the average duration by type
of I/O (read/write). With this, one can determine which
types of I/O are too slow and may tune Oracle-related I/O
problems. If the Oracle server is not consuming the
available I/O resources, then the process that is using up
the I/O should be determined for tuning. The view
V$SYSTEM_EVENT may be further reviewed for the
following events: db file sequential read, db file
scattered read, db file single write, and db file parallel
write. These are all events corresponding to I/Os
performed against the data file headers, control files, or
data files. If any of these wait events correspond to high
average time, then it is recommended to investigate the
I/O contention using sar or iostat in order to look for
busy waits on the device. The file statistics may help to
determine which file is associated with the high I/O.
Figure 3 shows the steps to tune I/O problems.

O
R
A
C
L
E

S
Y
S
T
E
M

T
U
N
I
N
G

I/O

C
O
N
T
E
N
T
I
O
N

Tuning s low
I/Os

Tuning
processes for

heavy I/Os

Detecting W ait
Events for

Tuning

Tuning
Mem ory

Reducing
heavy disk

access

Optim al I/O load
across disks

Figure 3: Tuning I/O contention both at system and
Oracle database level.

2. CONFIGURING ORACLE9i ON
HP-UX

This section discusses about different aspects
that one needs to be aware of while trying to configure
oracle9i on HP-UX. These are a) the set of required
system privileges; b) recommended HP-UX kernel
parameter settings and c) disabling data prefetch on
Superdome systems. As the recommendations in a) and b)
are applicable to both HP-UX 11.0 and 11i, I have used
the term HP-UX to cover both. The discussion on data
prefetch setting is applicable only to Superdome systems
with HP-UX 11i.

2.1. Granting privileges to the
group owning an Oracle9i
executable on HP-UX

For Oracle9i version 9.0.1, the system
administrators need to grant a few privileges to the group
owning the Oracle executable. These privileges include
MLOCK, RTSCHED and RTPRIO.

The MLOCK privilege is required for Oracle 9i
version 9.0.1 to execute asynchronous I/O operations
using the HP asynchronous device driver. Without this
privilege, users will see errors in the trace file as follows:
“Ioctl ASYNC_CONFIG error, errno=1”.

A new scheduling policy from HP called the
SCHED_NOAGE helps to enhance Oracle performance
by scheduling Oracle processes in a manner so that they
don't increase or decrease in priority or get preempted. To
enable this policy, the user group owning the Oracle9i
executable needs to have the RTSCHED and RTPRIO
privileges. These privileges grant Oracle the ability to
change its process scheduling policy to SCHED_NOAGE
and also tell Oracle what priority level it should use when
setting the policy.

In most of the cases, the group that owns the
oracle executable is DBA. So the system administrator
must execute as root to grant the above privileges to
group DBA as follows:

setprivgrp dba MLOCK RTSCHED RTPRIO

To make the privilege persistent over reboots, the system
administrator must enter the following into the file
/etc/privgroup:

dba MLOCK RTSCHED RTPRIO

12

If the file /etc/privgroup doesn't exist, it should be
created.

2.2. HP-UX Kernel Parameter
Settings for Optimal Performance
of 64-bit Oracle9i

The following Table 6 lists the different HP-UX
kernel parameter settings recommended for a 64-bit
Oracle9i. Certain kernel operating system parameters can
be configured to fit specific system needs, resulting in
better performance or more effective allocation of
resources. On HP-UX 11i, some of the parameters are
dynamically re-configurable. That way, users may alter

the parameter settings related to process memory, shared
memory, etc dynamically without going through a system
reboot. For more details, please refer to [9]. The ideal
value for each parameter is often determined by the
system's particular hardware configuration, the specific
mix of applications the system runs, and the
trustworthiness of system users; factors that vary widely
from system to system.

This paper attempts to provide reasonable
parameter settings for running Oracle9i on HP-UX - the
ones that we generally use for different OLTP and DSS
benchmarks. One may find it necessary or beneficial to
modify these settings to better suit the needs of the users
of a particular system.

