
HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 1 of 61

Topics to be Discussed

1. EVALUATE verb

2. Scope terminators

3. NOT phrases.

4. COBOL-89 Functions

5. Calling MPE Intrinsics

6. Implementing Control-Y trapping

7. File Organization & Access – Sequential /Relative/Indexed

8. Appendix of Sample COBOL Code and Demo programs
• Sample 1 - Sample code to show use of File Status code in READ statement.
• Sample 3 - Sample code to show use of Date Validation Intrinsics.
• Sample 4 - Sample code to show use of a separately compiled module to remove

data from ‘global’ working storage to provide a form of encapsulation.
• DEMO1-14 - Demo program to demonstrate 14 different COBOL features
• DEMO16 - Demo program to demonstrate the use of circular files.
• DEMO17 - Demo programs to demonstrate the use of message files.
• DEMO18 - Demo program to demonstrate Data Base Access and KSAM Files.
• DEMO19 - Demo program to demonstrate use of TZ variable and GMT by

printing the current date in a number of different time zones.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 2 of 61

Section 1 - EVALUATE verb

The EVALUATE statement is a multicondition, multibranch case statement. It evaluates
sets of conditions. The first time all the conditions in a set are true, it executes the
associated group of statements.

You can always write an EVALUATE statement that is equivalent to a nested IF
statement, but you cannot always write a nested IF statement that is equivalent to an
EVALUATE statement. This is because there is a limit to the depth that IF statements can
be nested, but an EVALUATE statement can specify any number of conditions.
HP COBOLII/IX evaluates the clauses in an EVALUATE statement in order therefore,
for fastest execution, order the clauses from most frequent value to least frequent value.

Example 1: EVALUATE INPUT-FLAG
 WHEN “Y” MOVE PROD-NO TO OUTPUT-REC

WHEN “N” MOVE SPACES TO OUTPUT-REC
WHEN “Q” PERFORM TERMINATION-ROUTINE
WHEN “C” CONTINUE
WHEN OTHER PERFORM GET-INPUT

END-EVALUATE

Example 2: EVALUATE TRUE
 WHEN FLAG-Y MOVE PROD-NO TO OUTPUT-REC

WHEN FLAG-N MOVE SPACES TO OUTPUT-REC
WHEN FLAG-Q PERFORM TERMINATION-ROUTINE
WHEN FLAG-C CONTINUE
WHEN OTHER PERFORM GET-INPUT

END-EVALUATE

Example 3: EVALUATE NUMBER-OF-THINGS
 WHEN 1

WHEN 2 DISPLAY “The value is 1 or 2”
WHEN 3 STOP RUN
WHEN OTHER DISPLAY “Input Again”

END-EVALUATE

Example 4: EVALUATE HOURS-WORKED ALSO EXEMPT
 WHEN 0 ALSO ANY PERFORM NO-PAY

WHEN NOT 0 ALSO “Y” PERFORM SALARIED
WHEN 1 THRU 40 ALSO “N” PERFORM HOURLY
WHEN NOT 1 THRU 40 ALSO “N” PERFORM OVERTIME
WHEN OTHER DISPLAY HOURS-WORKED “ & “ EXEMPT

MOVE 0 TO HOURS-WORKED
END-EVALUATE

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 3 of 61

Section 2 - Scope Terminators

The Explicit Scope Terminators, END-verb, terminate the scope of the last instance of
the –verb.

END-ACCEPT END-IF END-START
END-ADD END-MULTIPLY END-STRING
END-CALL END-PERFORM END-SUBTRACT
END-COMPUTE END-READ END-UNSTRING
END-DELETE END-RETURN END-WRITE
END-DIVIDE END-REWRITE
END-EVALUATE END-SEARCH

Without the END-verb statement, the above verbs would be conditional statements and
therefore could not be used wherever an imperative statement is required.

By always using an END-verb statement, where applicable, the period is only needed to
terminate a paragraph in the PROCEDURE DIVISION.

The Implicit Scope Terminators are –
• The separator period at the end of a Sentence, Paragraph or Section
• The ELSE, WHEN, AT END, ON EXCEPTION, ON SIZE ERROR, ON

OVERFLOW, ON INPUT ERROR, INVALID KEY are examples of implicit
terminators.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 4 of 61

Section 3 - NOT Phrases

A NOT phrase specifies a set of statements to be executed if an exception condition does
not exist. The NOT phrases are –

NOT AT END NOT ON EXCEPTION NOT ON SIZE ERROR
NOT AT END-OF-PAGE NOT ON INPUT ERROR
NOT INVALID KEY NOT ON OVERFLOW

Using NOT phrases can make code more readable and sometimes more efficient.
The following 2 examples are functionally equivalent but the 2nd is easier to read and is
more efficient (only one test for every record read).

Example 1: READ IN-FILE
AT END SET IN-FILE-EOF TO TRUE

END-READ
IF NOT IN-FILE-EOF

ADD 1 TO IN-CNT
END-IF

Example 2: READ IN-FILE
AT END SET IN-FILE-EOF TO TRUE
NOT AT END ADD 1 TO IN-CNT

END-READ

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 5 of 61

Section 4 - COBOL-89 Functions

The 1989 addendum to the ANSI COBOL 85 standard added built-in functions within the
COBOL language. These predefined functions (called Intrinsic Functions in the standard)
provide the capability to reference a data item whose value is derived automatically at the
time of reference during the execution of the program.

$CONTROL POST85 is required in any program that calls a COBOL function and the
ANSI85 entry point of the HP COBOLII/IX compiler. The keyword FUNCTION
becomes a reserved word and must precede any reference to a COBOL function.
Functions are treated like temporary, elementary data items so they may be used
wherever an elementary data item is valid except as a receiving operand.
They return alphanumeric, numeric or integer values depending on the function type.

Alphanumeric Functions
Date Functions:

CURRENT-DATE, WHEN-COMPILED
String Functions:

CHAR, LOWER-CASE, REVERSE, UPPER-CASE
General Functions:

MAX, MIN (if all parameters are alphanumeric or alphabetic)

Integer Functions
Date Functions:

DATE-OF-INTEGER, DAY-OF-INTEGER, INTEGER-OF-DATE,
INTEGER-OF-DAY

String Functions:
LENGTH, ORD

General Functions:
MAX, MIN (if all parameters are integer), ORD-MAX, ORD-MIN

Arithmetic Functions:
INTEGER, INTEGER-PART, MOD, SUM (type depends on parameters)

Financial and Statistical Functions:
FACTORIAL, RANGE (type depends on parameters)

Numeric Functions
String Functions:

NUMVAL, NUMVAL-C
Arithmetic Functions:

LOG, LOG10, RANDOM, REM, SQRT, SUM (type depends on parameters)
Financial, Statistical and Trigonometric Functions:

ACOS, ASIN, ATAN, ANNUITY, COS, MEAN, MEDIAN, MIDRANGE,
PRESENT-VALUE, RANGE (type depends on parameters), SIN,
STANDARD-DEVIATION, TAN, VARIANCE

General Functions
MAX, MIN (if some or all parameters are numeric)

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 6 of 61

The following Rules apply to the use of COBOL Functions -
• Alphanumeric Functions have an implicit usage of display.
• Numeric Functions always have an operational sign, can only be used in arithmetic

expressions (such as COMPUTE, relational conditions or reference modification) and
cannot be used where an integer operand is required, even if the function call might
yield an integer value.

• Integer Functions always have an operational sign with all zero digits to the right of
the decimal point, and can only be used in arithmetic expressions.

MOVE FUNCTION LENGTH(CITY) TO A is not allowed
COMPUTE A = FUNCTION LENGTH(CITY) is allowed
IF FUNCTION LENGTH(CITY) > X-VALUE is allowed

• A Function may be used as an argument to another function as long as the function
type matches the argument requirements of the function in which it is being used.

• Reference modification may be used with Functions of type alphanumeric.
DISPLAY FUNCTION UPPER-CASE(FULL-NAME)(1:5)

• The program must specify the number of arguments required for the specific function
being used, and they must be in the correct sequence.

• Literal or arithmetic expressions may be used as arguments, but they must conform to
the requirements specific to the function being used.

Some of the numeric functions convert arguments to intermediate floating point values to
calculate the function result. The precision of these functions is limited to 15 significant
digits. The fractional values may have rounding errors even if the total size of the
argument is <= 15 digits.

Use of the ROUNDED phrase is recommended for all Numeric Functions when
precision of the resultant value is important.

Some of the functions are implemented as calls to run-time libraries while the rest are
implemented as in-line code. As In-line functions will be generally faster than functions
in the run-time library, it might be more efficient to code your own routines for these run-
time library functions.

Using ALL as a table subscript. Some functions allow a variable number of arguments
(such as MAX, MEAN and SUM). You can pass all the elements of a table to one of
these functions by specifying the table as an argument with ALL as the table subscript.

Example: COMPUTE GRAND-TOTAL = FUNCTION SUM (SUB-TOTAL(ALL))
where SUB-TOTAL is defined by an OCCURS clause.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 7 of 61

Date Functions: These functions all deal with dates having a full four-digit year.
See Appendix Section 8 – SAMPLE 3 – for use of validation intrinsics
to validate date parameters before using the Date Functions.

CURRENT-DATE
The function returns a 21 character alphanumeric string containing the current
date (YYYYMMDD), current time (HHMMSS00) and GMT offset (+HHMM
or -HHMM). There are no arguments. To get the correct time differential from
Greenwich Mean Time, you need to set the TZ environment variable to your
local time zone. If TZ is not set the function assumes Eastern Standard Time
(EST5EDT). The time differential is automatically adjusted for daylight savings
time according to the values in the time and zone adjustment table (in file
TZTAB.LIB.SYS).
Note – If you set the TZ variable via a program make sure you provide the
correct length parameter. The variable with extra spaces will not match what
appears to be the same entry on the TZTAB.LIB.SYS file.

This function uses the hardware clock plus the TZ variable to calculate the
current date and time. This means the hardware clock must be set to Greenwich
Mean Time.
Note - The old (pre 85) CURRENT-DATE special register returns the date and
time directly from the Software Clock therefore these 2 ‘CURRENT-DATE’
statements can return different values at the same time if the clocks have not
been set correctly.
Sample Program: See the appendix Section 8 for a sample program designed to
print the current date in a number of different time zones (DEMO19).

WHEN-COMPILED
The function returns a 21 character alphanumeric string containing the date
(YYYYMMDD), time (HHMMSS00) and GMT offset (+HHMM or -HHMM)
when the source program was last compiled. There are no arguments. See above
for the GMT offset definition.

INTEGER-OF-DATE (parameter-1)
The function converts a date in the form (YYYYMMDD) to an integer that is
the number of days past the date December 31, 1600.
Because this is an integer function, it can only be used where an arithmetic
expression is allowed. A good use of this function is to create date arithmetic or
comparison routines.
Note: The date must be a valid date otherwise the program will abort.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 8 of 61

DATE-OF-INTEGER (parameter-1)
The function converts an integer value into a date of the form (YYYYMMDD)
as the inverse of the INTEGER-OF-DATE function.
Because this is an integer function, it can only be used where an arithmetic
expression is allowed. A good use of this function is to create date arithmetic or
comparison routines.
Example 1: Add 15 days to MY-DATE

COMPUTE MY-DATE = FUNCTION DATE-OF-INTEGER
(FUNCTION INTEGER-OF-DATE (MY-DATE) + 15)

Example 2: Example 1 rewritten to use a Macro
* !1 = Date
* !2 = Days to Add (+ or -)
$DEFINE %ADDTODATE=

COMPUTE !1 =
FUNCTION DATE-OF-INTEGER
(FUNCTION INTEGER-OF-DATE (!1)
+ !2)#

%ADDTODATE(MY-DATE#, 15#)
%ADDTODATE(MY-DATE#,-30#)

INTEGER-OF-DAY (parameter-1)
The function converts a Julian date in the form (YYYYDDD) to an integer that
is the number of days past the date December 31, 1600.
Because this is an integer function, it can only be used where an arithmetic
expression is allowed.
Note: The date must be a valid date otherwise the program will abort.

DAY-OF-INTEGER (parameter-1)
The function converts an integer value into a Julian date of the form
(YYYYDDD) as the inverse of the INTEGER-OF-DAY function.
Because this is an integer function, it can only be used where an arithmetic
expression is allowed.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 9 of 61

Arithmetic Functions:
REM (parameter-1 parameter-2)

The function returns a numeric value that is the remainder of parameter-1
divided by parameter-2. Both parameters must be numeric and the 2nd must not
be zero.
Example: A good use of this function is to obtain the day of the week in
conjunction with the INTEGER-OF-DATE function. This works because the
ANSI committee chose January 1, 1601 as day 1 and this is a Monday. The
Remainder after dividing 7 into the integer value of a date, and then adding one,
will be the numeric day of the week starting from Sunday.

01 WEEK-DAY-DATA.
03 WEEK-DAY-SUB PIC 9.
03 WEEK-DAYS.

05 PIC X(9) VALUE "Sunday".
05 PIC X(9) VALUE "Monday".
05 PIC X(9) VALUE "Tuesday".
05 PIC X(9) VALUE "Wednesday".
05 PIC X(9) VALUE "Thursday".
05 PIC X(9) VALUE "Friday".
05 PIC X(9) VALUE "Saturday".

03 REDEFINES WEEK-DAYS.
05 WEEK-DAY PIC X(9) OCCURS 7.

* !1 = Date
* !2 = Result field for Day of Week
$DEFINE %DAYOFWEEK=

COMPUTE WEEK-DAY-SUB = FUNCTION REM
 (FUNCTION INTEGER-OF-DATE (!1), 7) + 1

MOVE WEEK-DAY(WEEK-DAY-SUB) TO !2#

See Appendix Section 8 – SAMPLE 4 – for the same code as above in a
separately compiled module to remove data from ‘global’ working storage to
provide a form of encapsulation.

SUM (parameter-1 … parameter-n)
The function returns a numeric value that is the sum of the parameters. The
function will be integer if all the parameters are integer otherwise the function
will be numeric. Every parameter must contain a numeric or integer value.
If all the elements of a table are to be totaled the word ‘ALL’ may be used in
place of the list of elements.
Example: Sum the elements (TAB-ITEM) in a table plus field REJECT-VAL

COMPUTE TOTAL-VALUE =
FUNCTION SUM (TAB-ITEM(ALL) REJECT-VAL)

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 10 of 61

RANDOM [(parameter-1)]
The function returns a numeric value, between 0 and 1, that is a pseudo-random
number. The optional parameter, if used, becomes the seed value to generate a
sequence of pseudo-random numbers, and must be between 0 and 999999999
inclusive. For a given seed value the sequence of pseudo-random numbers is
always the same. To produce a different set of pseudo-random numbers every
time a program is run the seed parameter is usually taken from data like the
current date and time

MEAN, MEDIAN, RANGE, MIDRANGE (parameter-1 … parameter-n)
These functions all have the same characteristics as the SUM function.
MEAN – Average or Statistical mean of all the parameters
MEDIAN – The Middle value of the list of parameters.
RANGE – The difference between the largest and smallest parameters.
MIDRANGE – The average of the largest and the smallest parameters.

