
Page 1June 27, 2001

New Floating-Point
Program m ing Opportunities

with
HP-UX on Itanium TM

Jam es W Thom as

Hewlett-Packard
Com pany

Cupertino, CA

PH:408 447 5781

FAX:408 447 4924

jwthom as@ cup.hp.com

Peter M arkstein

Hewlett-Packard Com pany

Palo Alto, CA

PH:650 857 6662

FAX:650 857 5542

peter_m arkstein@ hp.com

Page 2June 27, 2001

New Features in HP-UX 11i V1.5 for Itanium

•C99/IEEE 754 floating-point m odel

•4 fully supported floating-point types

•Expanded function Library

•Better perform ance, accuracy, robustness [1]

•W ide expression evaluation

•Intelligible user controls for FP behavior and perform ance

•Com plex and im aginary types in C

Page 3June 27, 2001

New Program m ing Opportunities

•Use libm functions for building blocks

•Use wide types for robustness

•Use FM A for accuracy and perform ance

•Use controls for to trade off FP behavior and perform ance

•Use IEEE 754 features for sim plicity and efficiency

•Use C com plex for natural coding style and efficiency

Page 4June 27, 2001

C/C++ M ath Library Functions [1], [2]

•4 fully supported floating types (32, 64, 80, 128 bits)

m ath
 C89…

acos asin atan atan2 cos sin tan cosh sinh tanh exp frexp ldexp log log10 modf
pow sqrt ceil fabs floor fmod

 Unix standard…
erf erfc gamma lgamma hypot isnan acosh asinh atanh cbrt expm1 ilogb log1p
logb nextafter remainder rint scalb j0 j1 jn y0 y1 yn

 C99..
isnan isinf signbit isfinite isnormal fpclassify isunordered isgreater
isgreaterequal isless islessequal islessgreater copysign log2 exp2 fdim fmax
fmin nan scalbn scalbln nearbyint round trunc remquo lrint lround llrint
llround fma nexttoward

 HP-UX…
annuity compound lgamma_r exp10 cosd sind tand acosd asind atand atan2d

com plex (C99)
cacos casin catan ccos csin ctan cacosh casinh catanh ccosh csinh ctanh
cexp clog csqrt cabs cpow carg conj cimag cproj creal

fenv
 C99...

feclearexcept fegetexcepflag feraiseexcept fesetexceptflag fetestexcept
fegetround fesetround fegetenv feholdexcpet fesetenv feupdateenv

 HP-UX…
fegetflushtozero fesetflushtozero fegettrapenable fesettrapenable

Page 5June 27, 2001

M ore robust code
delivers useful results
for a greater range of

inputs

•“Elim inate” interm ediate overflow and
underflow

•Shrink regions of num erical instability
•error ~ (precision roundoff) /
 (distance from ill-posed)

m athem atical result
out of range

interm ediate
over/underflow

num erical
instability ill posed

Input Space

Page 6June 27, 2001

HP-UX/Itanium
W ide FP Types [3]

float (real*4)
full HW support
precision: 24 bits
range: 8 bit exponent

double (real*8)
full HW support
precision: 53 bits
range: 11 bit exponent

extended
full HW support
precision: 64 bits
range: 15 bit exponent
flt op speed: =double
lib func speed: ~0.7X double
C, C++ com piler/library support

long double (quad, real*16)
SW im plem entation utilizes
 IPF features
precision: 113 bits
range: 15 bit exponent
lib func speed: 0.25X extended
com piler/library support

Page 7June 27, 2001

Use W ide Types Inside

• 11 extra bits of precision m eans round-off problem s are 2000
tim es less likely

• 4 extra exponent bits usually elim inates interm ediate overflow
and underflow

W ider
calculation

float (real*4)
or

double (real*8)

float (real*4)
or

double (real*8)

Page 8June 27, 2001

HP-UX Support for W ide Types

• Nom enclature for wide types

printf(“%hLe\n”, logw(EXT_MAX)); // extended

printf(“%lLe\n”, logq(QUAD_MAX)); // quad

• Option for wide expression evaluation (C, C++)

-fpeval=float|double|extended

type used to evaluate narrower binary operations & constants

• Evaluation-type nam es

float_t and double_t (per C99)

• C type-generic m ath functions, C++ overloading, Fortran intrinsics

Page 9June 27, 2001

Exam ple

Com pute log (ab + cd),

where ab + cd ≥≥≥≥ 0

cc ...
#include <math.h>
double a, b, c, d, res;
double s;
s = a * b + c * d;
res = log(s);

risks:
•cancellation in ab+cd
•log instability where ab+cd inexact
and near 1
•prem ature over/underflow

cc -fpeval=extended ...

