
Migrating off the HP e3000: Been There, Done That
Steve LeBlanc, Ceridian, Steve.LeBlanc@ceridian.com
Victoria Shoemaker, Taurus Software, vas@taurus.com



Unless You Make It a Checkbook Experience,
Migration Is Not for Beginners.

Overview

In June 1997, Ceridian began a journey to migrate our application from HP3000 to
Unix. During this adventure, Ceridian learned many lessons, both the easy way and
the hard way. This paper will share the journey and its lesson in hopes of making
your pursuit easier.

Some background: Ceridian processes payroll taxes for both small and large
organizations. This involves collecting information about hours worked, generating
payroll checks, reporting to the various tax agencies (city, state, and federal), and
ensuring compliance for the client to all taxing organizations. Failure to do the job
right can result in severe penalties and interest costs for both Ceridian and the
client.

In the beginning, we had two production HP3000 servers and two development
servers. The two production servers were mirrors of each other. Netbase kept the
two machines in sync. One was used for data entry and payroll process. The other
was used for reporting and batch processing. Our business ran off these machines
with a total of 500 business users accessing this application every day to meet their
clients’ needs.

First Date: June, 1997.
Blind Date, July 1998.
Drop-Dead Date: Y2K.

Actual Date, August, 1999.

In June 1997, Ceridian began planning for the year 2000 with the idea of
completing the project within a year. After a flurry of meetings and conversations, it
was decided that instead of just dealing with the year 2000 date issues, Ceridian
would take the opportunity to solve other issues we faced. The issues that Ceridian
hoped to address were:

• Get prepared for year 2000.
• Remove capacity limitations of the HP3000. Ceridian was sitting on the largest

boxes available from HP and still needed more horsepower.
• Increase ability to handle ad-hoc reporting requests for data.
• Enable rapid change via open system technology.



• Move off the legacy application written in 1992 to meet Ceridian's business
needs.

So in June of 1997, Ceridian set off to rewrite our application for open systems. The
hardware that was chosen was HP/ux. The DBMS chosen was Oracle. The
development language COBOL. And the job was broken into five major tasks:

• Converting the application code.
• Converting the JCL, QUIZ reports, and SUPRTOOL extracts.
• Creating of test environments.
• Data migration.
• Application testing and validation.

First, we had to decide
who does what.

The conversion of the application code was contracted out to ICUBE. Their plan was
to convert the COBOL code and leave the IMAGE and MPE calls in the code and
handle them with "wrapper" code. That meant the code would still call DBGET, but
a procedure would replace the functionality of that call with appropriate actions
against the Oracle database. The task that faced ICUBE was not trivial. There were
over 1000 programs to be migrated which amount to millions of lines of COBOL
code. Although exact numbers are not known, it is thought that about a dozen
programmers worked on this part of the project.

The conversion of the JCL, QUIZ reports and SUPRTOOL extracts fell to Ceridian.
A team of four people was assigned to this task. A great portion of Ceridian's
business was run in batch. Processing quarterly reports, producing W2, etc., was all
done in batch. Getting this part of the job wrong could mean dire consequences for
Ceridian.

Creation of the test environments and data migration was assigned to me, Steve.
For my part, there were 210 datasets with over 400,000,000 rows of data spread
over two machines that needed converting. The first step was to create test
environments for the other developers and then the big conversion of all the
production data. Most of my work was directed to these tasks, but as data was
needed to test programs both for development and QA, I worked closely with all the
groups and can speak to their issues from the 30,000-feet view.

The last bit, application testing and validation, was the largest part of the project
and involved over 20 people working full-time. It was their responsibility to test
each online module and ensure that the same results that occurred on the HP3000
application occurred on the new application.



Then we developed “The Plan.”

During the initial planning meetings, the following plan emerged for Ceridian's
responsibilities:

• Choose a way to move the data.
• Map the data into Oracle tables.
• Determine which programs needed to be migrated.
• Create a test environment

o Source test environment.
o Target test environment.

• Design and develop the data movement process.
• Design and develop incremental data movement processes.
• Develop replacements for the QUIZ, JCL, and SUPRTOOL.
• Convert the COBOL code (ICUBE's responsibilities).
• Test, test, test…

The work was to begin in June, 1997, and finish July. 1998. (We actually completed
in August of 1999.) Three teams were put together each with their own
management.



How to move the data?

Ceridian's data structures were developed in 1974 along with the application. The
plan for moving the data was to retain these structures with as few changes as
possible. The only changes that would be considered were those necessitated by the
new database's requirements. Extensive copylibs were used in the COBOL
programs which overlayed structures on top of the IMAGE data structures. All
dates were kept as 6 character data with a couple of magic dates values to represent
various meanings to the application. Numeric data were kept as packed decimals
which had to be converted to appropriate Oracle representations. Even though all
the numeric data was stored as implied decimal data, the wrapper part of the
application was to interpret this data and handle it.

The need for data was immediate. Therefore, our investigation into a method of
moving the data started right away. We looked at the following methods:

• SUPRTOOL offered by Robelle (www.robelle.com).
• DBACCESS (out of business?).
• Writing programs in-house to move the data.
• BRIDGEWARE offered by Taurus Software (www.taurus.com).

SUPRTOOL

The data would be read from IMAGE using fast access methods by SUPRTOOL and
outputted to a flat file. That flat file would FTPed to the new machine, and then the
data would be loaded using SQLLoadSQLLoader (a utility provided by Oracle to do
bulk loads of data). For our evaluation, we tried a couple of different scenarios in-
house, as we already owned the tool.

If SQLLOADSQLLOADSQLLoad was used, one script for each different type of
error would have to be created to load the data. Some of this would have to be
written “on the fly”.
.
The advantages:

• Speed of downloading the data to a flat file and using SQLLoad to upload the
information.

• No need to purchase any new tools. We already had a license for SUPRTOOL
and SQLLoad came with the Oracle database.

• No need to learn a new tool.

The disadvantages:



• SUPRTOOL does not clean up the data, so data cleanup would have to be
performed after each SQLLoad. In addition, placing the century in the middle of
key fields was cumbersome.