String Functions:
UPPER-CASE (parameter-1)

The function returns a character string, the same length as the parameter, with
each lowercase letter replaced by the corresponding uppercase letter.

LOWER-CASE (parameter-1)
The function returns a character string, the same length as the parameter, with
each uppercase letter replaced by the corresponding lowercase letter.
Example: To ensure first letter is uppercase and rest is lowercase.

MOVE FUNCTION UPPERCASE (NAME(1:1) TO NAME(1:1)
MOVE FUNCTION LOWERCASE (NAME(2:) TO NAME(2:)

CHAR (parameter-1)
The function returns a single character having a value corresponding to its
ordinal position in the ASCII character set. The parameter must be an integer
between 1 and 256 inclusive.
Note: Because the ASCII character set starts from decimal 0 but the Ordinal
value start from 1, the parameter must be the decimal value of the character + 1.
Example: To display the character “A” (decimal value 65)

DISPLAY FUNCTION CHAR (66)

ORD (parameter-1)
The function returns an integer value between 1 and 256 corresponding to the
ordinal position in the ASCII character set of the character in the parameter.
Because this is an integer function the COMPUTE verb must be used, not a
MOVE.
Example: To move the ordinal value of ‘A’ (66) to NUM

COMPUTE NUM = FUNCTION ORD (“A”)

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 11 of 61

NUMVAL (parameter-1)
The function returns a numeric value equivalent to the character string in the
parameter. Leading and trailing spaces are ignored.
Example: FUNCTION NUMVAL (“ + 25.90 “) = 25.9

FUNCTION NUMVAL (“ 25.90 + “) = 25.9
FUNCTION NUMVAL (“ 25.90 CR”) = - 25.9
FUNCTION NUMVAL (“ -.36 “) = - 0.36

NUMVAL-C (parameter-1 {parameter-2})
The function returns a numeric value equivalent to the character string in the
parameter. Leading and trailing spaces are ignored. Any optional currency sign
specified by the 2nd parameter and any optional commas preceding the decimal
point will be ignored.
Example: FUNCTION NUMVAL-C (“+USD25.90 “ “USD”) = 25.9

FUNCTION NUMVAL-C (“ 2,425.90 + “) = 2425.9
FUNCTION NUMVAL-C (“ $25.90 CR” “$”) = - 25.9
FUNCTION NUMVAL-C (“-$567,123 “ “$”) = -567123

MAX, MIN (parameter-1 … parameter-n)
The function returns the contents of the parameter that is the maximum or
minimum, respectively. The function type depends on the type of the parameters
which must all be of the same type.
Example: DISPLAY FUNCTION MAX (FIELD-1 FIELD-2 FIELD-3)

COMPUTE MIN-VALUE = FUNCTION MIN (ITEM (ALL))

ORD-MAX, ORD-MIN (parameter-1 … parameter-n)
The function returns an integer value that is the ordinal number of the parameter
that contains the maximum or minimum value, respectively.
Example:

COMPUTE NUM-1 = FUNCTION ORD-MAX (“M” “C” “Z” “A”)
NUM-1 will contain 3 as the “Z” is in the 3rd position.

COMPUTE NUM-2 = FUNCTION ORD-MIN(“M” “C” “Z” “A”)
NUM-2 will contain 4 as the “A” is in the 4th position.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 12 of 61

Section 5 – Calling MPE Intrinsics

An HP extension to the 1985 ANSI COBOL standard allows the keyword INTRINSIC to
be used with the CALL verb to specify that an operating system intrinsic is to be called
rather than a user subprogram. These MPE Intrinsics are special procedures whose
declarations reside in the intrinsic file SYSINTR.PUB.SYS which enables the types and
bounds of the parameter values to be checked before the call is actioned.

There are some special rules for defining parameters for MPE Intrinsics.

• MPE Intrinsics are referenced by their name within a literal.
e.g. CALL INTRINSIC “RESETCONTROL”

• Optional Parameters: If a parameter is optional and you have no value for it the
parameter must be specified as \\.

e.g. See WHO intrinsic below.

• Parameter Type: The Intrinsic Manual defines the Parameter Type as a mnemonic.
The following table shows the commonest parameters and the equivalent COBOL
type that must be used.

Type Name of Type Size in Bytes COBOL Type
A Array n X(n)
C Char 1 X
I16 16 bit signed integer 2 S9(1) COMP – S9(4) COMP
I32 32 bit signed integer 4 S9(5) COMP – S9(9) COMP
I64 64 bit signed integer 8 S9(10) COMP – S9(18) COMP
U16 16 bit unsigned integer 2 S9(1) COMP – S9(4) COMP
U32 32 bit unsigned integer 4 S9(9) COMP
U64 64 bit unsigned integer 8 S9(18) COMP
@32 32 bit address 4 S9(9) COMP
@64 64 bit address 8 S9(18) COMP

• Binary (COMP) Fields: An intrinsic may return a value outside the range of valid
numbers for the COBOL type. The full value can be referenced by MOVEing the
resultant field to a larger Binary field before any further reference. One example is
the WHO intrinsic which can return a logical device number up to 16385. Because
the parameter must be defined as COBOL type S9(4) COMP (2 bytes) the resultant
value needs to be moved to a COBOL type S9(5) COMP (4 bytes) to reference any
value greater then 9999.

• Real Numbers: Passing Real Numbers to intrinsics requires some manipulation to
get a real number in a COBOL program. The number must be converted from a string
(display) form into a floating point form by using the “HPEXTIN” intrinsic. See the
PAUSE intrinsic below.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 13 of 61

• Intrinsic Errors: A special relation operator, defined under SPECIAL-NAMES in
the program, can be used to check the condition code returned by an intrinsic. If this
code is not zero, then an error occurred.

SPECIAL-NAMES.
CONDITION-CODE IS C-C.

CALL INTRINSIC “HPCICOMMAND” USING
MPE-COMMAND MPE-ERROR-CODE MPE-ERROR-TYPE

IF C-C <> 0
Command not executed

END-IF

Useful Intrinsics

1. DATELINE – Returns the current date and time formatted into a 27 character field,
including the day of week, month, day, year, hours and minutes.

CALL INTRINSIC “DATELINE” USING DATE-BUFFER
DATE-BUFFER = WED, AUG 22, 2001, 2:30 PM

2. FCONTROL – Performs various control operations on a file or on the device where
the file resides. They include

- Supplying a printer carriage control directive
- Verifying I/O
- Reading the hardware status word for the device
- Setting a terminal’s time-out interval
- Repositioning a file at it beginning
- Writing an end-of-file marker
- Enable/disable echo facility
- Enable/disable System or subsystem Break function
- Enable/disable Extended Wait for message file

e.g. CALL INTRINSIC “FCONTROL” USING FD-FILE-NAME 45 1

3. FINDJCW – Searches the Job Control Word table for the specified JCW and returns
its value (which must be an unsigned integer). The JCW’s can be user defined,
System defined (e.g. CIERROR) or System Reserved (e.g. HPDATE).

CALL INTRINSIC "FINDJCW" USING
JCW-NAME JCW-VALUE JCW-STATUS

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 14 of 61

4. GETINFO – Returns user supplied information that was passed to the program when
it was created.
The INFO-STRING is passed via the “;INFO=” parameter to the RUN command.
The INFO-PARM is passed via the “;PARM=” parameter to the RUN command.

CALL INTRINSIC “GETINFO”
USING INFO-STRING INFO-LENGTH INFO-PARM
GIVING INFO-RESULT

The “;PARM=” parameter to the RUN command also sets the Software Switches
(SW0 to SW15). The switches are defined in the SPECIAL-NAMES paragraph of
the ENVIRONMENT DIVISION and are associated with an ‘on’ and an ‘off’
condition name.

SPECIAL-NAMES.
SW0 ON STATUS PHASE-1 OFF STATUS PHASE-2.

 If I am logged on as MGR.SYS and my session number is #S1234 then
:RUN MYPROG;INFO=“!HPUSER,!HPACCOUNT”;PARM=!HPJOBNUM

INFO-STRING = “MGR,SYS” INFO-LENGTH = 7
INFO-PARM = 1234 INFO-RESULT = 0 (if no errors)
1234 = %10011010010 which will set SW5,SW8,SW9,SW11,SW14 to ‘ON’.

5. HPCICOMMAND – Enables the program to execute an MPE Command, including
UDC”s, Command files and implied Run commands. The last character in the
command field must be a carriage return (%15).

CALL INTRINSIC “HPCICOMMAND” USING
MPE-COMMAND MPE-ERROR-CODE MPE-ERROR-TYPE

6. HPCIGETVAR – Retrieves a valid variable name from the session-level variable
table and returns the current value and/or attributes. The intrinsic can reference up to
six items at a time. Item number 1 return Integer value, Item number 2 returns string
value, Item number 11 returns string length, Item number 13 returns type of variable
(1 = Integer, 2 = String).

CALL INTRINSIC "HPCIGETVAR" USING
 VAR-NAME VAR-STATUS

 2 VAR-ITEM-STRING 11 VAR-ITEM-LGTH
1 VAR-ITEM-INTEGER 13 VAR-ITEM-TYPE

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 15 of 61

7. HPCIPUTVAR – Sets the value of a session-level variable. The first Call references
a string variable and the second Call references an integer variable.

CALL INTRINSIC "HPCIPUTVAR" USING
 VAR-NAME VAR-STATUS
 2 VAR-ITEM-STRING 11 VAR-ITEM-LGTH

CALL INTRINSIC "HPCIPUTVAR" USING
 VAR-NAME VAR-STATUS
 1 VAR-ITEM-NUMBER

8. PAUSE – Suspends the program for the specified number of seconds. The parameter
must be a Real (floating point) number which cannot normally be defined in a
COBOL program. The number of seconds (defined as 9(..)) must be converted to
REAL-SECONDS (defined as a S9(9) COMP) via the “HPEXTIN” intrinsic. This
field can only be used as a real number passed to an intrinsic as the field no longer
contains a normal binary value.

COMPUTE NUM-LEN = FUNCTION LENGTH (NUM-SECONDS)
CALL INTRINSIC “HPEXTIN”

USING NUM-SECONDS NUM-LEN 0 1 0 0
REAL-SECONDS ERROR-CODE

CALL INTRINSIC “PAUSE” USING REAL-SECONDS

9. PUTJCW – Assigns a value to the specified JCW.
CALL INTRINSIC “PUTJCW” USING

JCW-NAME JCW-VALUE JCW-STATUS

10. RESETCONTROL – Re-enables the subsystem break trap which allows a process to
accept other subsystem break signals. Used to reset a trap when a trap handler routine
has been invoked.

CALL INTRINSIC “RESETCONTROL”

11. WHO - Returns the access mode (Session or Job)and attributes of the user running
the program including User’s Name, User’s Logon Group, User’s Logon Account,
User’s Home Group, User’s Logical Device. If WHO-MODE is < 8 the program is
running in a Session otherwise it is running in a Job.

CALL INTRINSIC "WHO" USING
WHO-MODE \\ \\ WHO-USER WHO-GROUP

 WHO-ACCOUNT WHO-HOME WHO-LDEV

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 16 of 61

Section 6 – Implementing Control-Y Trapping

Many COBOL programs need to provide the user with control to either stop the program
before it has normally completed or temporarily suspend the program for some reason.
The main mechanism to do this from a terminal or terminal emulator is by pressing
Control & Y together. This is called Control-Y trapping. The procedure to trap the
Control-Y can be written as a COBOL subprogram and put into an XL library or linked
directly with the program requiring this facility.

The subprogram must arm the Control-Y trap once by calling the intrinsic XCONTRAP
and then a second entry point is used to set a Control-Y indicator and reset the trap
(intrinsic RESETCONTROL) ready for another Control-Y.

Beware of the name of the entry point. If you have used hyphens, these will be translated
to underscores when the external name is created by the compile. This means the
“Procname” parameter to the "HPGETPROCPLABEL" intrinsic must be preset with the
entry point name using underscores instead of hyphens.

The main program calls the subprogram once in the initialization and then tests the
indicator at strategic points in the program. The indicator must be defined as
EXTERNAL in both main program and subprogram, and have the same definition.

The appendix shows a Control-Y subprogram and how it is referenced from the demo
program DEMO1-14 (Test 14).

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 17 of 61

Section 7 – File Organization & Access

• In HP COBOL, Logical files can be organized in 4 ways – Sequential, Random,
Relative and Indexed.

• They can be accessed in 3 ways
– Sequential Access

This means that existing records are accessed in ascending order. The Relative
Key is used for relative files and a prime or alternate key is used for indexed
files. Random access files may not be accessed sequentially.

– Random Access
This means that the records are accessed directly by using a record key data item
(for indexed files) or by using the relative record numbers of records (for relative
and random access files).

– Dynamic Access
This means that the program may alternate between sequential and random
access modes by selectively using different forms of various input-output
statements. This type of access may only be used for relative and indexed files.

• Sequential Organization Files
– Because of their simplicity they are the most portable file type.

– Can be opened for INPUT (reading), OUTPUT (writing), I-O (reading and
writing), EXTEND (append records to the end of the file).

– Can be accessed sequentially only, with update allowed in place. Records cannot
be deleted or inserted. Space is required only for actual records written.

– Can reside on any device.

– Special MPE Sequential file types – Circular, Message.
– Circular

A circular file is a special MPE file type that is organized like a sequential
file except that it has no “last” record. It is most appropriate for a history file
where the last ‘n’ transactions would always be recorded in a ‘n’ record file.
The file can be built with an MPE command – BUILD filename;CIR
Or an MPE file command can be used - FILE filename;CIR.
See Appendix Section 8 for sample program (DEMO16).

– Message
A Message file is a special MPE file type that is organized like a sequential
file, that is open for input and output access at the same time. Programs can
use message files to communicate with each other.
The file can be built with an MPE command – BUILD filename;MSG
Or an MPE file command can be used - FILE filename;MSG.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 18 of 61

The normal use is for one, or more, programs to open the file for write
access. One, and only one, other program opens the file for read access to
process the records. If more than one program reads the file, records can
appear to be lost as every record is deleted once it is read.

