Configuring the Software Devel opnment
Process
on Li nux

Dr. Adam Kol awa

Par aSoft Corporation
2031 S. Myrtle Ave.
Monrovia, CA 91016

Tel : 888-305-0041
Fax: 626-305-3036
Ak @ar asoft.com

Gone are the days when you had the | uxury of spending
several years in devel opnment. Nowadays, your applications
must be ready in two or three nonths. Put sinply, if you
don't have an effective devel opnment process, you will not
survi ve.

Linux is an ideal software devel opnment platformfor C, C++,
and Java because it renoves many of the obstacles typically
associated wth software devel opnent. OGoviously, it's a good
idea to catch errors before they crash a machi ne. Linux has
the stability to neet this requirenment. Because the kernel
can be easily custom zed, you can prepare devel opnent

machi nes for your specific needs. And often you'll find that
Li nux requires | ess horsepower and hardware than other CSes.
Al'l this nmeans your code can be witten and tested on Linux,
t hen noved to another plat-formfor depl oynent.

Fortunately, nmany of the tools you need cone with Linux, and
you can assenbl e a professional software devel opnent

envi ronnment quite inexpensively. But first, you should
understand the necessity of configuring a devel opnent
process that not only produces software, but effectively
controls errors while doing so.

Mention software to nost people, and the word “bugs” cones
to mi nd. Even conmputer neophytes are encouraged to believe
that, |like the comon cold, bugs are inevitable. It's sinply
not true. Errors are caused by bad codi ng and devel opnent
practices.

In a bad devel opnent process, bugs are not controll ed;
rather, they are introduced, then ignored until the final
stages of the devel opnent process. This is nore dangerous

t han nost people realize: when you allow bugs to enter and
remai n in your code, the bugs build upon and interact with
one another. This interaction usually has the critical

ef fect of causing bugs to increase exponentially instead of
increasing linearly with tinme and nunber of |ines of code.

When this happens, the anobunt of bugs will dramatically
increase as tine and |ines of code increase-- often to the
poi nt where they cause the project to be cancelled. The key
to controlling bugs is preventing themfromincreasing
exponentially. You can do this by integrating error-
prevention and error-detection practices into your

devel opnment process.

Study after study has confirnmed that:

* Focusing on error prevention results in higher quality,
shorter devel opnent schedul es, and hi gher productivity.

» The longer a defect remains in the system the nore
expensive and difficult it becomes to renove.

Mor eover, one study done by Mcrosoft showed that it takes
an average of 12 progranm ng hours to find and fix a
progranmm ng error. Another study by DeMarco and Lister found
t hat professional programrers average 1.2 software defects
for every 200 lines of code they wite. Debuggi ng commonly

t akes 60-70% of the overall developnent tinme. Do the nmath.

You'll find that letting errors enter and remain in your
code will cost a lot of time and noney. It's best to prevent
errors in the first place and renobve any existing errors as
soon as possible, before they spawn nore errors.

One critical part of inplenenting a software devel opnent
process that controls errors is establishing an
infrastructure that supports such a devel opnent process. W
wi |l now di scuss how you m ght do this on Linux.

Source Code Repository

First of all, you need to establish a source code repository
so devel opers can work off of a common code base. One of the
best ways to do this on Linux is to configure what | ooks
like a sinple LAN, where each devel oper is connected to a

Li nux server which hosts a central repository for the entire
source base. Devel opnment nachi nes can be configured as
needed, running Linux or Mcrosoft OSes, for exanple.

Devel opers access the central repository fromthese machi nes
via SAMBA, X-Term dial-up access, or a Wb browser. Were
devel opnent is ainmed at a specific version--or several
versions--of an Intel -based OS, VMvare can be used to
instantly load the required environnent on a devel opnent
machi ne for testing, while retaining Linux as a “host” OCS.