We chose not use this product because of too much manual intervention. A person
would have to monitor the progress of the SQLLoad and manually clean up the
data, i.e.: fix dates, numbers, etc., and then rerun the process.

DBACCESS

The data would be read by DBACCESS and written directly to the Oracle tables.
For our evaluation, we re-evaluated the tool in-house.

• The advantage: We already had the tool in house.

The disadvantages:

• Poor data mapping.

• No connectivity to the Oracle database.

We chose not use this product, because at the time, the product was not able to
work between both platforms. Like SUPRTOOL, data had to be downloaded to a flat
file with SQLLoad uploading the information to the Oracle Environment.

Writing Data Movement Programs In House

The data would be read by our in-house programs and written directly to the Oracle
tables or flat files. These would then be FTP’d to the Unix box and uploaded using
SQLLoad. For our evaluation, we wrote a sample program.

The advantages:

• We could programmatically cleanse the data using the program prior to writing
the data to a flat file or directly to a Unix box.

• Data Mapping could also be performed in the code.

The disadvantages:

• Time limitations. This was one of the largest disadvantages. There were around
210 datasets that needed to be moved, this meant several very large programs



that were needed to be created. At the start of the project, it was determined
that it would take one year to perform all the conversions and data movement.
This was too long

• There was no easy way to develop the mirroring process that would be required.

We chose not use this method because a product was discovered that did everything
we needed. What’s more, creation of processes and testing of the processes was
much simpler than creating and testing COBOL programs in the time frame we
had. That product was BRIDGEWARE.

BRIDGEWARE

BRIDGEWARE read the source data using IMAGE intrinsics and wrote the data
using intrinsic level access to Oracle. The product allowed bulk data movement
between the two machines and provided the facility to capture changes to IMAGE
environment as the data was change. We felt this would be helpful, as our initial
load of the data was expected to run, 8 – 24 hour days split up on the weekends.
This later turned out to be incorrect, but that is another story.

For our evaluation, we brought the product in-house and selected a couple of tables
to take through the entire process. (See as an example the attachment, Table 1.)

The advantages:

• Ease of learning. The first day I received the DEMO version of this product, I
wrote a process to move the data from the Image dataset to an Oracle table in
less than 1 hour. Since we were already using Netbase for the mirroring of two
HP3000’s, BRIDGEWARE married directly to the process for the mirroring of
the HP3000 to the HP9000. The tool easily connected to both machines and was
able to cleanse the data before writing the information to the Oracle database.

• This product fully fitted into our requirement for moving the data from one
environment to another. It wasn’t until later that we decided to use the product
to create the test environments during the process conversions.

The disadvantages:

• Need to learn a new tool. The learning curve, in fact, has proven to be very
slight.

We chose BRIDGEWARE, because it fully fitted into our requirements for both data
movement and mirroring. The second reason was the support. The support staff was



there and happy to help throughout the development process, regardless whether
the question related to their product or data migration in general.

All of the evaluations were completed, and BRIDGEWARE was purchased by
January 1998.

The saga begins…

So how do we start? We felt there would be many surprises in our data. There was
no one person that understood all of the application. The data dated back to 1992.
The application had undergone a number of major releases and changes to its
original data structure. A new application to facilitate better reporting, performance
or features might require that the data be changed.

We decided to start with a small piece of data and learn our lessons using the
fewest number of tables as possible. This would enable us to get familiar with the
new tool, the data, and the art of transforming.  So what small set should we use?
Well, the data could be grouped into six major groups:

• Data used by daily or weekly program (timesheet, weekly payroll processing,
RJE)

• Data used for funding and deposit processing
• Data used for client inquiry
• Data used for creating quarterly reports and filings
• Data used for creating year-end reports and filings
• Data used for W2 processing

We elected the data used by the daily or weekly programs first. This was the
smallest data group among the six. The daily conversion was also to be used as
“proof of concept”.

For our first set of data, we began the process that we used for the remainder of the
project:

• Create a test environment for testing.
• Map the data. (This becomes the specification for the routines to move the data.)
• Develop and test data movement procedures.

Creation of the test environment

A user/test committee chose the selected client id's to be used for the testing. A
database with the subset of client-ids would be created in a static environment. All
the other supporting files, other data files and programs, would be copied over so



that application access to the data would be available. Once the environment was
created, a limited set of users would be granted access.

For our test environment, 171 client ids were chosen and only one quarter of the
data base brought over. This resulted in a test environment of 32,000,000 sectors.
We decided to refresh the environment periodically with current data environment,
and this was done four times during the development period.

To create the test environment, we:
• Created a “sterile” database in the HP3000 where data can be pulled for before

looks -- to several HP3000 and HP9000 databases and HP3000 image to HP3000
image -- as well as after looks -- HP3000 image to HP9000 Oracle.

• Programs; JCL; QUIZ were all placed on the HP3000 and HP9000 machines.
Runs were performed on both, and scripts were run to verify that all tables and
datasets were still in sync in the test environments.

• Each new test would pull from the sterile database and load data to the HP3000
and HP9000 test database prior to running the test in the processes.

• An “Image Library” was created which would trigger which warehouse load
scripts to run to load the table data.

• If a process used only five datasets, those five datasets would be truncated and
reloaded with the information prior to the test being run.

Mapping the data

The next step was to map the data. This process includes:

• Designing the target table.
• Mapping the source data to the target table.
• Describing any transformations that need to take place.
• How to handle errors.
• Any selection criteria to be used to subset the source data.

We were familiar with the data base and information (enough to be dangerous), and
this made the creation of the scripts much easier.

We started with easiest datasets to be converted, and timed the data movement to
get an idea of how long the process would take.