The use of the FCONTROL intrinsic (parameter 45 and 1) enables an
extended wait to be set by the ‘reading’ program so it will wait on an empty
file that is not currently opened by a writer. FCONTROL intrinsic (parameter
45 and 0) resets the extended wait so that a read on an empty file with no
writers will return an ‘end-of-file’ condition.
See Appendix Section 8 for sample program (DEMO17).

• Sequential Organization File Access
– The ORGANIZATION and ACCESS clauses are not required for the SELECT

The USING phrase provides the name of the file at run time.
SELECT SEQ-FILE ASSIGN TO “file info”

– Read next sequential record
READ SEQ-FILE [INTO Work-data-item]

[AT END Imperative Statement]
[NOT AT END Imperative Statement]

[END-READ]

– Write next sequential record at end of file only.
WRITE SEQ-FILE [FROM Work-data-item]

[BEFORE ADVANCING n LINES]
[AT END-OF-PAGE Imperative Statement]
[NOT AT END-OF-PAGE Imperative Statement]

[END-WRITE]

WRITE SEQ-FILE [FROM Work-data-item]
[AFTER ADVANCING n LINES]
[AT END-OF-PAGE Imperative Statement]
[NOT AT END-OF-PAGE Imperative Statement]

[END-WRITE]

– Rewrite by replacing last record read
REWRITE SEQ-FILE [FROM Work-data-item]
[END-REWRITE]

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 19 of 61

• Sequential Organization Random Access Files (HP Extension)
– Have one numeric unique key. The first key is number zero (0).

– Can be opened for INPUT (reading), OUTPUT (writing), I-O (reading and
writing). When records are written to the file, and previous record areas have had
no data written to them, the empty records are filled with blanks (ASCII file) or
binary zeros (Binary file). When records are sequentially read, the blank (empty)
records will be accessed. This capability does not exist for any other type of file.

– Can only be accessed randomly by the key, which corresponds to the record
number minus 1, but by setting the key to zero then reading records with the
NEXT phrase, the file can be read sequentially.

– Records can be inserted, updated or appended (not deleted).

– Space is required for maximum possible records plus one due to the first key
being zero.

– Can reside on disc devices only.

– A hashing algorithm may be required if the key can have a larger value than the
maximum number of records.

– The MPE operating system does not distinguish between Random Access and
Sequential Organization files. The distinction is made by the HP COBOL
compiler, which generates different code for random access files. This means a
file can be created as sequential organization by one program and treated as a
random access file by another program. The file appears as a sequential file,
therefore it is portable to other MPE systems but the program will not be portable
to other non-MPE systems as the random access file is defined with an ACTUAL
KEY clause (an HP extension to the ANSI standard) in the SELECT statement.

• Sequential Organization Random Access
– The clauses ACCESS IS RANDOM and ACTUAL KEY are required. The actual

key must be defined in working storage, preferably as an S9(9) COMP field.
SELECT RAND-FILE ASSIGN TO “RAND-FILE”

ACCESS IS RANDOM
ACTUAL KEY IS RAND-KEY

– To Read records Sequentially the NEXT phrase must be used
READ RAND-FILE NEXT [INTO Work-data-item]

[AT END Imperative Statement]
[NOT AT END Imperative Statement]

[END-READ]

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 20 of 61

– To Read a Random record the ACTUAL KEY data item must be preset with the
required record number.

READ RAND-FILE [INTO Work-data-item]
[INVALID KEY Imperative Statement]
[NOT INVALID KEY Imperative Statement]

[END-READ]

– To Write a record, the INVALID KEY phrase is required. The ACTUAL KEY
data item is used in an implicit Seek to find the record into which the data is to be
written.

WRITE RAND-FILE [FROM Work-data-item]
 INVALID KEY Imperative Statement
[NOT INVALID KEY Imperative Statement]

[END-WRITE]

– To Rewrite a record, the record number must be specified in the ACTUAL KEY
data item and a record must already exist.

REWRITE RAND-FILE [FROM Work-data-item]
 INVALID KEY Imperative Statement
[NOT INVALID KEY Imperative Statement]

[END-REWRITE]

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 21 of 61

• Relative Organization Files
– Has one numeric unique key. The first key is number one (1). This is defined as a

RELATIVE KEY in the SELECT statement

– Can be opened for INPUT (reading), OUTPUT (writing), I-O (reading and
writing), EXTEND (write to the end of the file if access is sequential). When
reading sequentially, only records that have been written will be accessed. This
means empty space in the file is skipped (unlike Random Access files).

– Can be accessed sequentially, randomly or dynamically and Records can be
deleted, inserted, updated or appended.

– Space is required for maximum possible records plus one tag per record. The tag
indicates whether the associated record has been deleted.

– Can reside on disc devices only.

– A hashing algorithm may be required if the key can have a larger value than the
maximum number of records.

– The file has a special MPE file type, RIO, therefore it is not portable except to
other MPE systems but Relative Organization files are an ANSI standard file
type therefore the program will be portable.

– Relative Organization files are useful for storing records with numeric keys when
random or directed access is required and the key value is much larger than the
expected maximum number of records.

• Relative Organization File Access
– The clause ORGANIZATION RELATIVE is required. The ACCESS clause is

required to define the RELATIVE KEY and may be SEQUENTIAL, RANDOM
or DYNAMIC. The Relative key data item must be defined in working-storage,
preferably as an S9(9) COMP field (or S9(9) BINARY).

SELECT REL-FILE ASSIGN TO “REL-FILE”
ACCESS IS SEQUENTIAL
RELATIVE KEY IS REL-KEY

SELECT REL-FILE ASSIGN TO “REL-FILE”
ACCESS IS RANDOM
RELATIVE KEY IS REL-KEY

SELECT REL-FILE ASSIGN TO “REL-FILE”
ACCESS IS DYNAMIC
RELATIVE KEY IS REL-KEY

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 22 of 61

– To Read records Sequentially the NEXT phrase must be used. The actual
position may be made available via a START statement.

READ REL-FILE NEXT [INTO Work-data-item]
[AT END Imperative Statement]
[NOT AT END Imperative Statement]

[END-READ]

– To Read a Random record the RELATIVE KEY data item must be preset with
the required record number.

READ REL-FILE [INTO Work-data-item]
[INVALID KEY Imperative Statement]
[NOT INVALID KEY Imperative Statement]

[END-READ]

– To Write a new record, the INVALID KEY phrase is required unless a USE
statement has been issued for the referenced file.
The Relative Key data item is updated as records are written in Sequential access
mode. The first record written is record number 1 then 2, 3, 4 etc.
If the file is open in random or dynamic access mode the Relative Key data item
must be set to specify where the record is to be written (and the record number
must not already exist).

WRITE REL-FILE [FROM Work-data-item]
[INVALID KEY Imperative Statement]
[NOT INVALID KEY Imperative Statement]

[END-WRITE]

– To Rewrite a record in Sequential access - the last I-O statement must have
been a READ statement. The REWRITE replaces the last record read. In this
mode the INVALID KEY clause must not be used.

REWRITE REL-FILE [FROM Work-data-item]
[END-REWRITE]

– To Rewrite a record in Random or Dynamic access - The record to be logically
replaced is specified by the Relative Key data item and must already exist.

REWRITE REL-FILE [FROM Work-data-item]
[INVALID KEY Imperative Statement]
[NOT INVALID KEY Imperative Statement]

[END-REWRITE]

– To Define the Starting Record for Sequential or Dynamic access the required
record number must be preset in the RELATIVE KEY data item. The file must
be opened in INPUT or I-O mode.

START REL-FILE
[INVALID KEY Imperative Statement]
[NOT INVALID KEY Imperative Statement]

[END-START]

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 23 of 61

– To Delete a record in Sequential access - the INVALID KEY phrase must not be
used. The record to be deleted is the last record read.
The file must be open in I-O mode.

DELETE REL-FILE
[END-DELETE]

– To Delete a record in Random or Dynamic access – the INVALID KEY phrase
must be used unless a USE statement has been issued for the referenced file. The
record removed is the one referenced by the Relative Key data item.
The file must be open in I-O mode.

DELETE REL-FILE
[INVALID KEY Imperative Statement]
[NOT INVALID KEY Imperative Statement]

[END-DELETE]

• Indexed Organization Files (KSAM)
– Up to 16 alphanumeric keys. The primary key must be written in ascending order

if access mode is sequential. The first key can be any value. Keys do not have to
be unique although it is recommended that the primary keys be unique.

– Can be opened for INPUT (reading), OUTPUT (writing), I-O (reading and
writing), EXTEND (write to the end of the file if access is Sequential).

– Can be accessed sequentially, randomly or dynamically and Records can be
deleted, inserted, updated or appended.

– In Compatibility Mode, two files are created: one for data and one for the keys.
In Native Mode, only one file is created.

– The file has a special MPE file type, KSAM or KSAMXL, therefore it is not
portable except to other MPE systems but Indexed Organization files are an
ANSI standard file type therefore the program will be portable.

– The same COBOL program can access a CM KSAM file or an NM KSAM file.

– To build a CM KSAM file
:KSAMUTIL
>BUILD MYFILE;REC=-56,1,F,ASCII;DISC=5000;KEY=B,1,40;KEYFILE=MYFILEK
>EXIT

– To build an NM KSAM file
:BUILD MYFILE;REC=-56,1,F,ASCII;DISC=5000;KSAMXL;KEY=(B,1,40)

– See Appendix Section 8 for sample program reading a database and creating a
KSAM file (DEMO18).

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 24 of 61

• Indexed Organization File Access
– The clause ORGANIZATION INDEXED is required. The ACCESS clause is not

required if the access is to be Sequential otherwise it must be RANDOM or
DYNAMIC.
A RECORD KEY clause must be defined. This data item must be described as
alphanumeric within the record description.
Up to 16 alternate keys can be defined with the clause ALTERNATE RECORD
IS Dataitem-1, Dataitem-2 etc.

SELECT INDEX-FILE ASSIGN TO “INDEX-FILE”
[ACCESS IS SEQUENTIAL]
RECORD KEY IS REC-KEY

SELECT INDEX-FILE ASSIGN TO “INDEX-FILE”
ACCESS IS RANDOM
RECORD KEY IS REC-KEY

SELECT INDEX-FILE ASSIGN TO “INDEX-FILE”
ACCESS IS DYNAMIC
RECORD KEY IS REC-KEY

– To Read records Sequentially the NEXT phrase must be used. The actual
position may be made available via a START statement.

READ INDEX-FILE NEXT [INTO Work-data-item]
[AT END Imperative Statement]
[NOT AT END Imperative Statement]

[END-READ]

– To Read a Random record the RELATIVE KEY data item must be preset with
the required record number.

READ INDEX-FILE [INTO Work-data-item]
[KEY IS data-name]
[INVALID KEY Imperative Statement]
[NOT INVALID KEY Imperative Statement]

[END-READ]

– To Write a new record the INVALID KEY phrase is required unless a USE
statement has been issued for the referenced file.
If the file is open in Sequential access mode the records must be written in
ascending order of primary key values.
If the file is open in random or dynamic access mode the records will be written
based on the keys in the record.

WRITE INDEX-FILE [FROM Work-data-item]
[INVALID KEY Imperative Statement]
[NOT INVALID KEY Imperative Statement]

[END-WRITE]

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 25 of 61

– To Rewrite a record: For Sequential access - the last I-O statement must have
been a READ statement. The REWRITE replaces the last record read and must
have the same primary key.
For Random or Dynamic access - The record to be replaced is specified by the
Primary record key data item and must already exist.

REWRITE INDEX-FILE [FROM Work-data-item]
[INVALID KEY Imperative Statement]
[NOT INVALID KEY Imperative Statement]

[END-REWRITE]

– To Define the Starting Record for Sequential or Dynamic access the required
record number must be preset in the RELATIVE KEY data item.
The “relation” can only be =, >, NOT<, >=.
The file must be opened in INPUT or I-O mode.
If the KEY phrase is not used the value in the Primary key data field is used
otherwise the data name must reference a primary or alternate key data item or
the first part of one of the key data items.

START INDEX-FILE [KEY relation data-name]
[INVALID KEY Imperative Statement]
[NOT INVALID KEY Imperative Statement]

[END-START]

– To Delete an existing record: For Sequential access – the INVALID KEY
phrase must not be used. The record to be deleted is the last record read.
For Random or Dynamic access – the INVALID KEY phrase must be used
unless a USE statement has been issued for the referenced file. The record
removed is the one referenced by the Primary Key data item.
The file must be open in I-O mode.

DELETE INDEX-FILE
[INVALID KEY Imperative Statement]
[NOT INVALID KEY Imperative Statement]

[END-DELETE]

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 26 of 61

• Variable Length Records
– Variable length records are allowed in every logical file organization

– For Relative Organization files, HP COBOL simulates variable length records by
using fixed length records therefore no space is saved.

– Specify variable length records with the RECORD IS VARYING clause in the
FD definition.

– Variable length records are not allowed when using the REWRITE statement.

– Example
FD IFILE

RECORD IS VARYING FROM 10 TO 50 DEPENDING ON LEN.
01 IREC.

03 FILLER PIC X OCCURS 10 TO 50 DEPENDING ON LEN.

To write a record to IFILE, LEN must be set to a valid value between 10 and 50.
When a record is read from IFILE, LEN will contain the number of characters in
the record after it has been read. If IREC is displayed, only the LEN number of
characters will be displayed.

• Dynamic File Names
– The ASSIGN clause normally assigns a static name to the physical file using the

TO phrase.
SELECT IFILE ASSIGN TO “IFILE1”

– With the addition of the USING phrase, the ASSIGN clause can specify a data
name to contain the name of the physical file. The data name can be changed
before the file is opened to enable a different file to be opened each time, as
required.

SELECT IFILE ASSIGN USING FILE-NAME

• Optional Files
– The OPTIONAL phrase can be used in the SELECT statement. It will cause the

AT END statement, on the first Read, to be actioned if the file does not exist.
SELECT IFILE OPTIONAL ASSIGN TO “IFILE1”

• ASSIGN clause File Info
– A new temporary file can be created with more than the default number of

records
SELECT OFILE ASSIGN “OUTFILE1,,A,,50000”

– A Print file output can be defined
 SELECT OFILE ASSIGN “PRINTLP,,,LP(CCTL),,LOAD A4 STATIONERY.”)

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 27 of 61

• File Status Codes
– The optional FILE STATUS clause on the SELECT statement can specify a 2

character data name that will contain a file status code after any I-O statements
have been actioned.

