

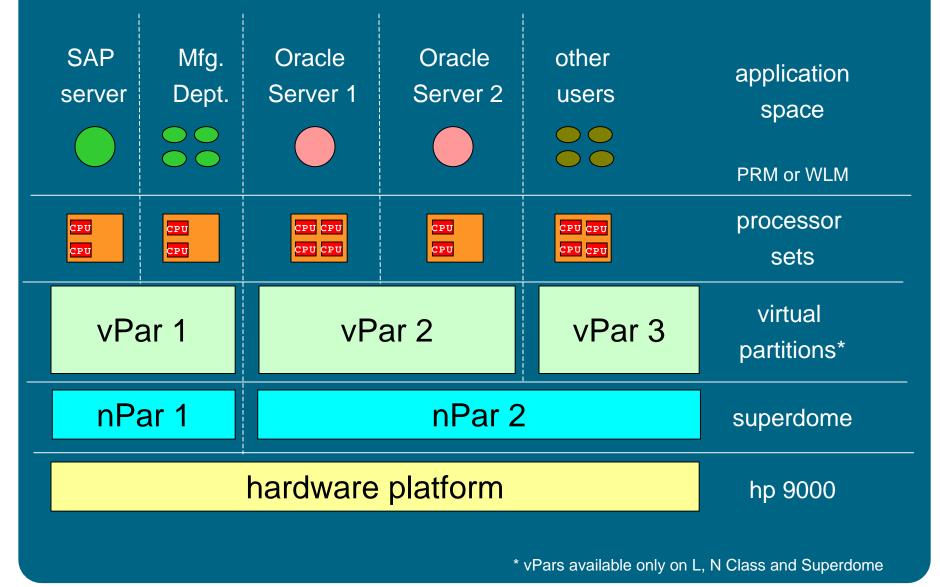
invent

hp partitioning continuum

hp processor sets (psets)

agenda

✓ hp partitioning continuum

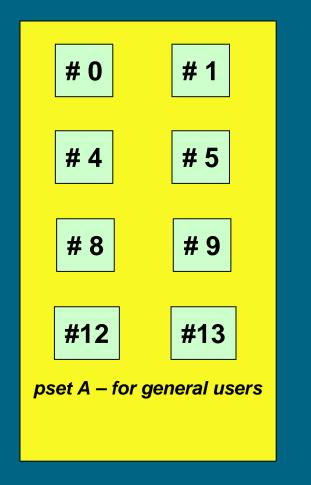

psets

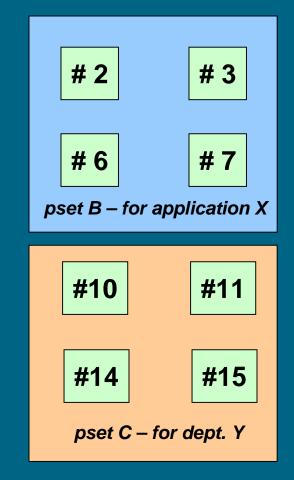
- ✓ overview
- ✓ features
- ✓ benefits
- ✓ configuration
- ✓ application binding
- ✓ access model & attributes
- ✓ user interface
- ✓ psets or vPars

hp partitioning continuum technical positioning

hard Partitions with multiple nodes	hard Partitions within a node	virtual partitions within a hard partition		resource partitions				
Hyper- Plex	nPars (hard partitions)	vPars (virtual partitions)	psets (Processor Sets)	PRM (Process Resource Manager) hp-ux WLM (Workload Manager)				
 complete hardware and software isolation node granularity multiple OS images 	 hardware isolation per cell complete software isolation cell granularity multiple OS images 	 complete software isolation CPU granularity multiple OS images dynamic CPU migration 	-dynamic creation -ownership & access permissions -PRM integration -process binding	 dynamic resources automatic goal- based resource allocation via set SLOs share (%) granularity 1 OS image 				
isolation flexibility highest degree of highest degree of dynamic capabilities								

psets within hp partitioning continuum




hp processor sets (psets) overview

- represents a group of processors in the system
- represents a scheduling allocation domain
- provides a mechanism for CPU resource management
- provides CPU resource isolation for applications and users
- does not provide fault isolation
- available free for any HP-UX 11.11 licensed system
- available Q401

the system may be configured into more than one processor set

hp processor sets example pset configuration

hp processor sets (psets) features

- dynamic creation, deletion, and reconfiguration of psets
- dynamic migration of threads and processes across psets
- ownership and access permissions for psets
- attributes to control psets behavior under different conditions
- processors are assigned to one pset at a time
- processes and threads have binding to one pset at a time
- system default pset for default users
- integration with PRM and gang scheduler