Some general decisions were arrived at quite quickly. We decided that we would
only take data from 1/1/1993 forward. Data prior to that didn't have any of the
supporting data (detail data) to support the aggregated data in the database.
The tables were to look pretty much as they did on the Image database system. All
field names were the same with the exception of dashes being replaced as



underscores. Alpha numeric fields were replaced with varchar2; Numeric dates
were replaced with dates; amounts replaced with numbers

Below is a table of these replacements;

Image Type Oracle Type Descriptions
All Alpha Numeric
Fields

Varchar2 Exceptions with
fields that contain
special characters

All qtr/period fields;
alpha numeric

Add 2 positions for
Century;

Client_period 12345-
009802 ; 12345-
00199802

Alpha Numeric fields w/
special characters

Char Datasets rdata,
pr_hist_counter

Numeric date fields Date Oracle automatically
ccyymmdd
Magic date 12/31/99
will need to be set to
12/31/3000

Numeric (amount) fields Number All decimals are
implied

Depending on the redefines used by the program, some tables required extra fields
or separate tables to house that information (needed to verify that the redefines are
still in use).

One main transformation was the addition of two characters to the qtr and/or
period fields that were placed in the database. These fields were used to
differentiate between year and quarters being processed for a given client id and/or
tax id. The additional two characters held the century making the process Y2K
compliant.

All programs and copylibs also needed to reflect this change. Below in the tables
section is an example of the copylibs that were required for modifications.

      **************************************************************
      *                        WAGE-HEADER                         *
      * 01-07-90 JRF ER382   Define second byte of WH-FLAGS field  *
      *                       for mag tape fileable state headers. *
      *                                                            *
      * 12/05/92 KT  ISR1-75 Add WH-WAGE-TRX-NUMX field            *
      *                                                            *
      * 01/08/92 MW  ISR1-63 Add WH-WAGE-TRX-NUMX field            *
      *                                                            *
      **************************************************************

       01 DB-WAGE-HEADER.
         05 WH-CLIENT-QTR-STATE.



           10 WH-CQS-CLIENT-ID            PIC X(08).
           10 WH-CQS-PERIOD               PIC X(6).
           10 WH-CQS-STATE                PIC X(02).
           10 WH-CQS-STATE-NUM REDEFINES WH-CQS-STATE   PIC 9(02).
         05 WH-STATE-QTR-EIN.
           10 WH-SQE-STATE                PIC X(02).
           10 WH-SQE-PERIOD               PIC X(6).
           10 WH-SQE-EIN                  PIC X(16).
         05 WH-WAGE-TRX-NUMX.
           10 WH-WAGE-TRX-NUM             PIC S9(9) COMP.
         05 WH-DATE-ADDCHG                PIC S9(8) COMP.
         05 WH-POST-DATE                  PIC S9(8) COMP.
      *    05  WH-FLAGS                   PIC X(04).

         05 WH-FLAGS.
           10 WH-FLAGS-REPOST             PIC X(01).
           10 WH-FLAGS-MAG-FILEABLE                 PIC X(01).
             88 WH-MAG-FILEABLE VALUE 'Y'.
           10 WH-FLAGS-3                  PIC X(01).
           10 WH-FLAGS-4                  PIC X(01).

One major issue that kept coming up was Invalid Numeric data in the field. This
was due to invalid data being redefined from an alphanumeric field to a numeric
field and them being placed into a comp-3 field in an image database. The handling
was done with the use of a “TRY” function developed by Taurus. This function
attempted to place numeric in a defined number oracle field. If the attempt failed
the user had the choice of:

• Placing the error record in a file to be cleaned up at a later date.
• Setting the invalid number to 0 (zero) and writing the record.

I chose option two due to the date that the invalid numeric data was placed in. An
assumption was made that a manual adjust has already been made to balance the
information. Since the users were notified that this was how the information was
going to be changed, any discrepancies would be adjusted for.

We also had three datasets mapped that contained different types of information
depending on the Key being used. The key was 8 characters in length and the data
area was 120 to 180 bytes in length, depending on the dataset. This needed to be
converted into their own tables based on the key name. There were up to 26
different tables created from these 3 datasets.

 Example:
  Entity Key;     data-160
    PAYEE



This was converted to a table called payee-table with the data-160 byte field being
separated into meaningful segments. This byte field contained, alpha numeric,
numeric and comp3 defined information.

Cleansing of data:

• Date and numeric information was not very accurate; example – February does
not have 30 days,

• In the old system, most changes to data was performed using an image db type
tool, QTP COGNOS, most did not date check.

• Numeric amounts, redefines being performed in programs, alpha to numeric; ex
000-123456

Once these issues were identified, they were globally handled through the use of
BRIDGEWARE user defined functions. (See Table 2 in attachments for an
example.)

Mirroring Scripts

The BRIDGEWARE application has the ability to capture the changes as they are
made to the IMAGE database or files. Those changes are then written to one or
more files and then can be processed through a BRIDGEWARE script.(See Table 3
in attachments for an example.)

If these records are captured to a message file, you can continuously update the
target environment throughout the day and keep the two environments "in sync".
Another use is to turn the capture on and put the data into capture files and update
once the initial load is complete. This method allows the users of application to
continue using the HP3000 during the conversion. Once all the data has been
converted, it can be "caught" up with data that was captured.

In our program, we grouped mirroring scripts in the same manner as the tables that
were loaded, i.e., tax1, tax2, tax3, qtr1, etc.. As the transfer was completed, the
mirroring scripts would get turned on for that group. This allowed for normal
operation during the week. It also allowed us to migrate pieces of application and
continue our on the new piece on the HPUX and still keep the pieces that had not
been converted on the HP3000.

Conversion Facts:

• It took four weekends to complete the tasks of moving all the information from
the Image database to Oracle, with the fourth weekend being the actual



changeover. Information was moved only on the weekend. Mirroring was used
during the week to keep the databases in sync.

• Data was moved at about 1,000,000 rows/hr average. The actual speed varied
from dataset to dataset depending on record length / clean up / number of
columns of data.

• It took about 2 years to complete full conversion, including data migration and
migration of the QUIZ, JCL, SUPRTOOL, and COBOL code.

• For our mirroring, we set up eight message files. A total of 900,000 records were
captured per file per week. Operations were warned to call if over 400,000
records.

• Our original HP3000 hardware -- a 996 6-way primary 9X9 box (nova) shadow
box -- used Netbase with EMC Symetric Disk Arrays.

• All data was spread out into 10 different databases, all these databases would be
merged into one oracle data.