– The first digit of the code indicates one of the following
– 0: The I-O operation was successful
– 1: An AT END condition occurred
– 2: An INVALID KEY condition occurred
– 3: A permanent error occurred
– 4: A logical error occurred
– 9: An implementation-defined condition occurred

– The second digit of the code gives further information about the condition.

– The FILE STATUS data name can be checked immediately after the I-O
statement or via a USE procedure.

– If the I-O operation is successful, the file status code will be returned and the
program will continue.

– If the I-O operation is unsuccessful and receives an AT END or INVALID
KEY condition, the program will execute the AT END or INVALID KEY
statement, if present. Otherwise the USE procedure will be executed, if present,
and the file status code will be returned. The program will continue after any
error procedure has been executed.

– If the I-O operation is unsuccessful and receives a permanent or logical or
implementation-defined error, and the file does have a FILE STATUS clause,
the file status code will be returned and the program will continue to execute,
after any applicable USE procedure has been executed.

– If the I-O operation is unsuccessful and receives a permanent or logical or
implementation-defined error, and the file does NOT have a FILE STATUS
clause, the program will abort if no applicable USE procedure has been defined.
The program will continue to execute only after a USE procedure is executed.

– See Appendix Section 8 – SAMPLE1 – for use of File Status Codes without
declaratives.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 28 of 61

– Example Code segment showing use of Declaratives

FILE-CONTROL.
SELECT IFILE ASSIGN USING FILE-NAME

FILE STATUS I-STATUS.
…..
01 I-STATUS.

03 I-STATUS1 PIC X.
03 PIC X.

…..
PROCEDURE DIVISION.
DECLARATIVES.
D-PARA-1 SECTION.

USE AFTER STANDARD EXCEPTION PROCEDURE ON IFILE.
TEST-STATUS.

IF I-STATUS1 = “1”
SET IFILE-EOF TO TRUE

ELSE
Provide error message

END-IF
.

EXIT-PARA.
EXIT.

END-DECLARATIVES.

• Posix File Access
– MPE files and Posix files (Hierarchical file system – HFS files) can be read

from and written to by the same COBOL program using FILE commands to
define the specific file type.

– The following 3 examples show the file commands for reading INFILE and
writing OUTFILE

– Read MPE “TEST1.PUB.SYS” and write HFS “/tmp/hfs1”
FILE INFILE=TESTIN.PUB.SYS
FILE OUTFILE=/tmp/hfs1;SAVE

– Read HFS “/tmp/hfs1” and write HFS “/tmp/hfs2”
FILE INFILE=/tmp/hfs1
FILE OUTFILE=/tmp/hfs2;SAVE

– Read HFS “/tmp/hfs2” and write MPE “TEST2.PUB.SYS”
FILE INFILE=/tmp/hfs2
FILE OUTFILE= TEST2.PUB.SYS;SAVE

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 29 of 61

Section 8 - Appendix – Sample Programs

SAMPLE 1

Sample code to show use of File Status code with the READ statement.

 FILE-CONTROL.
SELECT ORDER-FILE ASSIGN USING FILE-NAME

FILE STATUS ORDER-FILE-STATUS-CODE.
...
 01 MISCELLANEOUS.
 05 ORDER-FILE-STATUS-CODE PIC X(2).
 88 ORDER-FILE-STATUS-OK VALUE ZERO "10".
 88 ORDER-FILE-STATUS-END VALUE “10”.
...
 OPEN INPUT ORDER-FILE

 PERFORM UNTIL ORDER-FILE-STATUS-CODE <> ZERO
 READ ORDER-FILE
 NOT AT END ADD 1 TO ORDER-READ-COUNT
 END-READ
 END-PERFORM

 IF ORDER-FILE-STATUS-OK
 CLOSE ORDER-FILE
 ELSE
...
 END-IF
...

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 30 of 61

SAMPLE 3

Sample code to show use of Date Validation Intrinsics.

HP support a number of standard Date formats with a number of intrinsics to manipulate
these formats. The main format of interest to COBOL programmers is format 38, which
is the ASCII representation of an 8 byte date in format CCYYMMDD.
The new intrinsics are

HPDATECONVERT – convert dates from one format to another
HPDATEFORMAT – to convert dates into display strings with a number of options
HPDATEDIFF – to determine the number of days between 2 dates
HPDATEOFFSET – increment/decrement a date with a given offset
HPDATEVALIDATE – check the validity of a given date to a specified format

The Date Validate intrinsic should be used before any COBOL Date function if the data
could be invalid. The intrinsic returns a 32-bit signed integer to the second macro
parameter. Zero indicates the first parameter contains a valid date. Anything else
indicates an invalid date or an execution error occurred.

* !1 = Date
* !2 = Days to Add (+ or -)
$DEFINE %ADDTODATE=

COMPUTE !1 = FUNCTION DATE-OF-INTEGER
(FUNCTION INTEGER-OF-DATE(!1) + !2)#

*--
* !1 = Date to be validated
* !2 = Error indicator (Zero = no error)
$DEFINE %VALIDATECCYYMMDD=
$CONTROL LOCOFF
 CALL INTRINSIC "HPDATEVALIDATE"
 USING 38 !1
 GIVING !2
$CONTROL LOCON#
*--
...
 %VALIDATECCYYMMDD(MY-DATE#,VALIDATE-STATUS-CODE#)
 IF VALIDATE-STATUS-CODE = ZERO
 %ADDTODATE(MY-DATE#,15#)
 ELSE
 Perform error processing
 END-IF
...

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 31 of 61

SAMPLE 4

Sample code to show use of a separately compiled module to remove data from ‘global’
working storage to provide a form of encapsulation.

$CONTROL DYNAMIC
 IDENTIFICATION DIVISION.
 PROGRAM-ID. DAYOFWEEK.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 CONSTANTS.
 03 WEEK-DAYS.
 05 VALUE "Sunday" PIC X(9).
 05 VALUE "Monday" PIC X(9).
 05 VALUE "Tuesday" PIC X(9).
 05 VALUE "Wednesday" PIC X(9).
 05 VALUE "Thursday" PIC X(9).
 05 VALUE "Friday" PIC X(9).
 05 VALUE "Saturday" PIC X(9).
 03 REDEFINES WEEK-DAYS.
 05 WEEK-DAY PIC X(9) OCCURS 7.
*
 LINKAGE SECTION.
 01 INPUT-DATE PIC 9(8).
*
 01 WEEK-DAY PIC X(9).
*
 PROCEDURE DIVISION USING INPUT-DATE
 WEEK-DAY.
 DAYOFWEEK.

CALL INTRINSIC "HPDATEVALIDATE"
 USING 38 INPUT-DATE
 GIVING TALLY

IF TALLY <> 0
MOVE SPACES TO WEEK-DAY

ELSE
 COMPUTE TALLY = FUNCTION REM

(FUNCTION INTEGER-OF-DATE(INPUT-DATE), 7) + 1
MOVE WEEK-DAY(TALLY) TO WEEK-DAY

END-IF
GOBACK
.

 END PROGRAM DAYOFWEEK.

To obtain the day of the week in the main program -
 CALL "DAYOFWEEK" USING MY-DATE MY-WEEK-DAY

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 32 of 61

DEMO1-14

Demo program to demonstrate 14 different COBOL features
Test 1 Show Date addition using Function DATE-OF-INTEGER & INTEGER-OF-DATE
Test 2 Same as Test 1 but using a Macro
Test 3 Show Day of the Week using Function REM & INTEGER-OF-DATE
Test 4 Show Ordinal values of characters using Function ORD & CHAR
Test 5 Show use of Function NUMVAL
Test 6 Show use of Function NUMVAL-C
Test 7 Show use of Intrinsic “HPCICOMMAND”
Test 8 Show use of Intrinsic “DATELINE”
Test 9 Show use of Intrinsic “HPCIPUTVAR”
Test 10 Show use of Intrinsic “HPCIGETVAR”
Test 11 Show use of Intrinsic “GETINFO”
Test 12 Show use of Intrinsic “WHO”
Test 13 Show use of Intrinsic “PAUSE”
Test 14 Show how to test for a Control Y trap

$CONTROL USLINIT,POST85
* To Compile and Link - COB85XLK CJEN,PJEN
 IDENTIFICATION DIVISION.
 PROGRAM-ID. DEMO1-14.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP-3000.
 OBJECT-COMPUTER. HP-3000.
 SPECIAL-NAMES.
 CONDITION-CODE IS C-C
 SYMBOLIC CHARACTERS NULL 1, BELL 8, CR 14, ESCAPE 28
 .

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 WORKERS.
 03 TEST-CURRENT-DATE.
 05 TEST-DATE PIC 9(8).
 05 TEST-TIME PIC 9(6).
 05 PIC 99.
 05 TEST-GMT-OFFSET PIC X.
 05 TEST-GMT PIC 9(4).
 03 TEST-WEEK-DAY PIC X(10).
 03 TEST-CHAR PIC X.
 03 TEST-NUM PIC 9(4).
 03 TEST-VAL PIC S9(8)V99.
 03 EDIT-NUM PIC Z(4).
 03 EDIT-NUM8 PIC Z(8).
 03 EDIT-VAL-1 PIC ++++,+++,+++.99.
 03 EDIT-VAL-2 PIC ZZZ,ZZZ,ZZZ.99CR.
 03 EDIT-VAL-3 PIC +$$$,$$$,$$$.99.
 03 EDIT-VAL-4 PIC $$$,$$$,$$$.99CR.
 03 DATE-BUFFER PIC X(27).

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 33 of 61

 01 INFO-VARIABLES.
 03 INFO-LENGTH PIC S9(4) COMP.
 03 INFO-PARM PIC S9(4) COMP.
 03 INFO-RESULT PIC S9(4) COMP.
 03 REAL-SECONDS PIC S9(9) COMP.
 03 INFO-STRING PIC X(50).

 01 CI-VARIABLES.
 03 VAR-ITEM-2 PIC S9(9) COMP VALUE 2.
 03 VAR-ITEM-11 PIC S9(9) COMP VALUE 11.
 03 VAR-ITEM-14 PIC S9(9) COMP VALUE 14.
 03 VAR-ITEM-TYPE PIC S9(9) COMP VALUE 1.
 03 VAR-ITEM-LGTH PIC S9(9) COMP.
 03 VAR-STATUS PIC S9(9) COMP.
 03 VAR-ITEM-NUM PIC S9(9) COMP.
 03 VAR-ITEM-VALUE PIC X(100).
 03 VAR-ITEM-NAME PIC X(20).

 01 WHO-VARIABLES.
 03 WHO-MODE PIC S9(4) COMP.
 03 WHO-LDEV PIC S9(4) COMP.
 03 WHO-USER PIC X(8).
 03 WHO-GROUP PIC X(8).
 03 WHO-ACCOUNT PIC X(8).
 03 WHO-HOME PIC X(8).

 01 WEEK-DAY-DATA.
 03 WEEK-DAY-SUB PIC 9.
 03 WEEK-DAYS.
 05 PIC X(9) VALUE "Sunday".
 05 PIC X(9) VALUE "Monday".
 05 PIC X(9) VALUE "Tuesday".
 05 PIC X(9) VALUE "Wednesday".
 05 PIC X(9) VALUE "Thursday".
 05 PIC X(9) VALUE "Friday".
 05 PIC X(9) VALUE "Saturday".
 03 REDEFINES WEEK-DAYS.
 05 WEEK-DAY PIC X(9) OCCURS 7.

 01 CONTROL-Y EXTERNAL PIC S9(4) COMP.
 88 CONTROL-Y-HIT VALUE 1.
 88 CONTROL-Y-OFF VALUE 0.

 01 DISPLAY-BUFFER EXTERNAL PIC X(40).

 01 INDICATORS.
 03 TEST-COMPLETE-IND PIC X.
 88 TEST-COMPLETE VALUE "Y".
 88 TEST-NOT-COMPLETE VALUE "N".

 01 MPE-PARMS.
 03 MPE-ERROR-CODE PIC S9(4) COMP.
 03 MPE-ERROR-TYPE PIC S9(4) COMP.
 03 MPE-COMMAND PIC X(80).
 03 MPE-MAX PIC 999 VALUE 80.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 34 of 61

* Issue an MPE Command !1 (Max 79 chars)
*
* Variables defined above
$DEFINE %MPECOMMAND=
*START MPECOMMAND
 MOVE !1 TO MPE-COMMAND
 MOVE CR TO MPE-COMMAND(80:1)
 CALL INTRINSIC "HPCICOMMAND" USING MPE-COMMAND
 MPE-ERROR-CODE MPE-ERROR-TYPE
*END MPECOMMAND#

* !1 = DATE
* !2 = DAYS TO ADD (+ OR -)
$DEFINE %ADDTODATE=
 COMPUTE !1 = FUNCTION DATE-OF-INTEGER
 (FUNCTION INTEGER-OF-DATE (!1)
 + !2)
#
* !1 = DATE
* !2 = RESULT FIELD FOR DAY OF WEEK
$DEFINE %DAYOFWEEK=
 COMPUTE WEEK-DAY-SUB = FUNCTION REM
 (FUNCTION INTEGER-OF-DATE (!1), 7) + 1
 MOVE WEEK-DAY(WEEK-DAY-SUB) TO !2
#

 PROCEDURE DIVISION.

 PROGRAM-START.
 MOVE FUNCTION CURRENT-DATE TO TEST-CURRENT-DATE
 PERFORM TEST1
 PERFORM TEST2
 PERFORM TEST3
 PERFORM TEST4
 PERFORM TEST5
 PERFORM TEST6
 PERFORM TEST7
 PERFORM TEST8
 PERFORM TEST9
 PERFORM TEST10
 PERFORM TEST11
 PERFORM TEST12
 PERFORM TEST13
 PERFORM TEST14
 DISPLAY " "
 STOP RUN.

 TEST1.
 DISPLAY " "
 DISPLAY "**** TEST 1 ****"
 DISPLAY "Show CURRENT-DATE + Adjustment"
 DISPLAY "DATE = " TEST-DATE
 COMPUTE TEST-DATE = FUNCTION DATE-OF-INTEGER
 (FUNCTION INTEGER-OF-DATE (TEST-DATE)
 + 15)
 DISPLAY " + 15 DAYS = " TEST-DATE
 .