hp processor sets (psets) benefits

• server consolidation

- assign dedicated set of processors to a set of applications to take advantage of bcality and to prevent interference between applications
- processor resource partitioning among different departments or user groups in an organization
- integration with HP process resource manager (PRM) and work load manager (WLM)
- dedicated processor resources for a job in batch processing
- special needs can be met
 - isolation of processors can help support real-time applications
- hardware and platform independent
 - 11 i customer can use psets on all existing multi-processor hardware

hp processor sets (psets) configuration

- dynamic creation of new processor sets
- dynamic deletion of existing processor sets
- dynamic reassignment of a processor from one pset to another
- any processor (except processor 0) can be reassigned across processor sets
- need appropriate privileges

hp processor sets (psets) ownership and access permissions

- superuser and privileged group users may perform all pset operations
- every processor set has an owner
- users are divided into owner, group and others (similar to file system)
- there are READ, WRITE and EXEC permissions for users of each category
- user needs READ access to query processor set attributes
- user needs WRITE access to change processor set configuration & attributes
- user needs EXEC access to run applications in a processor set

hp processor sets (psets) application binding to pset

- every thread and process has binding to a pset
- pset binding determines which processors a thread may execute on
- pset binding of a thread or process can be changed dynamically with appropriate privileges
- thread or process may further bind to a specific processor or a locality domain within a pset to exploit locality
- all processes with same user id or in same process group can be migrated to another pset with a single request

hp processor sets (psets) application binding to pset (2)

- all threads of a process need not be bound to same pset
- migration of a process to another processor set will result in migration of all its threads.
- a child process inherits its pset binding from its parent process on creation.
- new threads in a multithreaded process inherit their pset binding from the creator thread.

hp processor sets (psets) system default pset

- the default pset is created at system initialization time
- all processors, by default, are assigned to the Default pset
- processor 0 is always assigned to the Default pset, and cannot be reassigned to another processor set
- all other processors can be reassigned in and out of the Default pset
- the default pset has default values for all attributes, and they cannot be changed
- the default pset is always available to all applications and users in the system
- superuser owns the default pset

hp processor sets (psets) attributes for better management

- ownership and access permissions
- attempt to remove last processor from a processor set
 - migrate workload to default pset
 - fail the request
- attempt to destroy a busy or populated processor set
 - migrate workload & processors to default pset
 - fail the request
- attempt to migrate application to an empty processor set
 - fail the request
- processor availability to handle I/O interrupts
 - available by default
 - redistribute interrupts to other processors in system

hp processor sets (psets) user interfaces

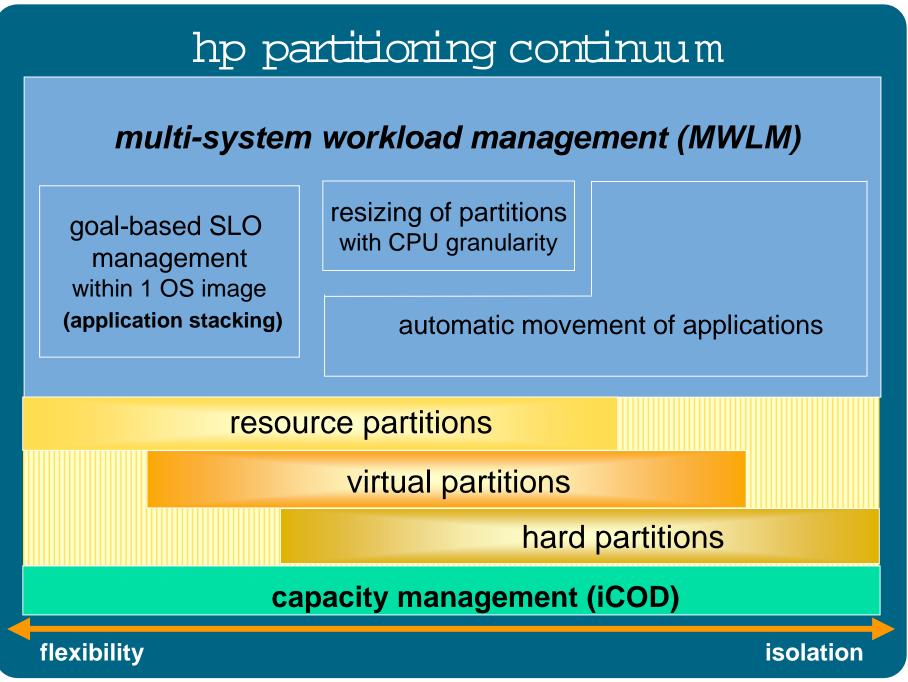
- pset_ create() create a new pset
- pset_ destroy() destroy a processor set
- pset_assign() reassign a processor from one pset to another
- pset_bind() migrate a thread or a process from one pset to another
- pset_ setattr() change pset attributes
- pset_ getattr() query pset attributes
- pset_ctl() query pset configuration