• System had ½ gig of memory.

• Applications are single threaded.

• 1st step was locating all date, numeric, and quarter/period fields.

• The qtr/period fields were usually truncated with client_id, tax_code, tax_id
and/or flags throughout the system.

• Most were placed in copylibs, some were hard coded in programs

What did we do right?

• Management was behind us all the way! We had management's support for the
very beginning all the way through the end of the project. This lead to resources
being available and road blocks being removed.

• The team was committed 100%! If we were to chose the single factor that played
most to the success of the project it would have to be unwavering team
commitment. In migrations, there are going to be problems. In fact, there are
going to be problems that you can't even imagine at the outset of the project. For
us, perseverance paid off. Despite what were at times, overwhelming obstacles



(like our tape drive issues), the dedication, tenacity, and even stubbornness of
team members led to our success.

• Testing, testing, and re-testing! We knew from the beginning that testing was
going to be the key to a successful implementation. Consequently, we developed
an exhaustive test plan. Each major deliverable had a corresponding set of
acceptance criteria and then we test all those items and more.

• We didn't panic. There were a number of team members on the team that had
been through migrations before. An implementation will only fail if you let it.

What would we do differently?

• Our team structure was not set up correctly. We were using a matrix
organization that doesn't work for these large projects. What is needed is a
dictator. Okay, maybe not that bad, but definitely clear roles and
responsibilities, clear authority, a communications plan which must be
developed, reworked and enforced.

• We didn't have project management personnel who had experience with projects
of this size. My guess is most HP3000 organizations don't. This resulted in a
number of bad things (no qualified dictator, too much reliance on the code
translator and unrealistic schedule). You may want to consider hiring a
contractor with this type of experience to balance your lack of skills. You should
have your internal dictator shadow this person and integrate the process into
your internal process throughout your organization.

• As all the code was being migrated by a 3rd party vendor, we relied too heavily
on their testing. This caused rework, delays, and sometimes an uneven
distribution of the workload. Often, the work would stop until there was a fix in
place.

• The schedule was not realistic and the scope was too big. There were signs early
on that there were problems meeting deadlines. Trust me, you can't make up
time. If you are off schedule at the beginning of the schedule, it will only get
exponentially worse towards the end of the project. Confront these problems
quickly, do not deny their impact.

Tips and hints for you.

• It is all in the planning. Design and forethought will enable you to plan your
resources correctly. Start at the top. Make decisions that you can live with:



• What you are going to move.
• What kinds of data structures you are going to have in place.
• General guidelines about data (i.e.: is it more important to have dirty data

and the data in the new database or is it more important to have clean data
and those things which are not clean will not be there).

• A plan for how you are going to make sure that everything is working.

Once you have this, develop a high-level plan and double the times. Remember
you can only count on 30-36 hours a week of productive work from any given
individual.

• Once you have a high-level plan, plan the data move. The mapping document
will become your specification for the move. This mapping document will detail
out the movement, the kinds of errors and how they are handled. This will help
you develop an appropriate test environment.

• A perfect test environment is just enough data to test everything. The
environment should be static, so if you run the test 40 times you should get the
same results 40 times. Creating the test environment may be hard, but well
worth the effort.

• Divide up your team. Each team leader should be meeting with their team each
day and dealing with problem. You should be meeting with team leads each day
to ensure that everything stays on schedule. Your job at this point to get
answers quickly. Make sure that you are always working on the most important
task and that you don't get bogged down. It is also essential to make a good
decision and not to spend time revisiting issues that have been thoroughly
considered.

• Devise a communication plan. There is nothing more annoying that to have your
whole development team ready to run the "big test" this weekend only to find out
the Oracle DBA team is going to use this weekend for another "big test" and the
environment is not going to be available. If teams have enough notice, they can
plan accordingly. If they don't know, this will lead to huge morale issues.
Remember happy programmers (or fill in the blank) are productive
programmers.

• Version control is essential. Running the "big test" with the wrong programs
causes rework. Rework is death to the schedule. For every coding mistake: you
have programming time, programming testing time, and QA test time.
Everything has to be revalidated.

• Make sure to put time in for running your tests against the "real" database. You
might find that things will take longer or shorter or have issues you haven't



discovered yet. In our case, the loads took way shorter than expected, and we
were able to move the schedule around significantly. Without this knowledge, we
would have had whole teams doing nothing except for waiting for time to pass!

• Don’t forget to put time in for the last 80% of the work. Getting things into
production once the process is finished is important. Remember you aren't done
until you are done and off the old system.

This is not rocket science.
Just close!

Despite lack of experience with migrations and of information from others who had
gone through the same journey, Ceridian prevailed. In the course of the project, we
found the right tools, the right people, and the right methodologies to get the job
done. No, we did not finish on the original completion date, this time. But next time
(and for Pete’s sake, I hope that isn’t too soon), we can.



Table 1:

LOCATED DATE FIELDS AND OTHER ISSUES IN THE DATABASES

⇒ STSTAX:
 SET NAME  VARIABLE  TYPE  FORMAT  COPYLIB / VARIABLE  COMMENT

 BATCH-MASTER     TFBCHFIL.COPYLIB  
  DATE-ADDCHG  S9(6) COMP  YYMMDD  BCH-DATE-ADDED  
  ADJUST-FLAGS

• QTR-PERIOD
 

 X(8)
• X(3) pos 6-8

 
 YYQ

 BCH-ADJUST-FLAGS
 BCH-QTR-PERIOD
 

 

  LIABILITY-DATE  S9(6) COMP  YYMMDD  BCH-LIABILITY-DATE  
  POST-DATE  S9(6) COMP  YYMMDD  BCH-POST-DATE  redefine of

liability-date
      
 CHECK-TRANS     TFCKTFIL.COPYLIB  
  DUE-DATE  S9(6) COMP  YYMMDD  CHKTRANS-DUE-DATE  
  LIABILITY-DATE  S9(6) COMP  YYMMDD  CHKTRANS-LIABILITY-DATE  
  CHECK-DATE  S9(6) COMP  YYMMDD  CHKTRANS-CHECK-DATE  
  POST-DATE  S9(6) COMP  YYMMDD  CHKTRANS-POST-DATE  
  DEPOSIT-DATE  S9(6) COMP  YYMMDD  CHKTRANS-DEPOSIT-DATE  
      