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 35 of 61

 TEST2.
 DISPLAY " "
 DISPLAY "**** TEST 2 ****"
 DISPLAY "Show TEST-1 Date + Adjustment using a Macro"
 DISPLAY "DATE = " TEST-DATE
 %ADDTODATE(TEST-DATE#, 15#)
 DISPLAY " + 15 DAYS = " TEST-DATE
 %ADDTODATE(TEST-DATE#,-30#)
 DISPLAY " - 30 DAYS = " TEST-DATE
 .
TEST3.
 DISPLAY " "
 DISPLAY "**** TEST 3 ****"
 DISPLAY "Show Current Day of the Week"
 DISPLAY "DATE = " TEST-DATE
 %DAYOFWEEK(TEST-DATE#,TEST-WEEK-DAY#)
 DISPLAY "Day of Week= " TEST-WEEK-DAY
 .

 TEST4.
 DISPLAY " "
 DISPLAY "**** TEST 4 ****"
 DISPLAY "Show Ord values of Chars"
 COMPUTE EDIT-NUM = FUNCTION ORD ("A")
 DISPLAY " A = " EDIT-NUM
 DISPLAY "70 = " FUNCTION CHAR (70)
 DISPLAY " 8 = " FUNCTION CHAR (8)
 DISPLAY "256= " FUNCTION CHAR (256)
 .

 TEST5.
 DISPLAY " "
 DISPLAY "**** TEST 5 ****"
 DISPLAY "Show NUMVAL"
 COMPUTE TEST-VAL = FUNCTION NUMVAL (" + 25.90 ")
 MOVE TEST-VAL TO EDIT-VAL-1
 DISPLAY " + 25.90 = " TEST-VAL(1:10)
 COMPUTE TEST-VAL = FUNCTION NUMVAL (" 25.90 + ")
 MOVE TEST-VAL TO EDIT-VAL-1
 DISPLAY " 25.90 + = " TEST-VAL(1:10)
 COMPUTE TEST-VAL = FUNCTION NUMVAL (" 25.90 CR")
 MOVE TEST-VAL TO EDIT-VAL-2
 DISPLAY " 25.90 CR = " TEST-VAL(1:10)
 COMPUTE TEST-VAL = FUNCTION NUMVAL (" -.35 ")
 MOVE TEST-VAL TO EDIT-VAL-1
 DISPLAY " -.35 = " TEST-VAL(1:10)
 .

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 36 of 61

 TEST6.
 DISPLAY " "
 DISPLAY "**** TEST 6 ****"
 DISPLAY "Show NUMVAL-C"
 COMPUTE TEST-VAL = FUNCTION NUMVAL-C ("+USD25.90 " "USD")
 MOVE TEST-VAL TO EDIT-VAL-3
 DISPLAY "+USD25.90 = " TEST-VAL(1:10)
 COMPUTE TEST-VAL = FUNCTION NUMVAL-C (" 2,425.90 + ")
 MOVE TEST-VAL TO EDIT-VAL-1
 DISPLAY " 2,425.90 + = " TEST-VAL(1:10)
 COMPUTE TEST-VAL = FUNCTION NUMVAL-C (" $25.90 CR" "$")
 MOVE TEST-VAL TO EDIT-VAL-4
 DISPLAY " $25.90 CR = " TEST-VAL(1:10)
 COMPUTE TEST-VAL = FUNCTION NUMVAL-C ("-$567,123 " "$")
 MOVE TEST-VAL TO EDIT-VAL-3
 DISPLAY "-$567,123 = " TEST-VAL(1:10)
 .

 TEST7.
 DISPLAY " "
 DISPLAY "**** TEST 7 ****"
 DISPLAY "Show MPE Command"
 %MPECOMMAND("SHOWME"#)
 .

 TEST8.
 DISPLAY " "
 DISPLAY "**** TEST 8 ****"
 DISPLAY "Show DATELINE Intrinsic"
 CALL INTRINSIC "DATELINE" USING DATE-BUFFER
 DISPLAY DATE-BUFFER
 .

 TEST9.
 DISPLAY " "
 DISPLAY "**** TEST 9 ****"
 DISPLAY "Show HPCIPUTVAR Intrinsic"
 MOVE "JEN" TO VAR-ITEM-NAME
 MOVE DATE-BUFFER TO VAR-ITEM-VALUE
 MOVE 27 TO VAR-ITEM-LGTH
 CALL INTRINSIC "HPCIPUTVAR" USING
 VAR-ITEM-NAME, VAR-STATUS,
 2, VAR-ITEM-VALUE, 11, VAR-ITEM-LGTH

 MOVE "JEN1" TO VAR-ITEM-NAME
 MOVE 123456 TO VAR-ITEM-NUM
 CALL INTRINSIC "HPCIPUTVAR" USING
 VAR-ITEM-NAME, VAR-STATUS, 1, VAR-ITEM-NUM
 .

 TEST10.
 DISPLAY " "
 DISPLAY "**** TEST 10 ****"
 DISPLAY "Show HPCIGETVAR Intrinsic"
 MOVE "JEN" TO VAR-ITEM-NAME
 MOVE SPACES TO VAR-ITEM-VALUE
 MOVE 0 TO VAR-ITEM-NUM

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 37 of 61

 CALL INTRINSIC "HPCIGETVAR" USING
 VAR-ITEM-NAME, VAR-STATUS,
 2, VAR-ITEM-VALUE, 11, VAR-ITEM-LGTH,
 1, VAR-ITEM-NUM, 13 VAR-ITEM-TYPE
 IF VAR-ITEM-TYPE = 1
 MOVE VAR-ITEM-NUM TO EDIT-VAL-2
 DISPLAY VAR-ITEM-NAME ": " EDIT-VAL-2
 ELSE
 DISPLAY VAR-ITEM-NAME ": " VAR-ITEM-VALUE(1:VAR-ITEM-LGTH)
 END-IF
 MOVE "JEN1" TO VAR-ITEM-NAME
 MOVE SPACES TO VAR-ITEM-VALUE
 MOVE 0 TO VAR-ITEM-NUM
 CALL INTRINSIC "HPCIGETVAR" USING
 VAR-ITEM-NAME, VAR-STATUS,
 2, VAR-ITEM-VALUE, 11, VAR-ITEM-LGTH,
 1, VAR-ITEM-NUM, 13 VAR-ITEM-TYPE
 IF VAR-ITEM-TYPE = 1
 MOVE VAR-ITEM-NUM TO EDIT-NUM8
 DISPLAY VAR-ITEM-NAME ": " EDIT-NUM8
 ELSE
 DISPLAY VAR-ITEM-NAME ": " VAR-ITEM-VALUE(1:VAR-ITEM-LGTH)
 END-IF
 .
 TEST11.
 DISPLAY " "
 DISPLAY "**** TEST 11 ****"
 DISPLAY "Show GETINFO Intrinsic"
 MOVE SPACES TO INFO-STRING
 MOVE 50 TO INFO-LENGTH
 MOVE 0 TO INFO-PARM
 INFO-RESULT
 CALL INTRINSIC "GETINFO"
 USING INFO-STRING INFO-LENGTH INFO-PARM
 GIVING INFO-RESULT
 DISPLAY "INFO = " INFO-STRING(1:INFO-LENGTH)
 MOVE INFO-PARM TO EDIT-NUM8
 DISPLAY "PARM = " EDIT-NUM8
 .
 TEST12.
 DISPLAY " "
 DISPLAY "**** TEST 12 ****"
 DISPLAY "Show WHO Intrinsic"
 CALL INTRINSIC "WHO" USING WHO-MODE \\ \\ WHO-USER WHO-GROUP
 WHO-ACCOUNT WHO-HOME WHO-LDEV
 DISPLAY "USER " WHO-USER
 DISPLAY "GROUP " WHO-GROUP
 DISPLAY "ACCOUNT " WHO-ACCOUNT
 DISPLAY "HOME " WHO-HOME
 MOVE WHO-LDEV TO EDIT-NUM
 DISPLAY "LDEV " EDIT-NUM
 IF WHO-MODE < 8
 DISPLAY "SESSION"
 ELSE
 DISPLAY "JOB"
 END-IF
 .

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 38 of 61

 TEST13.
 DISPLAY " "
 DISPLAY "**** TEST 13 ****"
 DISPLAY "Show PAUSE Intrinsic"
 DISPLAY "ENTER NUMBER OF SECONDS TO PAUSE"
 ACCEPT TEST-NUM FREE
 COMPUTE INFO-LENGTH = FUNCTION LENGTH(TEST-NUM)
 CALL INTRINSIC "HPEXTIN" USING TEST-NUM INFO-LENGTH
 0 1 0 0 REAL-SECONDS INFO-RESULT
 IF INFO-RESULT = 0
 CALL INTRINSIC "PAUSE" USING REAL-SECONDS
 MOVE TEST-NUM TO EDIT-NUM8
 DISPLAY "PAUSED FOR " EDIT-NUM8 " SECONDS"
 ELSE
 DISPLAY "INVALID PARAMETER FOR PAUSE INTRINSIC"
 END-IF
 .

 TEST14.
 DISPLAY " "
 DISPLAY "**** TEST 14 ****"
 DISPLAY "Show Control-Y Trap"
 CALL "ARM-CONTROL-Y"
 SET CONTROL-Y-OFF TO TRUE

 SET TEST-NOT-COMPLETE TO TRUE

 PERFORM UNTIL TEST-COMPLETE
 MOVE 0 TO REAL-SECONDS
 MOVE ALL "*" TO DISPLAY-BUFFER

 PERFORM UNTIL CONTROL-Y-HIT
 DISPLAY "HI " WITH NO ADVANCING
 ADD 1 TO REAL-SECONDS

 END-PERFORM

 DISPLAY BELL
 MOVE REAL-SECONDS TO EDIT-NUM8
 DISPLAY "Control-Y Hit after " EDIT-NUM8 " times"
 DISPLAY DISPLAY-BUFFER
 DISPLAY " "
 DISPLAY "PRESS RETURN TO CONTINUE, 'Z' TO STOP "
 WITH NO ADVANCING
 ACCEPT TEST-CHAR
 IF TEST-CHAR = "Z" OR "z"
 SET TEST-COMPLETE TO TRUE
 ELSE
 SET CONTROL-Y-OFF TO TRUE
 END-IF
 END-PERFORM
 .
 end program DEMO1-14.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 39 of 61

$CONTROL BOUNDS,DYNAMIC
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ARM-CONTROL-Y.
*
* This program sets the Control Y Trap
* With grateful thanks to Stan Sieler for recognising
* the PROCNAME needed underscores instead of hyphens
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 TOTAL PIC S9(9) COMP VALUE 0.
* MUST use underscore not hyphens
 01 PROCNAME PIC X(20) VALUE "!control_y_trap!".

 01 PLABEL PIC S9(9) COMP.
 01 OLDPLABEL PIC S9(9) COMP.

 01 PROGFILE PIC X(40) VALUE SPACES.
 01 PROGFILE-LENGTH PIC S9(9) COMP.
 01 I-STATUS PIC S9(9) COMP.
 01 CONTROL-Y EXTERNAL PIC S9(4) COMP.
 88 CONTROL-Y-HIT VALUE 1.
 88 CONTROL-Y-OFF VALUE 0.
 01 DISPLAY-BUFFER EXTERNAL PIC X(40).

 PROCEDURE DIVISION.

 P1.
* Get Plabel from HPGETPROCPLABEL
 CALL INTRINSIC "HPMYPROGRAM"
 USING PROGFILE \\ PROGFILE-LENGTH
 DISPLAY "PROGRAM NAME = " PROGFILE(1:PROGFILE-LENGTH)
 CALL INTRINSIC "HPGETPROCPLABEL"
 USING PROCNAME PLABEL I-STATUS PROGFILE
 IF I-STATUS <> 0
 CALL INTRINSIC "HPERRMSG" USING 2 1 \\ I-STATUS
 STOP RUN
 END-IF
* Call XCONTRAP
 DISPLAY "CALL XCONTRAP"
 CALL INTRINSIC "XCONTRAP" USING PLABEL OLDPLABEL
 EXIT PROGRAM
 .
* Can use underscores OR hyphens for the Entry name
 ENTRY "CONTROL_Y_TRAP".

 SET CONTROL-Y-HIT TO TRUE
 DISPLAY "Control Y"
 MOVE "Trap routine re enables again" TO DISPLAY-BUFFER

* Re enable for next time
 CALL INTRINSIC "RESETCONTROL"
 .
 end program ARM-CONTROL-Y.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 40 of 61

DEMO16

Demo program to demonstrate the use of circular files.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CJEN16.

* Reads MPE commands from variable record file requesting the
* name of the file which could be $stdin to provide input from
* terminal.
* Requests name of output file and size. Will build circular
* file if size is not 999999.
* Writes to the output file after executing the command.
* If output file is built as a circular file with 20 records,
* the last 20 commands read will be in the circular file.

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 SYMBOLIC CHARACTERS CR IS 14.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
* Define input file as optional to get end-of-file on first
* Read if no file exists
 SELECT OPTIONAL IFILE ASSIGN USING IFILE-NAME
 FILE STATUS IFILE-STATUS.
 SELECT OFILE ASSIGN USING OFILE-NAME
 FILE STATUS OFILE-STATUS.

 DATA DIVISION.
 FILE SECTION.
 FD IFILE
 RECORD IS VARYING DEPENDING ON ILEN.
 01 IREC.
 03 ICHARS PIC X OCCURS 0 TO 80
 DEPENDING ON ILEN.

 FD OFILE.
 01 OREC PIC X(80).

 WORKING-STORAGE SECTION.
 01 ILEN PIC S9(4) COMP.
 01 ERROR-CODE PIC S9(4) COMP.
 01 PARM PIC S9(4) COMP.
 01 IFILE-STATUS PIC XX.
 01 OFILE-STATUS PIC XX.
 01 IFILE-NAME PIC X(16).
 01 OFILE-NAME PIC X(16).

 01 END-DATA-IND PIC X.
 88 END-DATA VALUE "E".
 88 DATA-AVAILABLE VALUE "A".

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 41 of 61

01 BUILD-OFILE.
 03 PIC X(6) VALUE "BUILD ".
 03 BUILD-NAME PIC X(16).
 03 PIC X(4) VALUE ";CIR".
 03 PIC X(16) VALUE ";REC=-80,,,ASCII".
 03 PIC X(6) VALUE ";DISC=".
 03 BUILD-SIZE PIC 9(6).
 03 BUILD-END PIC X.