psrset command line interface

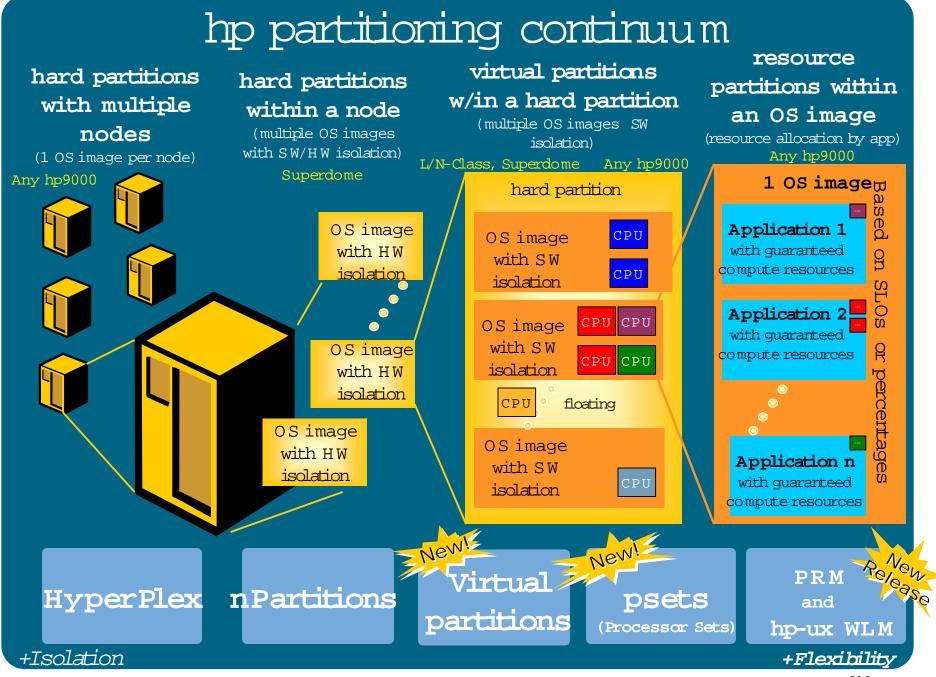
hp processor sets (psets) pset scheduler impact

- psets define new scheduling allocation domains
- posix realtime scheduler works on pset boundary
- PRM fair share scheduler works in default pset (at least in first release)
- gang scheduler works in default pset (at least in first release)
- load balancer works on pset boundary
- no load balancing by system across psets
- system (kernel) daemons are free to run anywhere in the system

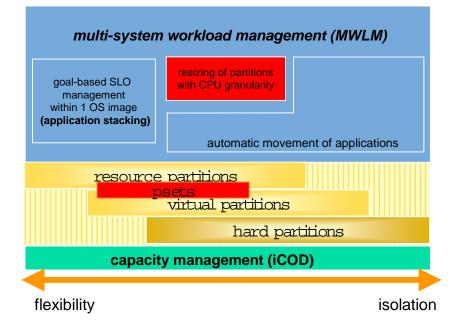
hp processor sets (psets) why psets when vPars are available?


- vPars are supported only on new platforms (L, N class and Superdome)
- each vPar executes as a separate hp-ux instance, and feels like a separate system. applications in different vPars need to interact through networking with each other.
- psets provide only processor partitioning without the memory and I/O partitioning which is what some applications and users need or care for.
- psets are excellent light-weight alternative when user cares only about processor resource partitioning.
- psets are more flexible and light-weight in dynamic reconfiguration.
- an application can be migrated from one pset to another dynamically, which is not allowed with vPars.
- psets provide applications with single system image (SSI)
- vPars require system management as they are separate systems.
- psets are tightly integrated with PRM

hp processor sets (psets) further information


- <u>http://www.hp.com/go/hpux</u>
- Information on other hpux features is available at this site

invent


Slide 20

Slide 21

hp partitioning continuum

technology overview

hp processor sets

(psets)

pset operation permissions

pset operations	Superuser	PRIV_pset	other users with pset permissions		All Users	
create pset	YES	YES	N/A (pset is yet to be created)			YES
destroy pset	YES	YES	YES with WRITE permission			NO
reasign a processor to another pset	YES	YES	source pset	target pset	permissions needed	NO
			default	non default	N/A (cannot have WRITE permission in default pset)	
			non default	non default	YES with WRITE permission in both psets	
			non default	default	YES with WRITE permission in source pset	
bind threads	YES	YES	YES with EXEC permission			NO
set pset attributes (except owner, group, iointr, and access permission)	YES	YES	YES with WRITE permission			NO
set owner, group, access permissions	YES	YES	only the pset owner			NO
enable/disable iointr attribute	YES	YES	NO			NO
pset_ctr	YES	YES	YES			YES