 ENTITY  (key)     EACH KEY TYPE

IS LOCATED IN
A SEPARATE
COPYLIB
 ENTITY-DATA
x(140) actually
holds binary, dates
and characters

  AOCTBL  9(6) pos 1-6  YYMMDD  QSAOCFIL.COPYLIB / AOCTBL-
DEP-DATE

 

   9(6) pos 11-16  YYMMDD  LAST-UPD-DATE  



 RECEIVED  ASSOC  N/A   TFASSOC.COPYLIB  
 RECEIVED  BANKID  N/A    no copylib found for

this key, data
displays no dates

 RECEIVED  BKXF  X(2) pos 1-80   TFBKXF.COPYLIB  occurs 40 times
array

 RECEIVED  BYGCTL  N/A   TFBYGCTL.COPYLIB  
  CNVBID  N/A   TFCNVBID.COPYLIB  
  COMFLT  X(4) pos 7-12  

 YYMMbb
 TFCOMFLT.COPYLIB / COMFLT-
COMM-PERIOD

 redefine of 2nd half
of key

   9(6) COMP pos 114-117  YYMMDD  COMFLT-STATUS-DATE  
   9(6) COMPpos 118-121  YYMMDD  COMFLT-LAST-UPD-DATE  
  COMPN2  S9(6) COMP pos 40-45  YYMMDD  TFCOMPNY.COPYLIB /

 COMPN2-STATUS-DATE
 

   S9(6) COMP pos 46-51  YYMMDD  COMPN2-LAST-UPD-DATE  
      
  COMPNY  N/A   TFCOMPNY.COPYLIB  
  CSVREP  N/A   TFCSVREP.COPYLIB  
  DECTRL  N/A   TFDECTRL.COPYLIB  
  EDTMSG  9(6) pos 32-37  YYMMDD  QSENTFIL.COPYLIB / EDTMSG-

STATUS-DT
 

   9(6) pos 38-43  YYMMDD  LAST-UPD-DATE  
  FNDCTL  N/A   TFFNDCTL.COPYLIB  
  FORMSG  N/A   TFFORMSG.COPYLIB  
  HOLDAY  9(2) pos 7-12  YYbbbb  TFHOLDAY.COPYLIB /

 HOLIDAY-TABLE-YEAR
 

   S9(6) pos 1-96  YYMMDD  HOLIDAY-DATE  array 16 x 6
  INALED  9(6) pos 3-8  YYMMDD  TFINALED.COPYLIB / INALED-

CLT-LED-EXT-DATE
 

   9(12) pos 9-108  YYMMDD  INALED-SET-BEG-DATE, INALED-
SET-END-DATE

 occurs 9 times

   9(6) pos112-118  YYMMDD  INALED-LAST-UPD-DATE  
  NULREC     unknown
  PAYEE  9(6) pos 194-199  YYMMDD  TFPAYEE.COPYLIB /  



 PAYEE-UPD-DATE
  PHSSTA  9(6) pos 42-47  YYMMDD  TFPHSSTA.COPYLIB /

 PHSSTA-STATUS-DATE
 

   9(6) pos 120-125  YYMMDD  PHSSTA-LAST-UPD-DATE  
  PRHSTA  9(6) pos 42-47  YYMMDD  TFPRHSTA.COPYLIB /

 PRHSTA-STATUS-DATE
 

   9(6) pos120-125  YYMMDD  PRHSTA-LAST-UPD-DATE  
  PRSOFT    TFPRSOFT.COPYLIB  N/A
  PRTCOM  9(6) pos 42-47  YYMMDD  TFPRTCOM.COPYLIB / PRTCOM-

STATUS-DATE
 

   9(6) pos 120-125  YYMMDD  PRTCOM-LAST-UPD-DATE  
  PRTMSG    TFPRTMSG.COPYLIB  N/A
  RCVPRM    TFRCVPRM.COPYLIB  N/A
  RETFRE     no copylib found
  SALESM     
  STATEA  9(6) pos 32-37  YYMMDD  TFSTATEA.COPYLIB /

 STATEA-STATUS-DATE
 

   9(6) pos117-122  YYMMDD  STATEA-LAST-UPD-DATE  
  STATEN  9(6) pos 32-37  YYMMDD  QSENTFIL.COPYLIB /

 STATEN-STATUS-DT
 

   9(6) pos 127-132  YYMMDD  LAST-UPD-DATE  
   STSREP    QSENTFIL.COPYLIB  N/A
  TAPIO1  S9(6) pos 63-68  YYMMDD  TFTAPIO1.COPYLIB /

 TAPIO1-TAPE-APPROVAL-DATE
 

  TAPIO2    QSTAPIO2.COPYLIB  N/A
  USERNO  9(6)      pos 42-47  YYMMDD  TFUSERNO.COPYLIB /

 USERNO-STATUS-DATE
 

   9(6)      pos 119-124  YYMMDD  USERNO-LAST-UPD-DATE  
  W2CODE  S9(6)COMP pos 1-4  YYMMDD  QSENTFIL.COPYLIB / LAST-UPD-

DATE
 

   S9(6) COMP pos 36-39  YYMMDD  W2-DUE-DATE  
  WAGE    TFXFCDTP.COPYLIB  N/A
  XFERCD    TFXFRPRM.COPYLIB  N/A
  XFRPR2     



  XFRPRM  9(6) pos 122-127  YYMMDD  TFXFRPRM.COPYLIB /
 XFER-LAST-UPD-DATE

 