 PROCEDURE DIVISION.
 PARA-1.
* get name of input file ($stdin for terminal input)
 MOVE SPACES TO IFILE-NAME
 SET DATA-AVAILABLE TO TRUE

 PERFORM UNTIL IFILE-NAME <> SPACES
 DISPLAY "Enter name of input file (// to exit) ? "
 WITH NO ADVANCING
 ACCEPT IFILE-NAME FREE
 ON INPUT ERROR
 DISPLAY "invalid - name too long"
 MOVE SPACES TO IFILE-NAME
 END-ACCEPT
 EVALUATE IFILE-NAME
 WHEN SPACES
 DISPLAY "Input File name required or '//'"
 WHEN "//"
 SET END-DATA TO TRUE
 END-EVALUATE
 END-PERFORM

 IF DATA-AVAILABLE
* get name of output file
 MOVE SPACES TO OFILE-NAME
 PERFORM UNTIL OFILE-NAME <> SPACES
 DISPLAY "Enter name of output file (// to exit) ? "
 WITH NO ADVANCING
 ACCEPT OFILE-NAME FREE
 ON INPUT ERROR
 DISPLAY "invalid - name too long"
 MOVE SPACES TO OFILE-NAME
 END-ACCEPT
 EVALUATE OFILE-NAME
 WHEN SPACES
 DISPLAY "Output File name required or '//'"
 WHEN "//"
 SET END-DATA TO TRUE
 END-EVALUATE
 END-PERFORM
 END-IF

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 42 of 61

 IF DATA-AVAILABLE
* get size of output file
 MOVE 0 TO BUILD-SIZE
 PERFORM UNTIL BUILD-SIZE <> 0
 DISPLAY "Enter size of output file "
 "(enter 999999 for old file) ? "
 WITH NO ADVANCING
 ACCEPT BUILD-SIZE FREE
 ON INPUT ERROR
 DISPLAY "invalid size "
 MOVE 0 TO BUILD-SIZE
 END-ACCEPT
 END-PERFORM
 IF BUILD-SIZE <> 999999
* Build file if file size is not 999999
 MOVE OFILE-NAME TO BUILD-NAME
 MOVE CR TO BUILD-END
 CALL INTRINSIC "COMMAND"
 USING BUILD-OFILE ERROR-CODE PARM
 IF ERROR-CODE <> 0
 DISPLAY "Cannot build output file - "
 "Command = " BUILD-OFILE
 " - Error code = " ERROR-CODE
 SET END-DATA TO TRUE
 END-IF
 END-IF
 END-IF
* Open Input file
 IF DATA-AVAILABLE
 OPEN INPUT IFILE
 IF IFILE-STATUS(1:1) <> "0"
 DISPLAY "Cannot open input file - Status = "
 IFILE-STATUS
 SET END-DATA TO TRUE
 ELSE
* Open Output file
 OPEN OUTPUT OFILE
 IF OFILE-STATUS(1:1) <> "0"
 DISPLAY "Cannot open input file - Status = "
 IFILE-STATUS
 SET END-DATA TO TRUE
 END-IF
 END-IF
 END-IF

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 43 of 61

* Process input file
 IF DATA-AVAILABLE
 PERFORM WITH TEST AFTER
 UNTIL END-DATA
 IF IFILE-NAME = "$STDIN"
 DISPLAY "? " WITH NO ADVANCING
 END-IF
 READ IFILE
 AT END
 SET END-DATA TO TRUE
 NOT AT END
 IF IREC = "//"
 SET END-DATA TO TRUE
 ELSE
 PERFORM VARYING ILEN FROM ILEN BY -1
 UNTIL ILEN = 1
 OR IREC(ILEN:1) <> " "
 CONTINUE
 END-PERFORM
 IF IFILE-NAME <> "$STDIN"
 DISPLAY "=========================="
 DISPLAY "*****" IREC(1:ILEN) "*****"
 DISPLAY "=========================="
 END-IF
 MOVE IREC(1:ILEN) TO OREC
 ADD 1 TO ILEN
 MOVE CR TO ICHARS(ILEN)
 CALL INTRINSIC "HPCICOMMAND"
 USING IREC ERROR-CODE PARM
 IF ERROR-CODE = 0
 WRITE OREC
 ELSE
 DISPLAY "Error in Command - "
 IREC(1:ILEN - 1)
 " - Error code = " ERROR-CODE
 END-IF
 END-IF
 END-READ
 END-PERFORM
 CLOSE IFILE OFILE
 END-IF
 STOP RUN.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 44 of 61

DEMO17

Demo programs to demonstrate the use of message files.

Program CJEN17 – Program to read a message file and continue main processing once all
5 other programs have been processed.
Programs CJEN17A – CJEN17E are programs which must be run before CJEN17.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CJEN17.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 SYMBOLIC CHARACTERS CR 14.

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT IFILE ASSIGN "FJEN17".

 DATA DIVISION.
 FILE SECTION.
 FD IFILE.
 01 IREC PIC X(8).

 WORKING-STORAGE SECTION.
 01 MPE-ERROR-CODE PIC S9(4) BINARY.
 01 MPE-ERROR-TYPE PIC S9(4) BINARY.
 01 MPE-COMMAND.
 03 PIC X(19) VALUE "TELL TUTOR.TUCOBOL ".
 03 MPE-MESSAGE PIC X(58).
 03 MPE-END PIC X.

$DEFINE %COMMAND=
 MOVE CR TO MPE-END
 MOVE SPACES TO MPE-MESSAGE
 STRING !1
 !2
 DELIMITED BY SIZE
 INTO MPE-MESSAGE
 CALL INTRINSIC "HPCICOMMAND" USING MPE-COMMAND
 MPE-ERROR-CODE MPE-ERROR-TYPE
 #
 01 TRUE-VALUE PIC S9(4) BINARY VALUE 1.
 01 PROGRAM-COUNT PIC S9(4) BINARY VALUE 0.

 01 PROGRAM-TABLE.
 03 PROGRAM-NAME PIC X(8) OCCURS 5
 INDEXED BY PROG-INDEX.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 45 of 61

 PROCEDURE DIVISION.
 WAITING-TO-GO.
 MOVE SPACES TO PROGRAM-TABLE
 OPEN INPUT IFILE
 CALL INTRINSIC "FCONTROL" USING IFILE, 45, TRUE-VALUE
 PERFORM UNTIL PROGRAM-COUNT = 5
 READ IFILE
 AT END
 DISPLAY "AT END should not occur"
 STOP RUN
 NOT AT END
 SET PROG-INDEX TO 1
 SEARCH PROGRAM-NAME
 AT END
 %COMMAND(IREC#," NO ROOM IN TABLE"#)
 WHEN PROGRAM-NAME(PROG-INDEX) = SPACE
 MOVE IREC TO PROGRAM-NAME(PROG-INDEX)
 %COMMAND(PROGRAM-NAME(PROG-INDEX)#," "#)
 ADD 1 TO PROGRAM-COUNT
 WHEN PROGRAM-NAME(PROG-INDEX) = IREC
 %COMMAND(IREC#," PROCESSED ALREADY"#)
 END-SEARCH
 END-READ
 END-PERFORM
 CLOSE IFILE
 .
 MAIN-PROCESS.
 %COMMAND("CJEN17A THRU CJEN17E NOW COMPLETE"#," "#)
 STOP RUN
 .

Program CJEN17A – program to write a message record when it has completed.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CJEN17A.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT OFILE ASSIGN "FJEN17".
 DATA DIVISION.
 FILE SECTION.
 FD OFILE.
 01 OREC PIC X(8).

 PROCEDURE DIVISION.
 MAIN-PROCESS. {Normal program processing }
 END-PROCESS.
 OPEN EXTEND OFILE
 MOVE "CJEN17A" TO OREC
 WRITE OREC
 CLOSE OFILE
 STOP RUN
 .
Programs CJEN17B to CJEN17E have similar code to CJEN17A to write a message record when they have
completed. Each program will write a unique message record so the main program CJEN17 can recognise
which programs have completed.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 46 of 61

DEMO18

Demo program to demonstrate Data Base Access and KSAM Files.

$CONTROL SOURCE,POST85
*
* DEMO18
* 1. Request name of Music data base
* 2. Request a 3 character user code to prefix the name of
* the KSAM file.
* 3. create file containing Album Titles and Composer's
* Surnames with the appropriate Database key.
* a. For each entry in the Albums set, write an "A" type
* record to the KSAM file.
* b. For each entry in the Composers set, write a "C" type
* record to the KSAM file.
* c. Display total number of Album records and total number
* of Composer records written.
* d. Save the Music KSAM file as a permanent file.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DEMO18.
 AUTHOR. JEANETTE NUTSFORD - FEBRUARY 2001.

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP-3000.
 OBJECT-COMPUTER. HP-3000.
 SPECIAL-NAMES.
 SYMBOLIC CHARACTERS NULL 1, BELL 8, CR 14, ESCAPE 28
 CLASS VALID-TYPE "A" "C" "E"
 .

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT MUSIC-INDEX
 ASSIGN TO "MUSIC,,,,10000"
 USING MUSIC-INDEX-NAME
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS MUSIC-KEY WITH DUPLICATES.

 DATA DIVISION.
 FILE SECTION.
 FD MUSIC-INDEX.
 01 MUSIC-IREC.
 03 MUSIC-KEY.
 05 MUSIC-TYPE PIC X.
 88 MUSIC-ALBUM VALUE "A".
 88 MUSIC-COMPOSER VALUE "C".
 05 MUSIC-NAME PIC X(39).
 03 MUSIC-DB-KEY.
 05 MUSIC-A-KEY PIC S9(9) BINARY.
 05 PIC X(12).

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 47 of 61

 WORKING-STORAGE SECTION.
* Albums set in MUSIC data base
 01 ALBUMS.
 03 ALBUM-CODE PIC S9(9) BINARY.
 03 ALBUM-TITLE PIC X(40).
 03 MEDIUM PIC XX.
 03 ALBUM-COST PIC S9(5)V99 PACKED-DECIMAL.
 03 RECORDING-CO PIC X(16).
 03 DATE-RECORDED PIC X(16).
 03 MFG-CODE PIC X(40).
 03 COMMENT PIC X(80).

 01 COMMON-INDICATORS.
 03 END-OF-KEY-IND PIC X VALUE "N".
 88 END-OF-KEY VALUE "Y".
 88 NOT-END-OF-KEY VALUE "N".

 01 COMMON-WORKERS.
 03 CHARS-A PIC X(40).
 03 CHARS-B PIC X(40).
 03 CHAR-80 PIC X(80).
 03 COUNT-A PIC 99 VALUE 0.
 03 COUNT-B PIC 99 VALUE 0.
 03 EDIT-3 PIC Z(3).
 03 EDIT-4 PIC Z(4).
 03 EDIT-5 PIC Z(5).
 03 EDIT-6 PIC Z(6).
 03 EDIT-DOLLAR PIC $(5)9.99.
 03 HOLD-FIRST-NAME PIC X(16).
 03 MOD1 PIC 9(4).
 03 MUSIC-INDEX-NAME PIC X(16).
 03 MUSIC-DB-NAME PIC X(24).
 03 REQUEST-DATA.
 05 REQUEST-TYPE PIC X VALUE SPACE.
 88 REQUEST-ALBUM VALUE "A".
 88 REQUEST-COMPOSER VALUE "C".
 88 REQUEST-END VALUE "E".
 88 REQUEST-TYPE-REQD VALUE SPACE.
 05 REQUEST-NAME PIC X(40).
 03 USER-INITIALS PIC XXX.

 01 COUNTERS.
 03 A-COUNT PIC S9(4) BINARY.
 03 C-COUNT PIC S9(4) BINARY.

* Composers set in MUSIC data base
 01 COMPOSERS.
 03 COMPOSER-NAME PIC X(16).
 03 BIRTH PIC X(16).
 03 DEATH PIC X(16).
 03 BIRTH-PLACE PIC X(40).
 03 COMMENT PIC X(80).

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 48 of 61

 01 DB-WORKERS.
***** DATA BASE WORKING FIELDS *****
*
 02 FILLER.
 03 DB-MODE1 PIC S9999 COMP VALUE 1.
 03 DB-MODE2 PIC S9999 COMP VALUE 2.
 03 DB-MODE3 PIC S9999 COMP VALUE 3.
 03 DB-MODE4 PIC S9999 COMP VALUE 4.
 03 DB-MODE5 PIC S9999 COMP VALUE 5.
 03 DB-MODE6 PIC S9999 COMP VALUE 6.
 03 DB-MODE7 PIC S9999 COMP VALUE 7.
 03 DB-MODE10 PIC S9999 COMP VALUE 10.
 03 DB-MODE102 PIC S9999 COMP VALUE 102.
 03 DB-MODE201 PIC S9999 COMP VALUE 201.
 03 DB-MODE202 PIC S9999 COMP VALUE 202.
 03 DB-MODE302 PIC S9999 COMP VALUE 302.
 03 DB-OPEN-MODE PIC S9999 COMP VALUE 5.
 02 IMAGE-FIELDS.
 03 DB-BASE.
 05 DB-BASE-ID PIC XX VALUE SPACES.
 05 DB-BASE-NAME PIC X(24) VALUE SPACES.
 05 FILLER PIC XX VALUE SPACES.
 03 DB-PASSWORD PIC X(8) VALUE ";".
 03 DB-READ-PASSWORD PIC X(8) VALUE "MGR".
 03 DB-STATUS.
 05 DB-EXCEPT PIC S9999 COMP.
 88 DB-SUCCESSFUL VALUE 0.
 88 START-FILE VALUE 10.
 88 END-FILE VALUE 11.
 88 DIRECT-START VALUE 12.
 88 DIRECT-END VALUE 13.
 88 START-CHAIN VALUE 14.
 88 END-CHAIN VALUE 15.
 88 FULL-SET VALUE 16.
 88 NO-ENTRY VALUE 17.
 88 BROKEN-CHAIN VALUE 18.
 88 NO-UPDATE VALUE 41.
 88 READ-ONLY VALUE 42.
 88 DUPLICATE VALUE 43.
 88 CHAIN-NOT-EMPTY VALUE 44.
 88 BUFFER-TOO-SMALL VALUE 50.
 88 DBCB-FULL VALUE 62.
 88 ILLEGAL-PASSWORD VALUE -21.
 88 DB-IN-USE VALUE -32.
 88 DATA-LOCKED VALUE 20 22 23 24 25.
 88 ODX-ERROR VALUE 888.
 88 IMSAM-ERROR VALUE 999.
 05 STAT2 PIC S9999 COMP.
 05 STAT3-4 PIC S9(9) COMP.
 05 STAT5-6 PIC S9(9) COMP.
 88 NO-ENTRY-IN-CHAIN VALUE 0.
 05 STAT7-8 PIC S9(9) COMP.
 05 STAT9-10 PIC S9(9) COMP.
 03 DB-DUMMY PIC 9(4) COMP VALUE 0.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 49 of 61

