

Configuring the Software Development
Process
on Linux

Dr. Adam Kolawa

ParaSoft Corporation
2031 S. Myrtle Ave.
Monrovia, CA 91016

Tel: 888-305-0041
Fax: 626-305-3036
Ak@parasoft.com

Gone are the days when you had the luxury of spending
several years in development. Nowadays, your applications
must be ready in two or three months. Put simply, if you
don't have an effective development process, you will not
survive.

Linux is an ideal software development platform for C, C++,
and Java because it removes many of the obstacles typically
associated with software development. Obviously, it's a good
idea to catch errors before they crash a machine. Linux has
the stability to meet this requirement. Because the kernel
can be easily customized, you can prepare development
machines for your specific needs. And often you'll find that
Linux requires less horsepower and hardware than other OSes.
All this means your code can be written and tested on Linux,
then moved to another plat-form for deployment.

Fortunately, many of the tools you need come with Linux, and
you can assemble a professional software development
environment quite inexpensively. But first, you should
understand the necessity of configuring a development
process that not only produces software, but effectively
controls errors while doing so.

Mention software to most people, and the word “bugs ” comes
to mind. Even computer neophytes are encouraged to believe
that, like the common cold, bugs are inevitable. It's simply
not true. Errors are caused by bad coding and development
practices.

In a bad development process, bugs are not controlled;
rather, they are introduced, then ignored until the final
stages of the development process. This is more dangerous
than most people realize: when you allow bugs to enter and
remain in your code, the bugs build upon and interact with
one another. This interaction usually has the critical
effect of causing bugs to increase exponentially instead of
increasing linearly with time and number of lines of code.

When this happens, the amount of bugs will dramatically
increase as time and lines of code increase-- often to the
point where they cause the project to be cancelled. The key
to controlling bugs is preventing them from increasing
exponentially. You can do this by integrating error-
prevention and error-detection practices into your
development process.

Study after study has confirmed that:

• Focusing on error prevention results in higher quality,
shorter development schedules, and higher productivity.
• The longer a defect remains in the system, the more
expensive and difficult it becomes to remove.

Moreover, one study done by Microsoft showed that it takes
an average of 12 programming hours to find and fix a
programming error. Another study by DeMarco and Lister found
that professional programmers average 1.2 software defects
for every 200 lines of code they write. Debugging commonly
takes 60-70% of the overall development time. Do the math.

You'll find that letting errors enter and remain in your
code will cost a lot of time and money. It's best to prevent
errors in the first place and remove any existing errors as
soon as possible, before they spawn more errors.

One critical part of implementing a software development
process that controls errors is establishing an
infrastructure that supports such a development process. We
will now discuss how you might do this on Linux.

Source Code Repository
First of all, you need to establish a source code repository
so developers can work off of a common code base. One of the
best ways to do this on Linux is to configure what looks
like a simple LAN, where each developer is connected to a
Linux server which hosts a central repository for the entire
source base. Development machines can be configured as
needed, running Linux or Microsoft OSes, for example.
Developers access the central repository from these machines
via SAMBA, X-Term, dial-up access, or a Web browser. Where
development is aimed at a specific version--or several
versions--of an Intel-based OS, VMware can be used to
instantly load the required environment on a development
machine for testing, while retaining Linux as a “host ” OS.

The software you select for this repository must provide a
record of the evolution of the source base--the standard
who, what, when, where, why questions from Journalism 101.
With this capability, you significantly reduce the risk of
change, making it possible to recover older, more stable
versions. At the same time, it becomes less expensive to try
different approaches to your goals. Tools in this category
include GNU Revision Control System, GNU CVS (Version
Control Sys-tem), and Rational Software's ClearCase
(www.rational.com). (You'll find RCS and CVS in most Linux
distributions. For a full list of GNU software and how to
obtain it, see
http://www.gnu.org/software/software.html#DescriptionsOfGNUS
oftware.)

Nightly Build
Once you have a central code repository, you can establish
an automatic nightly build of your application. A nightly
build is a completely automated process that rebuilds the
application over-night, every night, without any human
intervention. At the same time each night, the nightly build
should check code out from the code repository, rebuild the
application, and run all available test suites. When the
developers come in every morning, they should see a report
that contains any failed test cases, and be able to
immediately assess project progress and quality. Nightly-
builds are usually set up with in-house scripts.

Bug-Tracking System
A bug-tracking system such as GNU GNATS
(www.gnu.org/software/gnats/gnats.html) or Mozilla.org's
Bugzilla (www.mozilla.org/projects/bugzilla/) has two main
uses. Most important is to record and track all errors not
detected by your test suite. The system should let staff
report bugs, correlate them to source versions, and assign
them to the appropriate developers. Loyally entering every
bug found into the system facilitates problem tracking and
provides valuable data about the types of errors that teams
or developers tend to make-- data that can be used to hone
error-prevention and error-detection efforts. The system can
also be used to record feature requests that are not yet
being implemented, as well as to prioritize, schedule, and
track dependencies.

Automatic Development Tools
The most critical components of the development
infrastructure are automatic development tools that help you
prevent and detect errors as precisely, quickly, and easily
as possible. These tools should be geared towards
developers, not testers, and should provide the developer a
simple way to start testing each piece of code as soon as it
is compiled. The best way to achieve a high-quality
application is for the developer to prevent and eliminate as
many as bugs possible at each development stage. If
developers do not constantly worry about bugs as they are
developing, bugs left in the code will spawn more bugs, and
when the application is finally tested, it will be
considerably
more difficult to find and fix the bugs. In fact, when
testing is delayed until the end of development, there is a
good chance that bugs which could have been easily detected
and fixed in the earlier stages of development will end up
eluding tests and being passed on to customers. That’s why
it is so critical for developers to use automatic testing
tools from the moment that they compile each class or
function.

Don’t just choose the cheapest or most popular error-
prevention and error-detection tools. Take the time to
evaluate different tools and choose carefully. The time
spent evaluating tools can easily be regained if you find
one tool that automates more processes than another, or
prevents or finds more bugs than another. Compare how much
user-intervention each tool requires. Look for features like
automatic creation of test cases, harnesses, and stubs, easy
ways to enter user-defined test cases, and automatic
regression testing. Tools should be customizable, have
interactive and batch mode, and integrate with other
components in your development arsenal.

Conclusion
For your organization to survive, you need a development
process that produces reliable applications as rapidly as
possible. The first step in doing that is establishing a
sound development infrastructure. The next step is making
this infrastructure the backbone of a development process
that controls bugs at every stage of development. Such a
process would include practices like design reviews, code
reviews, coding standards enforcement, unit testing,
application testing, regression testing, and implementing
“ gates ” that help developers assess when they are truly
ready to leave one development stage and enter the next. For
a discussion of how to implement such a process, see our
“ Debugging the Software Development Process ” paper
(available at http://www.parasoft.com/papers/dev_proc.htm).

	Source Code Repository
	Nightly Build
	Bug-Tracking System
	Automatic Development Tools
	Conclusion