      
 TAX-CODE     TFTAXFIL.COPYLIB  
  TAX-CODE-DESC

• FORMAT-TYPE
 
 X(1) POS 10

  TAX-DATE-FORMAT-TYPE  Contains format
date type flag, ‘G’ =
MMDDYY; ‘Q’ =
nQYY

  TAX-LST-UPD-DATE  S9(06) COMP  YYMMDD  TAX-LST-UPD-DATE  
  ACTIVE-FROM-

DATE
 S9(06) COMP  YYMMDD  TAX-ACTIVE-FROM-DATE  

  ACTIVE-TO-DATE  S9(06) COMP  YYMMDD  TAX-ACTIVE-FROM-DATE  
      
 HIST-BATCH-
MSTR

    TFHBMFIL.COPYLIB  

  CLT-QTR-FMT-TYPE
 CLIENT
 QUARTER
 FORMAT
 TYPE

 X(14)
 X(8) pos 1-8
 9(4) pos 9-12
 X(1) pos 13
 X(1) pos 14

 
 

 YYQQ

 HIST-BAT-MSTR-KEY  

      
 FLOAT-FACTORS     TFFLTFIL.COPYLIB  
  DAILY-FACTOR  V9(06) COMP   DAILY-FACTOR  array 366 times
      
 CHECK-TRANS-
DTL

    TFCTDFIL.COPYLIB  

  LIABILITY-DATE  S9(6) COMP  YYMMDD  CHKTRN-DTL-LIABILITY-DATE  
  POST-DATE  S9(6) COMP  YYMMDD  CHKTRN-DTL-POST-DATE  
      
 CLIENT     TFCLTFIL.COPYLIB  
  DATE-ADDCHG  S9(6) COMP  YYMMDD  CLT-DATE-ADDCHG  
  TERM-DATE  S9(6) COMP  YYMMDD  CLT-TERM-DATE  
  SCHED-START  S9(6) COMP  YYMMDD  CLT-SCHED-START  
  ACTUAL-START  S9(6) COMP  YYMMDD  CLT-ACTUAL-START  



  DATE-FINAL-
WAGES

 S9(6) COMP  YYMMDD  CLT-DATE-FINAL-WAGES  

  HIST-FILES
 
 (1)
 LAST-UPD-DATE
 LAST-UPD-TIME
LAST-UPD-USER
  (2)
 CUST-SERV-REP
 EST-PAYROLL-OPT
 
 EST-PAYROLL-AMT
 
 EST-PAYROLL-EFF-
 DATE
 CLT-ACH-CODE
 (3)
 FAX-PHONE
 FAX-ALLOW-FLAG
 MAJ-ACCT-FLAG
 (4)
 PAYROLL-VAR-PCT-
ALLOWED
 AVE-PAYROLL-AMT
 DATA-COLL-REP
 CREATE-PAYROLL-
FLAG
 MID-Q-Y-STATUS-
CODE
 W2-FEE-STATUS
 W2-PROCESSED
 (5)
 W2-CLIENT-YEAR
 W2-FILE-FED
 W2-FILE-STATE

 X(16)
 
 
 S9(6) COMP pos 1-4
 S9(6) COMP pos 5-8
 X(8)        pos 9-16
 
 X(3) pos 1-3
 X(1) pos 4
 
 S9(9)V99 COMP-3 pos
5-10
 
 S9(6) COMP pos 11-14
 
 X(2) pos 15-16
 
 X(14) pos 1-14
 X(1) pos 15
 X(1) pos 16
 
 
 S9(4) COMP pos 1-2
 S9(13)V99 COMP-3, pos
3-10
 X(2) pos 11-12
 
 X(1) pos 13
 
 X(1) pos 14
 9(1) pos 15
 X(1) pos 16
 
 9(02) pos 1-8

 
 
 

 YYMMDD
 HHMMSS

 
 
 
 
 
 
 

 YYMMDD
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 CLT-HIST-FILES
 
 
 CLT-LAST-UPDATE-DATE
 CLT-LAST-UPDATE-TIME
 CLT-LAST-UPDATE-USER
 
 CLT-CUST-SERV-REP
 CLT-EST-PAYROLL-OPTION
 CLT-EST-PAYROLL-AMOUNT
 CLT-EST-PAYROLL-EFF-DATE
 CLT-ACH-CODE
 
 CLT-FAX-PHONE
 CLT-FAX-ALLOW-FLAG
 CLT-MAJ-ACCT-FLAG
 
 CLT-PR-VAR-PCT-ALLOWED
 CLT-AVG-PAYROLL-AMT
 CLT-DATA-COLL-REP
 CLT-CREATE-PAYROLL-FLAG
 CLT-MID-Q-Y-STATUS-CODE
 CLT-W2-FEE-STATUS
 CLT-W2-PROCESSED
 
 CLT-W2-FILE-YR
 CLT-W2-FILE-FED
 CLT-W2-FILE-STATE
 
 CLT-INSTALL-USER-ID
 CLT-INSTALL-DATE
 CLT-STATUS-DATE
 
 CLT-W2-FILE-LOCAL

 array 7 times
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 array 4 times
 array 4 times
 array 4 times
 
 



 (6)
 INSTALL-USER-ID
 INSTALL-DATE
 STATUS-DATE
 (7)
 W2-FILE-LOCAL
 STATUS-FED
 STATUS-STATE
 POA-
GRANDFATHER
 PAY-TRACKING-
FLAG
 
 FILLER

 X(1) pos 9-12
 X(1) pos 13-16
 
 X(8) pos 1-8
 S9(6) COMP pos 9-12
 S9(6) COMP pos 13-16
 
 X(1) pos 1 - 4
 S9(6) COMP pos 5-8
 S9(6) COMP pos 9-12
 X(1) pos 13
 X(1) pos 14
 
 X(2) pos 15-16

 
 YYMMDD
 YYMMDD

 W2-STATUS-FED
 W2-STATUS-STATE
 CLT-POA-GRANDFATHER
 CLT-PAY-TRACKING-FLAG
 FILLER

 
 
 
 array 4 times
 

  LAST-BILL-DATE  S9(6) COMP  YYMMDD  CLT-LAST-BILL-DATE  
  BILL-LAST-PERIOD-

START
 
 S9(6) COMP

 YYMMDD  CLT-BILL-LAST-PERIOD-START  

  BILL-LAST-PERIOD-
END

 
 S9(6) COMP

 YYMMDD  CLT-BILL-LAST-PERIOD-END  

  KIT-RECVD-DATE  S9(6) COMP  YYMMDD  CLT-KIT-RECVD-DATE  
  WORKSITE-BEGIN  S9(6) COMP  YYMMDD  CLT-WORKSITE-BEGIN  
  WORKSITE-END  S9(6) COMP  YYMMDD  CLT-WORKSITE-END  
      