#include <math.h>
double a, b, c, d, res;
double s;
s = a * b + c * d;
res = log(s);

•ab+cd calculated to extended
•reduces risk of cancellation

cc -fpeval=extended \
 -fpwidetypes ...
#include <tgmath.h>
double a, b, c, d, res;
double_t s;
s = a * b + c * d;
res = log(s);

•log(s) com puted to extended
•reduces risk of precision problem s 1000X
•elim inates prem ature over/underflow
•C99-portable code

Page 10June 27, 2001

Using Fused Floating
M ultiply-Add (FM A)

•Fused m eans m ultiply and add
with just one rounding

•Com piler synthesis

•C99 fm a function

– Use the fm a function to be certain
of using FM A instead of
m ultiplication followed by addition.

– Inlined as one Itanium instruction

•Allows low-order product bits to
easily be obtained

•Sm ooth path for im plem enting
higher precision floating-point
arithm etic

Page 11June 27, 2001

Using FM A

Exam ple:
Com puting exp(xy)

Consider this program fragm ent:

extended x, y, r;

r = expw(x*y);

expw is the extended precision
exponential function

The relative error in the exponential
function is proportional to the
absolute error in its argum ent.

Rounded result of x*y can be in
error by as m uch as 2--50.

Largest argum ent for which expw
won’t overflow is slightly less than
214.

The low order 14 bits of expw m ay
be corrupted because of the
rounding error in x*y.

Page 12June 27, 2001

Using FM A

Exam ple:
Com puting exp(xy)

Analysis

W e can write xy as the exact sum
high+low where high is the
com puted x*y and low is the error
which an FM A can determ ine.

Then exp(high+low) =

exp(high)*exp(low)

But exp(low) = 1 + low + … , and
|low| < 2--50

So exp(high+low) is very nearly
exp(high)*(1 + low), or

exp(high) + low*exp(high)

Com putation of exp(high) produces
at m ost .5+ ulp error.

The m ultiply-add will produce at
m ost .5 ulp error.

M axim um error in com puting
exp(xy) will be slightly over 1 ulp.

Page 13June 27, 2001

Using FM A

Exam ple:
Com puting exp(xy)

Final Code

cc –fpwidetypes …

#include <math.h>

extended x, y, r, high, low,
rt;

high = x * y;

low = fmaw(x, y, –high);

//xy = high+low exactly

rt = expw(high);

r = fmaw(rt, low, rt);

fm aw is the extended precision FM A
function

Page 14June 27, 2001

Intelligible Tradeoffs
between FP Behavior
and Perform ance

• General optim ization control

• Controls for special FP
functionality

• Controls to trade-off FP m odel for
speed

Page 15June 27, 2001

G eneral O ptim ization Controls

+O2, +O3, profiling, binding options (-Bprotected), user assertions

(+Onoptrs_to_globals), etc.

+O2

• very effective for FP perform ance

• optim izes m ath function calls like FP ops, and inlines sqrt

+O3

• inlines key m ath functions (e.g. log, exp)

• very effective in som e loop contexts, e.g. throughput of an inlined, software
pipelined exp can approach one value per 6 cycles, vs about 50 cycles if a
closed routine is called

No negative effect on specified FP behavior

Page 16June 27, 2001

Controls for Special FP Functionality

Using FP control m odes and exception flags

• requires one of

+Ofenvaccess

#pragma STDC FENV_ACCESS ON //C99 feature

• else optim ization m ight underm ine expected behavior, e.g. in

#include <fenv.h>

{

#pragma STDC FENV_ACCESS ON

fesetround(FE_UPWARD);

a = b * c;