TABLE 6: HP-UX Kernel Parameter Settings recommended for running a 64-bit Oracle9i

Kernel Parameter Recommended Setting Purpose
nproc 4096 Maximum number of processes

ksi_alloc_max (nproc * 8) System-wide limit of queued signal that can be allocated
maxdsiz 1073741824 Maximum data segment size (bytes) A low setting may cause processes to

run out of memory pretty fast
maxdsiz_64bit 2147483648 Maximum data segment size (bytes). A low setting may cause processes

to run out of memory pretty fast
maxssiz 134217728 Maximum stack segment size (bytes)

maxssiz_64bit 1073741824 Maximum stack segment size (bytes)
maxswapchunks (Available Physical Memory (in

MB) / 2)
 Maximum number of swap chunks where swchunk is the swap chunk size

(1K blocks)
maxuprc (nproc +2) Maximum number of user processes
msgmap (nproc +2) Maximum number of message map entries
msgmni nproc Number of message queue identifiers
msgseg (nproc * 4) Number of segments available for messages
msgtql nproc Number of message headers

ncallout (nproc + 16) Maximum number of pending timeouts
ncsize ((8 * nproc + 2048) +

VX_NCSIZE) where
VX_NCSIZE is by default 1024

Directory Name Lookup Cache (DNLC) space needed for inodes

nfile (15 * nproc + 2048) Maximum number of open files
nflocks nproc Maximum number of file locks
ninode (8 * nproc + 2048) Maximum number of open inodes

nkthread (((nproc * 7) / 4) + 16) Maximum number of kernel threads supported by the system
semmap ((nproc * 2) + 2) Max number of semaphore map entries
semmni (nproc * 2) Maximum number of semaphore sets in the entire system.
semmns ((nproc * 2) *2) Maximum semaphores on the system.

semmnu (nproc - 4) Number of semaphore undo structures
semvmx 32768 Maximum value of a semaphore.
shmmax ~ available physical memory Maximum allowable size of one shared memory segment. Should be big

enough to hold the entire SGA in one shared memory segment. A low
setting causes creation of multiple shared memory segments which may in

turn cause performance degradation.
shmmni 512 Maximum number of shared memory segments in the entire system.

13

shmseg 32 Maximum number of shared memory segments one process can attach.
vps_ceiling 64 Maximum System-Selected Page Size (in Kbytes)

2.3. Disabling Data Prefetch on the
HP Superdome for Oracle

HP Superdome systems have a data prefetch
feature that might impair Oracle performance in update or
insert intensive applications. Oracle Corporation and
Hewlett-Packard Corporation recommend one to disable
this feature for these types of applications.

Prefetching data usually improves application
performance. However, the Oracle server is developed to
run well on all HP systems, including those that do not
include the prefetch feature. In update and insert intensive
applications, enabling the data prefetch feature
unintentionally creates contention on redo allocation and
redo copy latches. This contention is increased as the
number of processors is increased. Disabling the data
prefetch feature helps to reduce redo latch contention.

HP Superdome systems can run multiple
instances of the HP-UX 11i operating system on a single
server by defining multiple partitions within a Superdome
server. Each partition on a HP Superdome system acts as
a logical server running a single instance of HP-UX. Each
system can boot, reboot and operate independently of
other partitions and hardware within the Superdome
system. Each partition also has its own console.

To disable data prefetch on a HP Superdome
system, one must disable the prefetch option in each
partition on which the Oracle server is running. So to
disable the prefetch option for each partition, one has to
login to each partition and start a reboot in order to enter
the BCH (Boot Console Handler) prompt. From the BCH
prompt, one needs to enter the configuration menu (CO)
and disable data prefetch (data prefetch disable). Once
this is done, the partition has to go through a full reboot
in order to reset this option for this partition. For more
details, please refer to [2].

3. OPTIMIZING THE BUILDS OF
ORACLE PRODUCTS ON HP-UX

The HP C optimizer can transform programs so
that machine resources are used more efficiently thus
dramatically improving application run-time speed. HP C
performs only minimal optimizations unless specified
otherwise. There are four major levels of optimizations: 1,

2, 3 and 4. Level 4 optimization can produce the fastest
executable code and is a superset of other levels. But one
may have to pay a penalty by choosing a high level
optimization because of the increased compile-time
memory and CPU usage with this choice. So one needs to
use the desired level of optimization being aware of the
trade-offs between compile-time penalties and code
performance. One may activate optimizations of one's
own choice using HP C command line options. One such
desired type of optimization on HP-UX is the profile
based optimization (PBO) which is a set of performance
improving code transformations based on the run-time
characteristics of the application. In addition to the above,
one should use proper HP C optimizer flags during
compile and link time as well as appropriate system
libraries during link time in order to ensure optimal
performance of oracle products on HP-UX.

3.1. Profile Based Optimization
(PBO)

There are three steps involved in performing this
type of optimization: a) Instrumentation, b) Flow Data
Collection and c) Optimization. Figure 4 shows the
different stages towards a Profile Based Optimized Oracle
product on HP-UX.