 CLIENT-TAX-
CODE

    TFCTXFIL.COPYLIB  

  TAX-EST-CHG-
DATE

 S9(6) COMP  YYMMDD  CLT-TAX-EST-CHG-DATE  

  LAST-UPD-DATE  S9(6) COMP  YYMMDD  CLT-TAX-LAST-UPDATE-DATE  
  STATUS-DATE  S9(6) COMP  YYMMDD  CLT-TAX-STATUS-DATE  
  TAX-AGENCY-

SPECIFIC
    CTAS-DATE-1
    CTAS-DATE-2

 X(20)
 
 9(6) pos 1-6
 9(6) pos 7-12

 
 

 YYMMDD
 YYMMDD

 CLT-TAX-AGENCY-SPEC  

      
 MAG-TAPE-FILE     TFMAGFIL.COPYLIB  



  CPN-APPLY-DATE  S9(6) COMP  YYMMDD  MAG-CPN-APPLY-DATE  
  CPN-APPROVE-

DATE
 S9(6) COMP  YYMMDD  MAG-CPN-APPROVE-DATE  

  CPN-DISAPPR-
DATE

 S9(6) COMP  YYMMDD  MAG-CPN-DISAPPR-DATE  

  CPN-TERM-DATE  S9(6) COMP  YYMMDD  MAG-CPN-TERM-DATE  
  RET-APPLY-DATE  S9(6) COMP  YYMMDD  MAG-RET-APPLY-DATE  
  RET-APPROVE-

DATE
 S9(6) COMP  YYMMDD  MAG-RET-APPROVE-DATE  

  RET-DISAPPR-DATE  S9(6) COMP  YYMMDD  MAG-RET-DISAPPR-DATE  
  RET-TERM-DATE  S9(6) COMP  YYMMDD  MAG-RET-TERM-DATE  
  WGE-APPLY-DATE  S9(6) COMP  YYMMDD  MAG-WGE-APPLY-DATE  
  WGE-APPROVE-

DATE
 S9(6) COMP  YYMMDD  MAG-WGE-APPROVE-DATE  

  WGE-DISAPPR-
DATE

 S9(6) COMP  YYMMDD  MAG-WGE-DISAPPR-DATE  

  WGE-TERM-DATE  S9(6) COMP  YYMMDD  MAG-WGE-TERM-DATE  
      
 COMMENTS     TFCMTFIL.COPYLIB  
  CMT-KEY

   QTR-CMT-
LITERAL
   QTR-CMT-PER-YY
  QTR-CMT-PER-Q
  QTR-CMT-NOTE-
CODE

 X(8)
 
 X(1) pos 1
 X(2) pos 2-3
 X(1) pos 4
 
 X(4) pos 5-8

 
 
 

 YY

 CMT-KEY
 QTR-CMT-LITERAL
 
 QTR-CMT-PERIOD-YY
 QTR-CMT-PERIOD-Q
 QTR-CMT-NOTE-CODE
 

 

      
 LEDGER-TRX     TFLTXFIL.COPYLIB  
  DATE-ADDED  S9(6) COMP  YYMMDD  LED-TRX-DATE-ADDED  
  LIABILITY-DATE  S9(6) COMP  YYMMDD  LED-TRX-LIABILITY-DATE  
  POST-DATE  S9(6) COMP  YYMMDD  LED-TRX-POST-DATE  
  CHECK-DATE  S9(6) COMP  YYMMDD  LED-TRX-CHECK-DATE  
  HIST-POST-DATE  S9(6) COMP  YYMMDD  LED-TRX-HIST-POST-DATE  
  CURR-PERIOD  X(4)  YYQQ  LED-TRX-CURR-PERIOD  assumed, No data



in this field
      
 LIABILITY-HDR     TFLBHFIL.COPYLIB  
  DATE-ADDCHG  S9(6) COMP  YYMMDD  LBH-DATE-ADDCHG  
  LIABILITY-DATE  S9(6) COMP  YYMMDD  LBH-LIABILITY-DATE  
  DUE-DATE  S9(6) COMP  YYMMDD  LBH-DUE-DATE  
  PERIOD-END  S9(5) COMP  YYQNN  LBH-PERIOD-END  
  CHECK-DATE  S9(6) COMP  YYMMDD  LBH-CHECK-DATE  
  LAST-UPDATE-

DATE
 S9(6) COMP  YYMMDD  LBH-LAST-UPDATE-DATE  

      
 LIABILITY-DET     TFLBDFIL.COPYLIB  
  LIABILITY-DATE  S9(6) COMP  YYMMDD  LBD-LIABILITY-DATE  
      
 PAYROLL-
HEADER

    TFPRHFIL.COPYLIB  

  ENTRY-NO
  ENTRY-NO-REAL
   ENTRY-NO-COMP

 X(2)
  9(2)
  S9(4) COMP

 XX
 99

 -9999

 PRH-ENTRY-NO
 PRH-ENTRY-NO-REAL
 PRH-ENTRY-NO-COMP

 
 redefine to numeric
  redefine to binary

  DATE-ADDCHG  S9(6) COMP  YYMMDD  PRH-DATE-ADDCHG  
  POST-DATE  S9(6) COMP  YYMMDD  PRH-POST-DATE  
  LIABILITY-DATE

 FUNDS-RCVD-DATE
 S9(6) COMP
 S9(6) COMP

 YYMMDD
 YYMMDD

 PRH-LIABILITY-DATE
 PRH-FUNDS-RCVD-DATE

 
 redefine

  FUNDS-XFER-POST-
DATE

 
 S9(6) COMP

 
 YYMMDD

 PRH-FUNDS-XFER-POST-DATE  

  EXP-DUE-DATE
  EXP-DUE-DATE-
NUM

 X(6)
   9(6)