}

without the pragm a, b*c m ight be m oved before the fesetround call

• com piler still optim izes, honoring constraints

• for best perform ance use pragm a on sm allest block enclosing sensitive code

Page 17June 27, 2001

Controls for Special FP Functionality

Using errno for m ath functions

• requires +Olibm errno com pile option

• incurs substantial perform ance penalty

• seriously consider rewriting code to use FP exception flags

Page 18June 27, 2001

Controls to Trade-off FP Behavior for Speed

+Ofltacc=strict | default | lim ited | relaxed

strict disallows value changing optim izations

default like strict, except allows contractions (e.g. FM A)

lim ited like default, except NaNs, infinities, and sign of zero m ay
not be per spec

relaxed allows transform ations based on m athem atical identities
(even if num erical results are changed) – com piler m ight
invoke slightly less accurate m ath functions

Page 19June 27, 2001

Controls to Trade-off FP Behavior for Speed

+FPD

• installs flush-to-zero underflow m ode at startup

• dram atically speeds up som e 32-bit float codes on Itanium

• effect on subsequent im plem entations of Itanium Processor
Fam ily architecture m ay not be so large

• the default IEEE gradual underflow m ode m akes underflow
less likely to affect program robustness

+Ofast (or -fast) im plies “+Ofltacc=relaxed +FPD”

and other perform ance options not specific to FP

Consider speed vs quality controls for perform ance
hungry code that is known to be tolerant of less
rigorous FP behavior or can be thoroughly tested

Page 20June 27, 2001

IEEE 754 (IEC 60559) and Related Features
Status

IEEE 754 features in HW well before 1985 when standard becam e
official

Som e features now taken for granted by program m ers

• single and double data types

• “correctly rounded” arithm etic

Standard doesn’t specify program m ing language/library bindings

Som e features still not widely available and practical for serious use by
program m ers

• infinities, NaNs, signed zeros

• rounding m odes

• exception flags

Page 21June 27, 2001

IEEE 754 and Related Features
Status

Anticipated standard-related features still not widely available and
practical for serious use

• predictable expression evaluation

• consistent wide evaluation

• com patible elem entary functions

• com patible com plex arithm etic

Deficiencies addressed in C99 …

Page 22June 27, 2001

C99 Support for IEEE 754
in HP-UX/Itanium

• NAN and INFINITY constants, usable in static and aggregate
initialization

• I/O for infinities, NaNs, and sign of zero

• Infinities, NaNs, and signed zero respected

• API for m anipulating rounding m odes and exception flags

• Pragm as to guarantee reliable rounding m odes and exception flags
and to lim it perform ance im pact

• Pragm as to optionally disallow contractions (e.g. fm a synthesis)

• Specification of wide evaluation m ethods, with auxiliary features,
including type-generic m ath functions

Page 23June 27, 2001

C99 Support for IEEE 754
in HP-UX/Itanium

• Specification of com patible m ath functions (C99 Annex F)

• Specification of com patible com plex arithm etic and functions (C99
Annex G)

• Specification of correctly-rounded binary-decim al conversion

HP-UX/Itanium correctly rounds between each FP form at and up to 36
decim al digits (sufficient to distinguish all quad values)

Page 24June 27, 2001

Using IEEE 754 Special Values in C99

Exam ple: Find the m axim um of partially initialized data, read in from text, where
uninitialized data is represented by NaNs.

// Sample data: 2.3 nan -4.5 -inf nan -0 2.4 -1e10 …

#include <math.h>

float max = -INFINITY;

…

for (i=0; i<N; i++) { fscanf(stream, "%f", &x[i]); }

…

for (i=0; i<N; i++) { max = fmaxf(max, x[i]); }

• printf and scanf support nan, inf (and infinity) for I/O

• m ath.h defines INFINITY and NAN m acros (usable for static and aggregate initialization)

• C99 fm ax returns larger num erical argum ent (even if other argum ent is NaN)

Page 25June 27, 2001

Using IEEE 754 Exceptions in C99 [4]

Exam ple: Solve a set of equations, with speed and robustness

#include <fenv.h>

#pragma STDC FENV_ACCESS ON

//Clear the exception flags

feclearexcept(FE_ALL_EXCEPT);

//Try a fast algorithm

fastSolve (coeff, rhs, result);

if (fetestexcept (FE_ALL_EXCEPT & ~FE_INEXACT)) {

//Oops! The simple algorithm ran into trouble!

carefulSolve(coeff, rhs, result); //Slow but careful

}

• The fast algorithm m ay be several tim es faster than the careful one which is typically
required only rarely.