 03 DB-SEARCH PIC X(40).
 03 FILLER REDEFINES DB-SEARCH.
 05 DB-SEARCH-NO PIC S9(4) COMP.
 05 FILLER PIC X(38).
 03 DB-QUALIFIER PIC X(16).
 03 DB-LIST-NAME PIC X(16).
 03 DB-ARGUMENT PIC S9(9) COMP VALUE 0.
 03 DB-CONDITION PIC 9(4).
 03 DB-CONDITION-S REDEFINES DB-CONDITION PIC S9(4).
 03 XDB-CONDITION REDEFINES DB-CONDITION.
 05 DBPUT-ERROR PIC 99.
 88 MISSING-CHAINHEAD VALUE 1.
 88 FULL-CHAIN VALUE 2.
 88 FULL-AUTOMAST VALUE 3.
 05 DB-PATH PIC 99.
 03 DB-DSET-NAME PIC X(16).
 03 FILLER REDEFINES DB-DSET-NAME.
 05 DB-DSET-NUMBER PIC S9(4) COMP.
 05 FILLER PIC X(14).
 03 DB-ALL-ENTRIES PIC X(4) VALUE "@;".
 03 DB-CURRENT-LIST PIC X(4) VALUE "*;".
 03 DB-EMPTY-LIST PIC X(4) VALUE SPACE.
*
 02 DBINFO-BUFFER.
 03 DBINFO-SET-NAME.
 05 DBINFO-SET-NO PIC S9(4) COMP.
 05 FILLER PIC X(14).
 03 DBINFO-SET-TYPE PIC XX.
 03 DBINFO-ENTRY-LENGTH PIC S9(4) COMP.
 03 DBINFO-BLOCK PIC S9(4) COMP.
 03 FILLER PIC X(4).
 03 DBINFO-NO-ENTRIES PIC S9(9) COMP.
 03 DBINFO-CAPACITY PIC S9(9) COMP.
*
 02 DB-LOCK-ARRAY.
 03 DB-NUMBER-LOCKS PIC S9(4) COMP.
 03 DB-LOCK-DESC.
 05 DB-LENGTH PIC S9(4) COMP.
 05 DB-DSET PIC X(16).
 05 DB-DITEM PIC X(16).
 05 DB-RELOP PIC XX.
 05 DB-VALUE PIC X(20).
 02 DB-LOCK-MODE PIC S9(4) COMP VALUE 3.
*

* Selections set in MUSIC data base
 01 SELECTIONS.
 03 ALBUM-CODE PIC S9(9) BINARY.
 03 SELECTION-NAME PIC X(40).
 03 COMPOSER-NAME PIC X(16).
 03 TIMING.
 05 MM PIC 99.
 05 PIC X.
 05 SS PIC 99.
 05 PIC X(11).
 03 PERFORMERS PIC X(40).
 03 COMMENT PIC X(80).

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 50 of 61

*------------------------MACROS-----------------------------------

 01 MPE-PARMS.
 03 MPE-ERROR-CODE PIC S9(4) COMP.
 03 MPE-ERROR-TYPE PIC S9(4) COMP.
 03 MPE-COMMAND PIC X(80).
 03 MPE-MAX PIC 999 VALUE 80.

$DEFINE %CHECKFILEEXISTS=
*START CHECKFILEEXISTS
 MOVE "LISTF" TO MPE-COMMAND
 MOVE !1 TO MPE-COMMAND(7:)
 MOVE ";$NULL" TO MPE-COMMAND(24:6)
 MOVE CR TO MPE-COMMAND(30:1)
 CALL INTRINSIC "COMMAND" USING MPE-COMMAND MPE-ERROR-CODE
 MPE-ERROR-TYPE
*END CHECKFILEEXISTS#
*--
* All variables held in copy library DBWORKS
$DEFINE %DBCLOSE=
*START DBCLOSE
 IF DB-BASE-ID <> SPACES
 CALL "DBCLOSE" USING DB-BASE, DB-DSET-NAME, DB-MODE1
 DB-STATUS
 IF NOT DB-SUCCESSFUL
 CALL "DBEXPLAIN" USING DB-STATUS
 GOBACK
 END-IF
 END-IF
*END DBCLOSE#
*---
* !1=Open Mode !2=DB Base Name
*
* All variables held in copy library DBWORKS
$DEFINE %DBOPEN=
*START DBOPEN
 MOVE !2 TO DB-BASE-NAME
 CALL "DBOPEN" USING DB-BASE, DB-READ-PASSWORD, DB-MODE!1,
 DB-STATUS
 IF NOT DB-SUCCESSFUL
 CALL "DBEXPLAIN" USING DB-STATUS
* GOBACK
 END-IF
*END DBOPEN#
*--
* Serial read Set
* !1=Set Name/Record Name
* All variables held in copy library DBWORKS
$DEFINE %DBSEREAD=
*START DBSEREAD
 MOVE "!1" TO DB-DSET-NAME
 MOVE SPACES TO !1
 CALL "DBGET" USING DB-BASE, DB-DSET-NAME, DB-MODE2,
 DB-STATUS, DB-CURRENT-LIST, !1, DB-SEARCH

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 51 of 61

 IF !1 = SPACES
 AND NOT END-FILE
 CALL "DBGET" USING DB-BASE, DB-DSET-NAME, DB-MODE1,
 DB-STATUS, DB-ALL-ENTRIES, !1, DB-SEARCH
 END-IF
 IF NOT (DB-SUCCESSFUL OR END-FILE)
 CALL "DBEXPLAIN" USING DB-STATUS
 END-IF
*END DBSEREAD#
*--
* !1=ERROR MESSAGE (WITHOUT QUOTES)
*
$DEFINE %GOBACK=
*START GOBACK
 DISPLAY "END-OF-PROGRAM - " "!1"
 STOP RUN
*END GOBACK#
*--
* Issue an MPE Command !1 (Max 79 chars)
* Variables defined above
$DEFINE %MPECOMMAND=
*START MPECOMMAND
 MOVE !1 TO MPE-COMMAND
 MOVE CR TO MPE-COMMAND(80:1)
 CALL INTRINSIC "COMMAND" USING MPE-COMMAND
 MPE-ERROR-CODE MPE-ERROR-TYPE
*END MPECOMMAND#
*---
* !1 = Name of Job Control Variable (literal or variable)
* !2 = Numeric Value of JCW
* !3 = text to display (without quotes)
* !4 = variable to display (for JCW = 10)
 01 JCW-FIELDS.
 03 JCW-NAME PIC X(8) VALUE SPACES.
 03 JCW-VALUE PIC S9(4) COMP VALUE 9999.
 03 JCW-STATUS PIC S9(4) COMP VALUE 0.
$DEFINE %TESTJCW=
*START TESTJCW
 IF JCW-VALUE = 9999
 OR !1 <> JCW-NAME
 MOVE 0 TO JCW-VALUE
 MOVE !1 TO JCW-NAME
 CALL INTRINSIC "FINDJCW"
 USING JCW-NAME, JCW-VALUE, JCW-STATUS
 END-IF
 IF JCW-VALUE = !2
 MOVE !2 TO MOD1
 EVALUATE TRUE
 WHEN MOD1 = 1
 DISPLAY "!3"
 WHEN MOD1 = 10
 DISPLAY "!3" !4
 END-EVALUATE
 END-IF
*END TESTJCW#
*---

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 52 of 61

 PROCEDURE DIVISION.
 100-MAIN.
 %TESTJCW("DEMO18"#,1#,1/MAIN#)
 PERFORM 150-MUSICDB-NAME

 IF MUSIC-DB-NAME = "END"
 MOVE "END" TO USER-INITIALS
 ELSE
 PERFORM 160-CHECK-FOR-INDEX-FILE
 END-IF

 IF USER-INITIALS = "END"
 DISPLAY BELL "No Index File to be Created"
 ELSE
 IF MPE-ERROR-CODE = 907
 PERFORM 200-CREATE-INDEX
 ELSE
 DISPLAY BELL "Index File Already Exists"
 END-IF
 END-IF

 STOP RUN
 .
*
*---
*
 150-MUSICDB-NAME.
 %TESTJCW("DEMO18"#,1#,1/MUSICDB-NAME#)
 MOVE SPACES TO MUSIC-DB-NAME
 MOVE 999 TO DB-STATUS

 PERFORM UNTIL DB-SUCCESSFUL
 OR MUSIC-DB-NAME = "END"
 MOVE SPACES TO MUSIC-DB-NAME
 PERFORM UNTIL MUSIC-DB-NAME <> SPACES
 DISPLAY "Enter Full name of Music DB (or END) ?"
 WITH NO ADVANCING
 ACCEPT MUSIC-DB-NAME FREE
 IF MUSIC-DB-NAME = SPACES
 DISPLAY BELL "No Name Entered"
 END-IF
 END-PERFORM

 MOVE FUNCTION UPPER-CASE (MUSIC-DB-NAME) TO MUSIC-DB-NAME
 IF MUSIC-DB-NAME <> "END"
 %DBOPEN(5#,MUSIC-DB-NAME#)
 END-IF
 END-PERFORM
 .

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 53 of 61

*
*---
*
 160-CHECK-FOR-INDEX-FILE.
 %TESTJCW("DEMO18"#,1#,1/CHECK-FOR-INDEX-FILE#)
 MOVE SPACES TO USER-INITIALS

 PERFORM UNTIL USER-INITIALS <> SPACES
 DISPLAY "Enter your initials (3 chars) (or END) ?"
 WITH NO ADVANCING
 ACCEPT USER-INITIALS FREE
 IF USER-INITIALS = SPACES
 DISPLAY BELL "No Initials Entered"
 ELSE
 IF SPACE = USER-INITIALS(1:1) OR
 USER-INITIALS(2:1) OR
 USER-INITIALS(3:1)
 DISPLAY BELL "NO SPACES ALLOWED IN USER INITIALS"
 MOVE SPACES TO USER-INITIALS
 END-IF
 END-IF
 END-PERFORM

 MOVE FUNCTION UPPER-CASE (USER-INITIALS) TO USER-INITIALS
 IF USER-INITIALS <> "END"
 MOVE USER-INITIALS TO MUSIC-INDEX-NAME
 MOVE "MUSIX" TO MUSIC-INDEX-NAME(4:5)

 %CHECKFILEEXISTS(MUSIC-INDEX-NAME(1:8)#)
 END-IF
 .
*
*---
*
 200-CREATE-INDEX.
 %TESTJCW("DEMO18"#,1#,1/CREATE-INDEX#)

 INITIALIZE COUNTERS

 OPEN OUTPUT MUSIC-INDEX

 %DBSEREAD(ALBUMS#)
 MOVE "A" TO MUSIC-IREC

 PERFORM UNTIL END-FILE
 MOVE ALBUM-CODE OF ALBUMS TO MUSIC-A-KEY
 MOVE ALBUM-TITLE OF ALBUMS TO MUSIC-NAME
 WRITE MUSIC-IREC
 INVALID KEY
 DISPLAY BELL "END OF KSAM FILE"
 %GOBACK(ERROR CONDITION#)
 END-WRITE
 ADD 1 TO A-COUNT

 %DBSEREAD(ALBUMS#)
 END-PERFORM

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 54 of 61

 %DBSEREAD(COMPOSERS#)
 MOVE "C" TO MUSIC-IREC

 PERFORM UNTIL END-FILE
 MOVE COMPOSER-NAME OF COMPOSERS TO MUSIC-DB-KEY
 UNSTRING MUSIC-DB-KEY
 DELIMITED BY SPACE
 INTO HOLD-FIRST-NAME
 MUSIC-NAME
 END-UNSTRING
 WRITE MUSIC-IREC
 INVALID KEY
 DISPLAY BELL "END OF KSAM FILE"
 %GOBACK(ERROR CONDITION#)
 END-WRITE
 ADD 1 TO C-COUNT

 %DBSEREAD(COMPOSERS#)
 END-PERFORM

 DISPLAY "Music Index Created"
 DISPLAY " "
 MOVE A-COUNT TO EDIT-4
 MOVE C-COUNT TO EDIT-5
 DISPLAY "Albums: " EDIT-4 " Composers: " EDIT-5

 %DBCLOSE
 CLOSE MUSIC-INDEX

 MOVE "SAVE" TO CHAR-80
 MOVE MUSIC-INDEX-NAME TO CHAR-80(6:16)
 %MPECOMMAND(CHAR-80#)

 .

 END PROGRAM DEMO18.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 55 of 61

DEMO19

Demo program to demonstrate use of TZ variable and GMT by printing the current date
in a number of different time zones.

$CONTROL SOURCE,POST85
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SHOWTIME.
 AUTHOR. Jeanette Nutsford - COMPUTOMETRIC SYSTEMS LTD.
 DATE-WRITTEN. JANUARY 2001.
*
 DATE-COMPILED.

*Session Compile
*:COB85XLK CJEN19,PJEN19

*---
* This program will display the date and time in a
* number of different time zones.

* An optional file, called TIMEZONE, can provide up
* to 100 time zones. Each record (40 CHARS) will
* contain one time zone followed by a space and time
* zone description.
* Default to Baltimore (EST5EDT), London (GMT0BST),
* Auckland (NZST-12NZDT) and Hawaii (HST10).
*
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP-3000.
 OBJECT-COMPUTER. HP-3000.

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT OPTIONAL TIMEZONES ASSIGN TO "TIMEZONE"
 .
*
DATA DIVISION.

 FILE SECTION.

 FD TIMEZONES.
 01 TIMEZONE-REC PIC X(40).

 WORKING-STORAGE SECTION.

 01 FULL-CURRENT-DATE.
 05 C-DATE.
 10 YY PIC 9(04) VALUE 0.
 10 MM PIC 9(02) VALUE 0.
 10 DD PIC 9(02) VALUE 0.
 05 C-TIME.
 10 HOUR PIC 9(02) VALUE 0.
 10 MINUTE PIC 9(02) VALUE 0.
 10 SECONDS PIC 9(02) VALUE 0.
 10 SEC-HUND PIC 9(02) VALUE 0.

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 56 of 61

 05 C-TIME-DIFF.
 10 GMT-DIR PIC X(01) VALUE SPACE.
 10 HOUR PIC 9(02) VALUE 0.
 10 MINUTES PIC 9(02) VALUE 0.

 01 SYS-DATE.
 10 YY PIC 9(04) VALUE 0.
 10 MM PIC 9(02) VALUE 0.
 10 DD PIC 9(02) VALUE 0.

 01 WK-DATE.
 05 MM PIC 9(02) VALUE 0.
 05 DD PIC 9(02) VALUE 0.
 05 YY PIC 9(04) VALUE 0.

 01 WK-TIME.
 05 HOUR PIC 9(02) VALUE 0.
 05 MINUTE PIC 9(02) VALUE 0.

 01 DISP-DATE.
 05 DAYS-NAME PIC X(03) VALUE SPACES.
 05 PIC X(02) VALUE ", ".
 05 MONTH PIC X(03) VALUE SPACES.
 05 PIC X(01) VALUE " ".
 05 DD PIC Z9 VALUE SPACES.
 05 PIC X(02) VALUE ", ".
 05 YY PIC X(04) VALUE SPACES.

