New Floating-Point
Programming Opportunities
with
HP-UX on Itaniumm

James W Thomas Peter Markstein
Hewlett-Packard Hewlett-Packard Company
Company Palo Alto, CA
Cupertino, CA PH:650 857 6662
PH:408 447 5781 FAX:650 857 5542

FAX:408 447 4924 peter_markstein@hp.com

jwthomas@cup.hp.com

June 27, 2001

New Features in HP-UX 111 V1.5 for Itanium

« C99/IEEE 754 floating-point model

4 fully supported floating-point types
Expanded function Library
Better performance, accuracy, robustness [1]

Wide expression evaluation

Intelligible user controls for FP behavior and performance

 Complex and imaginary types in C

une 27, 2001

New Programming Opportunities

Use libm functions for building blocks

Use wide types for robustness

Use FMA for accuracy and performance

Use controls for to trade off FP behavior and performance
Use IEEE 754 features for simplicity and efficiency

e Use C complex for natural coding style and efficiency

une 27, 2001

C/C++ Math Library Functions [1], [2]

4 fully supported floating types (32, 64, 80, 128 bits)

math

C89...
acos asin atan atan2 cos sin tan cosh sinh tanh exp frexp | dexp |og | 0ogl0 nodf
pow sqrt ceil fabs floor fnod

Unix standard...
erf erfc gamm | gamma hypot isnan acosh asinh atanh cbrt expml ilogb | oglp
| ogb nextafter remainder rint scalb jO j1 jn y0O y1 yn

C99..
isnan isinf signbit isfinite isnormal fpclassify isunordered isgreater
I sgreaterequal isless islessequal islessgreater copysign | og2 exp2 fdi mfnmax
fmn nan scal bn scal bl n nearbyint round trunc renguo lrint lround |lrint
|1 round frma nexttoward

HP-UX...
annui ty conpound | ganma_r explO cosd sind tand acosd asind atand atan2d

complex (c99)
cacos casin catan ccos csin ctan cacosh casi nh catanh ccosh csi nh ctanh
cexp clog csqrt cabs cpow carg conj cinmag cproj crea

fenv
C99...
fecl earexcept fegetexcepflag ferai seexcept fesetexceptflag fetestexcept

fegetround fesetround fegetenv fehol dexcpet fesetenv feupdateenv

HP-UX...
fegetflushtozero fesetfl ushtozero fegettrapenabl e fesettrapenabl e

June 27, 2001

athematical resul

out of range
numerical
instability

Intermediate
over/underflow

ill posed

More robust code
delivers useful results

for a greater range of
Inputs

Input Space

*“Eliminate” intermediate overflow and
underflow
*Shrink regions of numerical instability
serror ~ (precision roundoff) /
(distance from ill-posed)

June 27, 2001 Page 5

float (real*4)
full HW support
precision: 24 bits

HP-UX/Itanium range: 8 bit exponent
Wide FP Types [3]

double (real*8)
full HW support
precision: 53 bits
range: 11 bit exponent

extended long double (quad, real*16)
full HW support SW implementation utilizes
precision: 64 bits IPF features
range: 15 bit exponent precision: 113 bits
flt op speed: =double range: 15 bit exponent
lib func speed: ~0.7X double lib func speed: 0.25X extended
C, C++ compiler/library support compiler/library support

June 27, 2001

Use Wide Types Inside

float (real *4) : float (real *4)
or Wider —> or

doubl e (real *8) calculation doubl e (real *8)

« 11 extra bits of precision means round-off problems are 2000
times less likely

» 4 extra exponent bits usually eliminates intermediate overflow
and underflow

June 27, 2001

HP-UX Support for Wide Types

Nomenclature for wide types
printf(“%Le\n”, |ogw EXT_MAX)); // extended
printf(“%Le\n”, |oggq(QUAD MAX)): // quad

Option for wide expression evaluation (C, C++)

- f peval =f | oat | doubl e| ext ended
type used to evaluate narrower binary operations & constants

Evaluation-type names
fl oat t and doubl e t (per C99)

C type-generic math functions, C++ overloading, Fortran intrinsics

June 27, 2001

cc ...

#1 ncl ude <mat h. h>
double a, b, c, d,
doubl e s;

Example s=a*b+c* d
res = log(s);
Compute log (ab + cd),
risks:
whereab +cd =0 «cancellation in ab+cd

*log instability where ab+cd inexact
and near 1
spremature over/underflow

cc -fpeval =ext ended \

cc -fpeval =ext ended . .. _—fpmﬂdetypes -c
#i ncl ude <t gmath. h>

#i ncl ude <mat h. h> double a, b, c, d, res;

double a, b, c, d, res; doﬂb'e;t & e
doubl e s; S SER o GGk

s=—a*b+c* d res = log(s);
res = log(s);

s|log(s) computed to extended
«ab+cd calculated to extended sreduces risk of precision problems 1000X
reduces risk of cancellation eeliminates premature over/underflow
*C99-portable code

June 27, 2001

Using Fused Floating

Multiply-Add (FMA)

June 27, 2001

*Fused means multiply and add
with just one rounding

sCompiler synthesis

*C99 fma function

— Use the fma function to be certain
of using FMA instead of
multiplication followed by addition.