Flow data
Collection

Environment
Variables

Optimal
compiler/linker

flags

Optimal Oracle
Products

Instrumentation

Optimization

System Kernel
Parameters

Optimal
Oracle

Execution

Figure 4: Phases for profile based optimization of an
Oracle executable on HP-UX

The instrumentation phase inserts data collection
code into the object program. The data collection phase
creates and logs the profile statistics to a file, by default

14

called the flow.data. It is a structured file that may be
used to store the statistics from multiple test runs of
different programs that one may have instrumented. The
last phase called the optimization phase optimizes the
program based on the collected run-time profile statistics.
Profile Based optimization (PBO) has a greater impact
on application performance at each higher level of
optimization. PBO should be enabled during the final
stages of application development. To obtain the best
performance, it is recommended to re-profile and re-
optimize the application after making any source code
changes.

With Oracle9i version 9.0.1, lab tests indicate
that proper PBO-ing provides up to 13% improvement in
performance.

3.2. HP C Compiler/Linker flags
and System libraries for 64-bit
optimized Oracle products

Choosing the right HP C compiler and linker
flags and HP/Oracle options is a procedure followed for
building 64-bit optimized oracle products on HP-UX
11.0/11i. The HP-UX system libraries also play an
important role while linking a 64-bit optimized oracle on
HP-UX 11.0/11i. For details regarding the use of the
different flags/options and system libraries, please refer to
the HP-UX reference manuals in [9].

4. ENHANCEMENTS IN ORACLE9i
FOR HP-UX

This section describes the different performance
enhancements in Oracle9i release version 9.0.1 on HP-
UX. These enhancements include implementation of
asynchronous I/O to heap, asynchronous flag in Oracle
shared global area, the new lightweight timer from HP
and the SCHED_NOAGE process scheduling policy.

4.1. Asynchronous I/O to heap for
64-bit Oracle 9.0.1 on HP-UX 11.0
and 11i

In Oracle9i release version 9.0.1 as well as in
Oracle8i release version 8.1.7.0 and the intermediate
releases on HP-UX, the Oracle server executes I/O
operations from both shared memory and process-private
region or heap using the HP asynchronous driver. This

implementation enables Oracle parallel query slaves and
database writers to execute I/O operations from shared
memory as well as from local memory. As a result a
fewer number of the above processes are sufficient to
bring forth the desired performance with a lower memory
usage especially for applications with large full table
scans and index fast full scans. Lab tests show that the
implementation of asynchronous I/O to heap provides up
to 15% gain in DSS performance with the number of
parallel query slaves reduced to half.

Before Oracle8i release version 8.1.7.0 on HP-
UX, the Oracle server could execute I/O operations only
from the shared memory using the HP asynchronous
driver. As a result, the number of Oracle parallel
processes required to achieve a desirable performance
was a few times higher than what was recommended for a
particular configuration. This also led to a higher
percentage of memory usage on HP-UX compared to
other platforms.

4.2. Asynchronous Flag in Shared
Global area for 64-bit Oracle 9.0.1
on HP-UX 11.0 and 11i

Oracle9i release 9.0.1 on HP uses a non-
blocking polling facility provided by the HP
asynchronous driver to check the status of I/O operations.
This polling is performed by checking a flag that is
updated by the asynchronous driver based on the status of
the I/O operations submitted. HP requires that this flag be
in shared memory.

Oracle9i configures an asynchronous flag in the
SGA for each oracle process. Oracle9i on HP has a true
asynchronous I/O mechanism where I/O requests can be
issued even though some previously issued I/O operations
are not complete. This helps to enhance performance and
ensures good scalability of parallel I/O processes. Lab
tests show that this implementation provides up to 13%
improvement in DSS performance.

Before Oracle8i release 8.1.7, the Oracle server
was only able to execute I/O operations from shared
memory using the HP asynchronous driver. Oracle8i
release 8.1.7 executes I/O operations from both shared
memory and process-private regions using the new HP
asynchronous driver. However, I/O operations through
the asynchronous driver are not asynchronous in nature.
This is because Oracle8i must perform a blocking wait to
check the status of I/O operations submitted to the
asynchronous driver. Doing this causes some Oracle

15

processes, for example the database writer process, to
essentially execute synchronous I/O.