The software you select for this repository nust provide a
record of the evolution of the source base--the standard
who, what, when, where, why questions from Journalism 101.
Wth this capability, you significantly reduce the risk of
change, making it possible to recover older, nore stable
versions. At the sanme tine, it becones | ess expensive to try
di fferent approaches to your goals. Tools in this category
i ncl ude GNU Revi sion Control System GNU CVS (Version
Control Sys-tenm), and Rational Software's C ear Case

(ww. rational.com). (You'll find RCS and CVS in npbst Linux
distributions. For a full list of G\U software and how to
obtain it, see

http://ww. gnu. or g/ sof t war e/ sof t war e. ht m #Descri pti onsOf GNUS
of tware.)

Ni ghtly Build

Once you have a central code repository, you can establish
an automatic nightly build of your application. A nightly
build is a conpletely automated process that rebuilds the
application over-night, every night, w thout any human
intervention. At the sanme time each night, the nightly build
shoul d check code out fromthe code repository, rebuild the
application, and run all available test suites. Wen the
devel opers come in every norning, they should see a report
that contains any failed test cases, and be able to

i mredi ately assess project progress and quality. Nightly-
builds are usually set up with in-house scripts.

Bug- Tracki ng System

A bug-tracki ng system such as GNU GNATS

(www. gnu. or g/ software/ gnats/gnats. htm) or Muzilla.org's
Bugzilla (ww. nozilla.org/projects/bugzilla/) has two main
uses. Most inportant is to record and track all errors not
detected by your test suite. The system should | et staff
report bugs, correlate themto source versions, and assign
themto the appropriate devel opers. Loyally entering every
bug found into the systemfacilitates problemtracking and
provi des val uabl e data about the types of errors that teans
or devel opers tend to nmake-- data that can be used to hone
error-prevention and error-detection efforts. The system can
al so be used to record feature requests that are not yet
bei ng i npl enented, as well as to prioritize, schedule, and
track dependenci es.

Aut omati ¢ Devel opnent Tool s

The nost critical conponents of the devel opnent
infrastructure are automati c devel opnent tools that help you
prevent and detect errors as precisely, quickly, and easily
as possible. These tools should be geared towards

devel opers, not testers, and should provide the devel oper a
sinple way to start testing each piece of code as soon as it
is conpiled. The best way to achieve a high-quality
application is for the devel oper to prevent and elimnate as
many as bugs possi bl e at each devel opnment stage. |If

devel opers do not constantly worry about bugs as they are
devel opi ng, bugs left in the code will spawn nore bugs, and
when the application is finally tested, 1t will be

consi derably

nmore difficult to find and fix the bugs. In fact, when
testing is delayed until the end of devel opnent, there is a
good chance that bugs which could have been easily detected
and fixed in the earlier stages of developnment will end up
el uding tests and bei ng passed on to custoners. That’s why
it is so critical for devel opers to use autonmatic testing
tools fromthe nonent that they conpile each class or
function.

Don’t just choose the cheapest or nost popul ar error-
prevention and error-detection tools. Take the tine to

eval uate different tools and choose carefully. The tine
spent evaluating tools can easily be regained if you find
one tool that automates nore processes than another, or
prevents or finds nore bugs than another. Conpare how nuch
user-intervention each tool requires. Look for features |ike
automatic creation of test cases, harnesses, and stubs, easy
ways to enter user-defined test cases, and automatic
regression testing. Tools should be custom zabl e, have
interactive and batch node, and integrate with other
conponents in your devel opnent arsenal.

Concl usi on

For your organization to survive, you need a devel opnent
process that produces reliable applications as rapidly as
possi ble. The first step in doing that is establishing a
sound devel opnent infrastructure. The next step is nmaking
this infrastructure the backbone of a devel opnent process
that controls bugs at every stage of devel opnent. Such a
process woul d include practices |ike design reviews, code
revi ews, coding standards enforcenment, unit testing,
application testing, regression testing, and inplenmenting
“gates” that help devel opers assess when they are truly
ready to | eave one devel opnent stage and enter the next. For
a discussion of howto inplenment such a process, see our

“ Debuggi ng t he Software Devel opnent Process” paper
(avai l abl e at http://ww. parasoft.conl papers/dev_proc. htm

	Source Code Repository
	Nightly Build
	Bug-Tracking System
	Automatic Development Tools
	Conclusion