Page 26June 27, 2001

C99 Com plex Features
in HP-UX/Itanium

•Com plex types

float com plex double com plex …

•Im aginary types

float im aginary double im aginary …

•Im aginary unit

•Infinity properties

•Com plex function library

•IEEE 754 com patible special
cases

Page 27June 27, 2001

Infinity Properties

For z nonzero and finite

inf*z=inf inf*inf=inf

inf/z=inf inf/0=inf

z/inf=0 0/inf=0

z/0=inf |inf|=inf even for
com plex z, 0s, and infinities -- where a com plex value
with at least one infinite part is regarded as infinite
(even if the other part is NaN)

• Enhances robustness

e.g. 1 / (z*z) returns 0 when z*z overflows

• Facilitates m odeling Riem ann sphere

• Perform ance cost significant in vector contexts

+Ocxlim itedrange allows faster m ultiply and divide
which don’t support infinity properties

Page 28June 27, 2001

Using C99 Com plex [5]

Exam ple: Efficiently determ ine if (z – i) / (z + 2i) lies outside the unit circle,
given z = x + yi, for x and y real

#include <complex.h>

double x, y;

double complex z;

z = x + y*I;

w = (z – I) / (z + 2*I);

if (cabs(w) > 1) { /* outside unit circle */ }

else { /* not outside unit circle */ }

• Natural m athem atical-style notation

• C99 avoids prom otions am ong real, com plex, and im aginary types, for built-in
efficiency: x + y*I requires no FP ops

• Infinity properties assure the code works even if z = -2i, saving additional
special-case code

Page 29June 27, 2001

Sum m ary

• HP-UX 11i v1.5 for Itanium provides a substantially enhanced FP
m odel

• Software developers can use

– high quality, high perform ance library functions

– FM A

– wide FP types

– IEEE 754-based features

for robustness and perform ance

• They can use intelligible and convenient options and pragm as to
balance FP behavior and perform ance needs

• They can use C99 com plex for m athem atical-style notation and built-in
efficiency and consistency

Page 30June 27, 2001

References

• Li, R., M arkstein, P., Okada, J., Thom as, J.: “The Libm Library and Floating-Point Arithm etic for HP-
UX on Itanium TM”. Describes developm ent goals and strategies, shows accuracy and perform ance data,
and provides details for several topics in this slide set.
http://devresource.hp.com/devresource/Docs/TechPapers/IA64/libm.pdf

• M arkstein, P.: IA-64 and Elem entary Functions, Speed and Precision, Prentice Hall PTR, 2000.
Prim ary developer of the HP-UX elem entary functions presents algorithm s, im plem entation details, and
related aspects of the IPF architecture.

• Intel® IA-64 Architecture, Software Developer’s M anual, 2000 http://developer.intel.com /design/ia-
64/m anuals/index.htm

• Dem m el, J., Li, X.: “Faster Num erical Algorithm s via Exception Handling”. A study of the approach
shown in the exam ple using IEEE 754 exceptions.
http://sunsite.berkeley.edu/Dienst/UI/2.0/Describe/ncstrl.ucb/CSD-93-728

• Kahan, W ., Darcy, J: “How Java’s Floating-Point Hurts Everyone Everywhere”, pp11-15. Shows other
uses of C99 style com plex. http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf

• ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithm etic

• ANSI/ISO/IEC 9899:1999, Program m ing languages – C (C99)

• JTC1/SC22/W G14: “Rationale for International Standard – Program m ing Languages – C”
http://anubis.dkuug.dk/jtc1/sc22/wg14/