 01 DISP-TIME.
 05 HOUR PIC Z9 VALUE SPACES.
 05 PIC X(01) VALUE ":".
 05 MINUTE PIC 9(02) VALUE 0.
 05 PIC X(01) VALUE SPACES.
 05 AM-PM PIC X(02) VALUE SPACES.

 01 TZ-COUNT PIC 9(03).
 01 TZ-MAX PIC 9(03) VALUE 100.
 01 TZ-TABLE.
 05 TZ-ENTRY OCCURS 100 INDEXED BY TZ-INDEX.
 10 TZ-VARIABLE PIC X(12).
 10 TZ-DESCRIPTION PIC X(30).

 01 MONTH-SUB PIC 9(02).
 01 MONTH-TABLE.
 05 MONTH-VALUES.
 10 PIC X(06) VALUE "JAN 31".
 10 PIC X(06) VALUE "FEB 28".
 10 PIC X(06) VALUE "MAR 31".
 10 PIC X(06) VALUE "APR 30".
 10 PIC X(06) VALUE "MAY 31".
 10 PIC X(06) VALUE "JUN 30".
 10 PIC X(06) VALUE "JUL 31".
 10 PIC X(06) VALUE "AUG 31".
 10 PIC X(06) VALUE "SEP 30".
 10 PIC X(06) VALUE "OCT 31".
 10 PIC X(06) VALUE "NOV 30".
 10 PIC X(06) VALUE "DEC 31".

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 57 of 61

 05 MONTH-TABLE-ELEMENTS REDEFINES MONTH-VALUES.
 10 MONTH-TAB-VALUES OCCURS 12 TIMES.
 15 MONTH-NAME PIC X(03).
 15 PIC X(01).
 15 DAYS-IN-MONTH PIC 9(02).

 01 DAY-SUB PIC 9(02).
 01 DAY-TABLE.
 05 DAY-VALUES.
 10 PIC X(03) VALUE "SUN".
 10 PIC X(03) VALUE "MON".
 10 PIC X(03) VALUE "TUE".
 10 PIC X(03) VALUE "WED".
 10 PIC X(03) VALUE "THU".
 10 PIC X(03) VALUE "FRI".
 10 PIC X(03) VALUE "SAT".
 05 DAY-TABLE-ELEMENTS REDEFINES DAY-VALUES.
 10 DAY-TAB-VALUES OCCURS 7 TIMES.
 15 DAY-NAME PIC X(03).

 01 TZ-VAR-NAME PIC X(02) VALUE "TZ".
 01 TZ-TYPE PIC 9(09) COMP SYNC VALUE 2.
 01 TZ-VAR-STATUS.
 05 TZ-STATUS-INFO PIC S9(04) COMP SYNC VALUE 0.
 05 TZ-STATUS-SUBSYS PIC S9(04) COMP SYNC VALUE 0.
 01 TZ-SIZE PIC 9(09) COMP SYNC VALUE 12.
 01 TZ-VAR-VALUE PIC X(12) VALUE SPACES.
 01 TZ-TW PIC 9(09) COMP SYNC VALUE 2.
 01 TZ-ITEM PIC S9(09) VALUE 0.

 01 HOLD-TZVAR PIC X(12) VALUE SPACES.

 01 VAR-NAME PIC X(20).
 01 TW PIC 9(9) COMP SYNC VALUE 1.
 01 VAR-STATUS PIC S9(9) COMP SYNC VALUE 0.
 01 HPDAY-VAR PIC 9(09) COMP SYNC VALUE 0.
 01 HPDATE-VAR PIC 9(09) COMP SYNC VALUE 0.
 01 HPDATE-YYYYMMDD.
 03 HPDATE-YYYY PIC 9(4).
 03 HPDATE-MM PIC 99.
 03 HPDATE-DD PIC 99.

 01 DISP-STATUS-INFO PIC 9(04) VALUE 0.

 01 INDICATORS.
 03 PIC X VALUE SPACE.
 88 TZ-END-OF-FILE VALUE "Y".

 01 POINTERS.
 03 TZ-PTR PIC 9(04).

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 58 of 61

 PROCEDURE DIVISION.
**
 100-MAINLINE SECTION.
* --------
 100-START.
*
* Get variable HPDAY
*
 INITIALIZE HPDAY-VAR
 MOVE "HPDAY" TO VAR-NAME
 CALL INTRINSIC
 "HPCIGETVAR" USING VAR-NAME,
 VAR-STATUS,
 TW,
 HPDAY-VAR
*
* Create SYSTEM DATE from HPYYYY + HPMONTH + HPDATE
*
 INITIALIZE HPDATE-YYYYMMDD
 MOVE "HPYYYY" TO VAR-NAME
 CALL INTRINSIC
 "HPCIGETVAR" USING VAR-NAME
 VAR-STATUS
 TW
 HPDATE-VAR
 MOVE HPDATE-VAR TO HPDATE-YYYY
*
 MOVE "HPMONTH" TO VAR-NAME
 CALL INTRINSIC
 "HPCIGETVAR" USING VAR-NAME
 VAR-STATUS
 TW
 HPDATE-VAR
 MOVE HPDATE-VAR TO HPDATE-MM
*
 MOVE "HPDATE" TO VAR-NAME
 CALL INTRINSIC
 "HPCIGETVAR" USING VAR-NAME
 VAR-STATUS
 TW
 HPDATE-VAR
 MOVE HPDATE-VAR TO HPDATE-DD
 MOVE HPDATE-YYYYMMDD TO SYS-DATE
*
* Get the value of the TZ variable, if it exists and save it
*
 CALL INTRINSIC
 "HPCIGETVAR" USING TZ-VAR-NAME
 TZ-VAR-STATUS
 TZ-TW
 TZ-VAR-VALUE
 IF TZ-STATUS-INFO = 0
 MOVE TZ-VAR-VALUE TO HOLD-TZVAR
 ELSE
 MOVE TZ-STATUS-INFO TO DISP-STATUS-INFO
 DISPLAY "STATUS-INFO = " DISP-STATUS-INFO
 END-IF

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 59 of 61

*
* Load required TZ variables from TIMEZONE file into TZ-TABLE
*
 MOVE SPACES TO TZ-TABLE
 MOVE 0 TO TZ-COUNT
 SET TZ-INDEX TO 1

 OPEN INPUT TIMEZONES
 READ TIMEZONES
 AT END SET TZ-END-OF-FILE TO TRUE
* Default to Baltimore (EST5EDT), London (GMT0BST),
* Auckland (NZST-12NZDT), Hawaii (HST10)
 MOVE "HST10" TO TZ-VARIABLE(1)
 MOVE "Hawaii" TO TZ-DESCRIPTION(1)
 MOVE "EST5EDT" TO TZ-VARIABLE(2)
 MOVE "Baltimore" TO TZ-DESCRIPTION(2)
 MOVE "GMT0BST" TO TZ-VARIABLE(3)
 MOVE "London" TO TZ-DESCRIPTION(3)
 MOVE "NZST-12NZDT" TO TZ-VARIABLE(4)
 MOVE "Auckland" TO TZ-DESCRIPTION(4)
 MOVE 4 TO TZ-COUNT
 IF NOT (HOLD-TZVAR = "HST10" OR "EST5EDT" OR
 "GMT0BST" OR "NZST-12NZDT")
 MOVE HOLD-TZVAR TO TZ-VARIABLE(5)
 MOVE "Local Time" TO TZ-DESCRIPTION(5)
 MOVE 5 TO TZ-COUNT
 END-IF
 END-READ

 PERFORM UNTIL TZ-END-OF-FILE
 OR TZ-COUNT > TZ-MAX
 MOVE 1 TO TZ-PTR
 UNSTRING TIMEZONE-REC
 DELIMITED BY ALL SPACE
 INTO TZ-VARIABLE(TZ-INDEX)
 POINTER TZ-PTR
 MOVE TIMEZONE-REC(TZ-PTR:) TO TZ-DESCRIPTION(TZ-INDEX)
 SET TZ-INDEX UP BY 1
 ADD 1 TO TZ-COUNT
 READ TIMEZONES
 AT END SET TZ-END-OF-FILE TO TRUE
 END-READ
 END-PERFORM

 DISPLAY " "
 PERFORM VARYING TZ-INDEX FROM 1 BY 1
 UNTIL TZ-INDEX > TZ-COUNT
*
* Now we have to set the TZ variable to TZ-INDEX entry
*
 MOVE "TZ" TO TZ-VAR-NAME
 MOVE 2 TO TZ-TYPE
 MOVE 0 TO TZ-SIZE
 INSPECT TZ-VARIABLE(TZ-INDEX) TALLYING TZ-SIZE
 FOR CHARACTERS BEFORE SPACE
 MOVE TZ-VARIABLE(TZ-INDEX) TO TZ-VAR-VALUE

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 60 of 61

 CALL INTRINSIC
 "HPCIPUTVAR" USING TZ-VAR-NAME
 TZ-VAR-STATUS
 2
 TZ-VAR-VALUE
 11
 TZ-SIZE
 14
 TZ-ITEM

 MOVE TZ-STATUS-INFO TO DISP-STATUS-INFO

 MOVE FUNCTION CURRENT-DATE TO FULL-CURRENT-DATE

 MOVE HPDAY-VAR TO DAY-SUB
 MOVE CORR C-DATE TO WK-DATE
 MOVE CORR C-TIME TO WK-TIME

 MOVE MM OF WK-DATE TO MONTH-SUB

 IF HOUR OF WK-TIME >= 12
 SUBTRACT 12 FROM HOUR OF WK-TIME
 MOVE "PM" TO AM-PM
 ELSE
 MOVE "AM" TO AM-PM
 END-IF

 MOVE CORR WK-DATE TO DISP-DATE
 MOVE CORR WK-TIME TO DISP-TIME

 IF DD OF WK-DATE > DD OF SYS-DATE
 OR MM OF WK-DATE > MM OF SYS-DATE
 ADD 1 TO DAY-SUB
 IF DAY-SUB > 7
 MOVE 1 TO DAY-SUB
 END-IF
 ELSE
 IF DD OF WK-DATE < DD OF SYS-DATE
 OR MM OF WK-DATE < MM OF SYS-DATE
 SUBTRACT 1 FROM DAY-SUB
 IF DAY-SUB < 1
 MOVE 7 TO DAY-SUB
 END-IF
 END-IF
 END-IF

 MOVE DAY-NAME(DAY-SUB) TO DAYS-NAME
 MOVE MONTH-NAME(MONTH-SUB) TO MONTH OF DISP-DATE

 DISPLAY TZ-VARIABLE(TZ-INDEX) " "
 DISP-DATE " "
 DISP-TIME " "
 TZ-DESCRIPTION(TZ-INDEX)

 END-PERFORM

HP WORLD – Advanced COBOL Programming for the HPe3000 August 2001

Jeanette Nutsford, Computometric Systems Ltd, New Zealand Page 61 of 61

*
* Reset the TZ variable to the original value as found
* when this program started. This value was saved as
* HOLD-TZVAR.
*

 MOVE "TZ" TO TZ-VAR-NAME
 MOVE 2 TO TZ-TYPE
 MOVE 0 TO TZ-SIZE
 INSPECT HOLD-TZVAR TALLYING TZ-SIZE
 FOR CHARACTERS BEFORE SPACE
 MOVE HOLD-TZVAR TO TZ-VAR-VALUE

 CALL INTRINSIC
 "HPCIPUTVAR" USING TZ-VAR-NAME
 TZ-VAR-STATUS
 2
 TZ-VAR-VALUE
 11
 TZ-SIZE
 14
 TZ-ITEM

 DISPLAY " "
 GOBACK.

	Topics to be Discussed
	WHEN “N” 	MOVE SPACES		TO OUTPUT-REC
					WHEN FLAG-Y		MOVE PROD-NO 	TO OUTPUT-REC
	WHEN FLAG-N		MOVE SPACES		TO OUTPUT-REC
	Example 3: 	EVALUATE NUMBER-OF-THINGS
	WHEN 2		DISPLAY “The value is 1 or 2”
					WHEN 0				ALSO 	ANY	PERFORM NO-PAY
	WHEN NOT 0			ALSO 	“Y”		PERFORM SALARIED

	Section 3 - NOT Phrases
	Section 4 - COBOL-89 Functions
	
	Alphanumeric Functions
	Integer Functions
	Numeric Functions
	REM (parameter-1 parameter-2)
	CALL INTRINSIC “HPCICOMMAND” USING

	Useful Intrinsics
	CALL INTRINSIC “DATELINE” USING DATE-BUFFER
	CALL INTRINSIC “GETINFO”
	USING 		INFO-STRING	INFO-LENGTH		INFO-PARM
	GIVING 	INFO-RESULT
	CALL INTRINSIC “HPCICOMMAND” USING
	COMPUTE NUM-LEN = FUNCTION LENGTH (NUM-SECONDS)
	CALL INTRINSIC “PUTJCW” 	USING
	CALL INTRINSIC “RESETCONTROL”

	Section 7 – File Organization & Access
	
	
	
	
	
	This means that the program may alternate between sequential and random access modes by selectively using different forms of various input-output statements. This type of access may only be used for relative and indexed files.

	See Appendix Section 8 for sample program (DEMO16).
	See Appendix Section 8 for sample program (DEMO17).
	READ SEQ-FILE			[INTO Work-data-item]
	WRITE SEQ-FILE				[FROM Work-data-item]
	REWRITE SEQ-FILE		[FROM Work-data-item]
	READ RAND-FILE	NEXT	[INTO Work-data-item]
	Section 8 - Appendix – Sample Programs
	
			88	ORDER-FILE-STATUS-END			VALUE “10”.�...� 	OPEN INPUT ORDER-FILE
		PERFORM UNTIL ORDER-FILE-STATUS-CODE <> ZERO� 		READ ORDER-FILE� 			NOT AT END ADD 1 TO ORDER-READ-COUNT� 		END-READ� 	END-PERFORM
		IF	ORDER-FILE-STATUS-OK� 		CLOSE ORDER-FILE� 	ELSE�...� 	END-IF�...

	SAMPLE 4
	
	
	
	
	
	
	DEMO1-14

	Demo program to demonstrate 14 different COBOL features