4.3. HP Lightweight Timer for 64-
bit Oracle 9.0.1

Prior to Oracle9i release version 9.0.1 on HP-
UX, Oracle called the heavyweight HP-UX
gettimeofday() system call to get the wall clock time and
calculate elapsed time. This had a significant impact on
Oracle performance, especially when the Oracle
timed_statistics initialization parameter was set to true in
order to collect timing information for tuning purposes.
HP has recently designed a new high performance,
lightweight timer library call function gethrtime() for
both HP-UX 11.0 and 11i. The 64-bit version of Oracle 9i
version 9.0.1 on HP-UX 11.0 and 11i uses this new
library call to calculate elapsed time, greatly reducing the
negative impact on RDBMS performance when the
timed_statistics is set to true (lab tests show that the new
library call provides up to 10% performance improvement
over the previous implementation).

4.3.1. Requirement of Operating System
Patches

Before running Oracle9i, one must make sure
that the required operating system patches are installed on
one’s system. Running Oracle9i on unpatched versions of
the HP-UX kernel will result in undefined and/or
unresolved references to the gethrtime() library call.

For detailed information on the required patches,
one should refer to the Oracle9i Quick Installation
Procedure [7]. For patch availability and downloads, one
should refer to the HP support web site.

4.4. Process Scheduling Policy
SCHED_NOAGE for Oracle on HP-
UX

By default, most processes run under the
SCHED_TIMESHARE scheduling policy on HPUX.
Each process has a priority and is given access to a CPU
based on that priority. The scheduler keeps track of each
process’ priority. The priority of a process running on a
CPU gradually degrades, while the priority of a process to
be run increases. That way, no one process can
monopolize the CPU. In a time sharing environment, this
is the desired behavior most of the time. But in some

cases, the standard schedule method may cause sub-
optimal performance. If a running process has a lock on a
resource and is preempted, a process that needs that
resource may start running; realize that it can’t acquire
the resource and go right back to sleep again. In that case,
it would have been better for the process with the lock on
the resource to finish its work and relinquish the lock,
instead of being preempted. This situation may often arise
with Oracle processes on a multiprocessor system.

HP has a modified scheduling policy, referred to
as SCHED_NOAGE, that specifically addresses this
issue. Unlike the normal time sharing policy, a process
scheduled using SCHED_NOAGE does not increase or
decrease in priority, nor is it preempted. This feature is
suited to online transaction processing (OLTP)
environments because OLTP environments can cause
competition for critical resources. In laboratory tests,
Oracle9i performance increased by up to 10 percent in
OLTP environments using the SCHED_NOAGE policy.
The SCHED_NOAGE policy creates little or no gains in
decision support (DSS) environments because there is
little resource competition in these environments. Because
each application and server environment is different, it is
recommended to test and verify whether one’s
environment benefits from the SCHED_NOAGE policy.

To allow Oracle9i to use the SCHED_NOAGE
scheduling policy, the group that the Oracle software
owner belongs to (DBA), must have the RTSCHED and
RTPRIO privileges to change the scheduling policy and
set the priority level for Oracle processes. To give the dba
group these privileges: As the root user, one should enter
the following commands:

• # setprivgrp dba RTSCHED RTPRIO

• To retain these privileges after rebooting, one should
create the /etc/privgroup file, if it does not exist on
the system, and add the following line to it:

dba RTSCHED RTPRIO

• One should add the HPUX_SCHED_NOAGE
parameter to the initialization file for each instance,
setting the parameter to an integer value to specify
process priority levels. On HP-UX 11.0, the range is
154 to 255.

For more information on priority policies and
priority ranges, one should see the rtsched (1) and rtsched
(2) man pages and the HP documentation site [9].

16

5. PERFORMANCE ANALYSIS

This section analyzes the different performance
enhancements in Oracle9i release version 9.0.1 on HP-
UX 11.0/11i. Testing has been done internally at Oracle
and HP performance labs and benchmarks have been
carried out in order to measure the above enhancements.
The discussion in the previous paragraphs correlates to
the results from such measurements.

TPC-H and TPC-C baseline runs were taken on
HP-UX 11.0 as well as 11i after installing the proper
operating system patches corresponding to the
enhancements. When timed_statistics was set to true, we
have achieved up to 10% performance improvement
using the lightweight timer. Use of the tusc utility during
these runs, showed around 20 times reduction of calls to
gettimeofday() with the new implementation. With the
asynchronous flag implemented in Oracle9i release
version 9.0.1, we have seen a 13% gain in the TPC-H
benchmark performance. The mechanism of non-blocking
polling for I/O completions has shown desirable
scalability of Oracle parallel query slaves with a higher
throughput from a terabyte size database. The
SCHED_NOAGE process scheduling policy in the above
mentioned version of Oracle9i has shown up to 10%
improvement in performance of OLTP applications in a
competitive scenario for critical resources, e.g., latches.
Proper utilization of these enhancements and the required
operating system patches have been discussed in details in
[2] and [7].