— Inlined as one Itanium instruction

*Allows low-order product bits to
easily be obtained

*Smooth path for implementing
higher precision floating-point
arithmetic

Using FMA

Example:
Computing exp(xy)

June 27, 2001

Consider this program fragment:

extended x, vy, r;
r = expw(x*y);
expw is the extended precision
exponential function
The relative error in the exponential

function is proportional to the
absolute error in its argument.

Rounded result of x*y can be in
error by as much as 2-°9.

Largest argument for which expw
won't overflow is slightly less than
214,
The low order 14 bits of expw may
be corrupted because of the
rounding error in x*y.

VWe can write XYy as the exXact sum

high+low where high is the
computed x*y and low is the error

which an FMA can determine.
Then exp(high+low) =
exp(high)*exp(low)

But exp(low) =1 + low + ..., and
[low| < 20

Example: So exp(high+low) is very nearly

Using FMA

Computing exp(xy) exp(high)*(1 + low), or
exp(high) + low*exp(high)

Computation of exp(high) produces
at most .5+ ulp error.

Analysis

The multiply-add will produce at
most .5 ulp error.

Maximum error in computing
exp(xy) will be slightly over 1 ulp.

June 27, 2001

cc —fpw detypes ...

#i ncl ude <nat h. h>

Using FMA extended x, y, r, high, |ow,

re;

high = x * vy,
Example | ow = fmaw(x, y, -—high);

Computing exp(xy) /1xy = high+l ow exact|y
rt = expw(hi gh);
Final Code r o= fmaw(rt, low rt);

fmaw is the extended precision FMA
function

June 27, 2001

« General optimization control

« Controls for special FP
functionality

Intelllglble Tradeoffs e Controls to trade-off FP model for

between FP Behavior speed
and Performance

June 27, 2001

General Optimization Controls

+02, +0O3, profiling, binding options (-Bprotected), user assertions

(+Onoptrs_to_globals), etc.

+02
» very effective for FP performance

« optimizes math function calls like FP ops, and inlines sqrt

+03
* inlines key math functions (e.g. log, exp)

» very effective in some loop contexts, e.g. throughput of an inlined, software
pipelined exp can approach one value per 6 cycles, vs about 50 cycles if a
closed routine is called

No negative effect on specified FP behavior

June 27, 2001

Controls for Special FP Functionality

Using FP control modes and exception flags

e requires one of

+Cf envaccess
#pragma STDC FENV_ACCESS ON //C99 feature

else optimization might undermine expected behavior, e.g. in

#i ncl ude <fenv. h>

{
#pragma STDC FENV_ACCESS ON

f eset r ound(FE_UPWARD) ;
a=>b* c;

without the pragma, b*c might be moved before the fesetround call
compiler still optimizes, honoring constraints

for best performance use pragma on smallest block enclosing sensitive code

June 27, 2001

Controls for Special FP Functionality

Using errno for math functions
« requires +Olibmerrno compile option
 Incurs substantial performance penalty

» seriously consider rewriting code to use FP exception flags

June 27, 2001

Controls to Trade-off FP Behavior for Speed

+Ofltacc=strict | default | limited | relaxed

June 27, 2001

strict
default

limited

relaxed

disallows value changing optimizations
like strict, except allows contractions (e.g. FMA)

like default, except NaNs, infinities, and sign of zero may
not be per spec

allows transformations based on mathematical identities
(even if numerical results are changed) — compiler might
iInvoke slightly less accurate math functions

Controls to Trade-off FP Behavior for Speed

+FPD

* installs flush-to-zero underflow mode at startup
» dramatically speeds up some 32-bit float codes on Itanium

» effect on subsequent implementations of Itanium Processor
Family architecture may not be so large

 the default IEEE gradual underflow mode makes underflow
less likely to affect program robustness

+Ofast (or -fast) implies “+Ofltacc=relaxed +FPD”

and other performance options not specific to FP

Consider speed vs quality controls for performance
hungry code that is known to be tolerant of less
rigorous FP behavior or can be thoroughly tested

June 27, 2001

IEEE 754 (IEC 60559) and Related Features
Status

IEEE 754 features in HW well before 1985 when standard became
official

Some features now taken for granted by programmers

 single and double data types
« “correctly rounded” arithmetic

Standard doesn’t specify programming language/library bindings

Some features still not widely available and practical for serious use by
programmers

* infinities, NaNs, signed zeros
e rounding modes
» exception flags

June 27, 2001

|IEEE 754 and Related Features
Status

Anticipated standard-related features still not widely available and
practical for serious use

predictable expression evaluation
consistent wide evaluation
compatible elementary functions
compatible complex arithmetic

Deficiencies addressed in C99 ...