6. CONCLUSIONS

We at Oracle continue to strive to bring our
customers the most functional and best performing
database available. In those efforts, we work very closely
with HP in order to ensure the highest quality of products
combined with very high performance systems. One can
be assured that we will be working jointly for many years
to deliver the products one needs in day to day production
environments.

As an immediate future direction we have in
mind several enhancements for the next Oracle9i release
version 9.0.2 on HP-UX. For example, we will be
working on further extensions of the lightweight timer for
Oracle; use the enhanced features of the new HP linker
for optimal linkordering and preloading shared libraries
and also test out new patch bundles from HP. We will
also be continuing experiments with Oracle 9iRAC (Real
Application Cluster) on HP-UX and work on other
miscellaneous topics like vectored asynchronous I/O,
performance of I/O executions on HP-UX using
filesystems, e.g., JFS 3.x and so on.

7. REFERENCES

1. Aronoff, E., Loney, K and Sonawalla, N. Advanced
Oracle Tuning and Administration: McGraw Hill
Publishers, Berkeley, California.

2. Oracle9i Administrator’s Reference Release 9.0.1 for
UNIX Systems: Oracle Corporation.

3. Oracle9i New Features, Release 9.0.1: Oracle
Corporation.

4. Oracle9i Performance Guide and Reference Release
9.0.1: Oracle Corporation.

5. Oracle9i Performance Methods, Release 9.0.1:
Oracle Corporation.

6. Oracle9i SQL Reference, Release 9.0.1: Oracle
Corporation.

7. Oracle9i Quick Installation Procedure Release 9.0.1
for HP 9000 Series HP-UX: Oracle Corporation.

8. Sauers, R and Weygant, P. HP-UX Tuning and
Performance: Concepts, Tools and Methods:
Prentice-Hall Publishers, New Jersey.

9. Web Site for Technical Documentation from HP:
www.docs.hp.com.

	1. INTRODUCTION
	1.1. HP-UX and Oracle Performance Tools and Features
	1.1.1. HP-UX tools
	1.1.2. Oracle9i Tuning Tools and New Performance Features

	1.2. Analyzing and Tuning Performance Bottlenecks
	1.2.1. Tuning CPU Resources
	1.2.1.1. Tuning CPU utilization by the system
	Memory management issues
	I/O management issues
	Process management issues

	1.2.1.2. Tuning CPU Utilization by Oracle
	Reparsing SQL Statements
	Checking Read Consistency
	Scalability Limitations within the Application
	Detecting Wait Time
	Detecting Latch Contention

	1.2.2. Tuning Memory Allocation
	1.2.2.1. Tuning Operating System memory Requirements
	Reducing Paging and Swapping
	Fitting the System Global Area into Main Memory
	Allocating Adequate Memory to Individual Users

	1.2.2.2 Tuning Oracle Memory Resources
	Tuning the Redo Log Buffer
	Tuning the Shared Pool
	Tuning the Buffer Cache

	1.2.3. Tuning I/O Problems

	2. CONFIGURING ORACLE9i ON HP-UX
	2.1. Granting privileges to the group owning an Oracle9i executable on HP-UX
	2.2. HP-UX Kernel Parameter Settings for Optimal Performance of 64-bit Oracle9i
	2.3. Disabling Data Prefetch on the HP Superdome for Oracle

	3. OPTIMIZING THE BUILDS OF ORACLE PRODUCTS ON HP-UX
	3.1. Profile Based Optimization (PBO)
	3.2. HP C Compiler/Linker flags and System libraries for 64-bit optimized Oracle products

	4. ENHANCEMENTS IN ORACLE9i FOR HP-UX
	4.1. Asynchronous I/O to heap for 64-bit Oracle 9.0.1 on HP-UX 11.0 and 11i
	4.2. Asynchronous Flag in Shared Global area for 64-bit Oracle 9.0.1 on HP-UX 11.0 and 11i
	4.3. HP Lightweight Timer for 64-bit Oracle 9.0.1
	4.3.1. Requirement of Operating System Patches

	4.4. Process Scheduling Policy SCHED_NOAGE for Oracle on HP-UX

	5. PERFORMANCE ANALYSIS
	6. CONCLUSIONS
	7. REFERENCES