June 27, 2001

C99 Support for IEEE 754
In HP-UX/Itanium

« NAN and INFINITY constants, usable in static and aggregate
Initialization

« |/O for infinities, NaNs, and sign of zero

* Infinities, NaNs, and signed zero respected

« API for manipulating rounding modes and exception flags

 Pragmas to guarantee reliable rounding modes and exception flags
and to limit performance impact

e Pragmas to optionally disallow contractions (e.g. fma synthesis)

« Specification of wide evaluation methods, with auxiliary features,
Including type-generic math functions

June 27, 2001

C99 Support for IEEE 754
In HP-UX/Itanium

» Specification of compatible math functions (C99 Annex F)

o Specification of compatible complex arithmetic and functions (C99
Annex G)

» Specification of correctly-rounded binary-decimal conversion

HP-UX/Itanium correctly rounds between each FP format and up to 36
decimal digits (sufficient to distinguish all quad values)

June 27, 2001

Using IEEE 754 Special Values in C99

Example: Find the maximum of partially initialized data, read in from text, where
uninitialized data is represented by NaNs.

/|l Sanple data: 2.3 nan -4.5 -inf nan -0 2.4 -1el0 ...
#i ncl ude <mat h. h>
float max = -I NFINTY;

for (i=0; i<N, i1++) { fscanf(stream "%", &[i]); }
for (i=0; i<N, i1++) { max = fmaxf(max, x[i]); }
 printf and scanf support nan, inf (and infinity) for 1/O
« math.h defines INFINITY and NAN macros (usable for static and aggregate initialization)

« C99 fmax returns larger numerical argument (even if other argument is NaN)

June 27, 2001

June 27, 2001

Using IEEE 754 Exceptions in C99 [4]

Example: Solve a set of equations, with speed and robustness

#i ncl ude <fenv. h>

#pragma STDC FENV_ACCESS ON

[/ Clear the exception flags

f ecl ear except (FE_ALL_EXCEPT) ;

[/ Try a fast algorithm

fast Sol ve (coeff, rhs, result);

I f (fetestexcept (FE_ALL_EXCEPT & ~FE | NEXACT)) {
/] Cops! The sinple algorithmran into trouble!
careful Sol ve(coeff, rhs, result); //Slow but careful

The fast algorithm may be several times faster than the careful one which is typically
required only rarely.

Complex types
float complex double complex ...
sImaginary types

float imaginary double imaginary ...

C99 Complex Features ["Madiannt

in HP-UX/Itanium *Infinity properties
*Complex function library

*IEEE 754 compatible special
cases

June 27, 2001

Infinity Properties

For z nonzero and finite
inf*z=inf Iinf*inf=inf
inf/z=inf Inf/O=inf
z/inf=0 0/inf=0
z/0=inf |inf|=inf even for
complex z, Os, and infinities -- where a complex value

with at least one infinite part is regarded as infinite
(even if the other part is NaN)

 Enhances robustness

e.g. 1/ (z*z) returns 0 when z*z overflows
» Facilitates modeling Riemann sphere

» Performance cost significant in vector contexts

+Ocxlimitedrange allows faster multiply and divide
which don’t support infinity properties

June 27, 2001

Using C99 Complex [5]

Example: Efficiently determine if (z —1) / (z + 2i) lies outside the unit circle,
given z = X + i, for x and y real

#i ncl ude <conpl ex. h>
doubl e x, v;
doubl e conpl ex z;
= X + y*I;
w=(z-1)/ (z+2*l);
i f (cabs(w) > 1) { /* outside unit circle */ }

else { /* not outside unit circle */ }

* Natural mathematical-style notation

« C99 avoids promotions among real, complex, and imaginary types, for built-in
efficiency: x + y*I requires no FP ops

* Infinity properties assure the code works even if z = - 2i, saving additional
special-case code

June 27, 2001

Summary

 HP-UX 11i v1.5 for Itanium provides a substantially enhanced FP
model

» Software developers can use

— high quality, high performance library functions
— FMA

— wide FP types

— |IEEE 754-based features

for robustness and performance

* They can use intelligible and convenient options and pragmas to
balance FP behavior and performance needs

 They can use C99 complex for mathematical-style notation and built-in
efficiency and consistency

June 27, 2001

References

* Li, R., Markstein, P., Okada, J., Thomas, J.: “The Libm Library and Floating-Point Arithmetic for HP-
UX on Itanium™”, Describes development goals and strategies, shows accuracy and performance data,
and provides details for several topics in this slide set.

* Markstein, P.: IA-64 and Elementary Functions, Speed and Precision, Prentice Hall PTR, 2000.
Primary developer of the HP-UX elementary functions presents algorithms, implementation details, and
related aspects of the IPF architecture.

* Intel® IA-64 Architecture, Software Developer’'s Manual, 2000

 Demmel, J., Li, X.: “Faster Numerical Algorithms via Exception Handling”. A study of the approach
shown in the example using IEEE 754 exceptions.

« Kahan, W., Darcy, J: “How Java’s Floating-Point Hurts Everyone Everywhere”, pp11-15. Shows other
uses of C99 style complex.

* ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic
* ANSI/ISO/IEC 9899:1999, Programming languages — C (C99)
» JTC1/SC22/WG14: “Rationale for International Standard — Programming Languages — C”

June 27, 2001