 YYMMDD  PRH-EXP-DUE-DATE
 PRH-EXP-DUE-DATE-NUM

 
 redefine

  STATUS-DATE  S9(6) COMP  YYMMDD  PRH-STATUS-DATE  
  BATCH-KEY

  BATCH-DATE
  BATCH-SEQ-NO
   RJE-BATCH-YEAR
    RJE-BATCH-FILE

 X(10).
  9(06) pos 1-6
  9(04) pos 7-10
    9(02) pos 1-2
    X(08) pos 3-10

 
 YYMMDD

 
 YY

 PRH-BATCH-KEY
 PRH-BATCH-DATE
 PRH-BATCH-SEQ-NO
 PRH-RJE-BATCH-YEAR
 PRH-RJE-BATCH-FILE

 
 
 
 redefine



  LAST-UPD-DATE  S9(6) COMP  YYMMDD  PRH-LAST-UPD-DATE  
      
 PAYROLL-
DETAIL

    TFPRDFIL.COPYLIB  

  CLIENT-ENTRY-NO
  CLIENT-ID
  ENTRY-NO
    ENTRY-NO-REAL
    ENTRY-NO-COMP

 X(10)
   X(8) pos 1-8
   X(2) pos 9-10
     9(2)
     S9(4) COMP

  PRD-CLIENT-ENTRY-NO
 PRD-CLIENT-ID
 PRD-ENTRY-NO
 PRD-ENTRY-NO-REAL
 PRD-ENTRY-NO-COMP

 
 
 
 redefine to numeric
  redefine to binary

  DUE-DATE
 LIABILITY-PERIOD

 S9(6) COMP
  S9(6) COMP

 YYMMDD  PRD-DUE-DATE
 PRD-LIABILITY-PERIOD

 
 redefine

      
 PAYROLL-HIST     TFPHSFIL.COPYLIB  
  DATE-ADDED  S9(6) COMP  YYMMDD  PAY-HIST-DATE-ADDED  
  STATUS-DATE  S9(6) COMP  YYMMDD  PAY-HIST-STATUS-DATE  
  DATE-RECEIVED  S9(6) COMP  YYMMDD  PAY-HIST-DATE-RECEIVED  
  EXP-DUE-DATE  X(6)  YYMMDD  PAY-HIST-EXP-DUE-DATE  
  LAST-UPD-DATE  S9(6) COMP  YYMMDD  PAY-HIST-LAST-UPD-DATE  
  PAYROLL-DATE

 
  LIABILITY-DATE

 X(6)
 
 9(6)

 YYMMDD  PAY-HIST-PAYROLL-DATE
 PAY-HIST-LIABILITY-DATE

 
 redefine

  LAST-CHECK-DATE  S9(6) COMP  YYMMDD  PAY-HIST-LAST-CHECK-DATE  
  TSR-ENTRY-NBR  X(2)   PAY-HIST-TSR-ENTRY-NBR  assume binaries

held
      
 QTR-RECON     TFQTRFIL.COPYLIB  
  CLIENT-PER

    ID
   CLT-PER

 X(12)
   X(8) pos 1-8
   X(4) pos 9-12

 
 

 YYQQ

 QTR-CLIENT-PER
 QTR-ID
 QTR-CLT-PER

 

  PERIOD  X(4)  YYQQ  QTR-PERIOD  
  DATE  S9(6) COMP  YYMMDD  QTR-DATE  
  TAX-CODE  X(4)   QTR-TAX-CODE  array 12 times
  TAX-WITHHELD  S9(9)V99 COMP-3   QTR-TAX-WITHHELD  array 12 times
  TAX-DUE  S9(9)V99 COMP-3   QTR-TAX-DUE  array 12 times



  NBR-QTRS  S9(2) COMP   QTR-NBR-QTRS  array 3 times
  NBR-TYPES  S9(3) COMP   QTR-NBR-TYPES  array 3 times
  SETUP-PRICE  S9(2)V99 COMP   QTR-SETUP-PRICE  array 3 times
  NBR-POSTINGS  S9(3) COMP   QTR-NBR-POSTINGS  array 3 times
  POSTING-PRICE  S9(2)V99   QTR-POSTING-PRICE  array 3 times
  NBR-RETURNS  S9(3) COMP   QTR-NBR-RETURNS  array 3 times
  RETURN-PRICE  S9(2)V99 COMP   QTR-RETURN-PRICE  array 3 times
  CLT-ID-PROC  PIC X(8)   QTR-CLT-ID-PROC  array 3 times
  CMNT-ID  PIC X(2)   QTR-CMNT-ID  array 4 times
      
 REPOST-HIST-
HDR

    TFRPHFIL.COPYLIB  

  HDR-QUARTER  X(4)  YYQQ  REP-HDR-QUARTER  
  HDR-QTR  X(4)  YYQQ  REP-HDR-QTR  
  DATE-ADDCHG  S9(6) COMP  YYMMDD  REPOST-DATE-ADDCHG  
  DATE-POSTED  S9(6) COMP  YYMMDD  REPOST-DATE-POSTED  
      
 REPOST-HIST-
DTL

    TFRPDFIL.COPYLIB  

  DTL-QUARTER  X(4)  YYQQ  REP-DTL-QUARTER  
  DTL-QTR  X(4)  YYQQ  REP-DTL-QTR  
      
 TAX-ID-CHG-TRX     TFCTTFIL.COPYLIB  
  DATE-ADDCHG  S9(6) COMP  YYMMDD  CTT-DATE-ADDCHG  
  POST-DATE  S9(6) COMP  YYMMDD  CTT-POST-DATE  
  QTR-PERIOD  X(4)  YYQQ  CTT-QTR-PERIOD  
      
 CHECK-MAINT-
TRX

    TFCMHFIL.COPYLIB  

  DATE-ADDED  S9(6) COMP  YYMMDD  CMH-DATE-ADDED  
  CHECK-DATE  S9(6) COMP  YYMMDD  CMH-CHECK-DATE  
  LIABILITY-DATE  S9(6) COMP  YYMMDD  CMH-LIABILITY-DATE  
  DUE-DATE

 CHECK-NO-2
 S9(6) COMP
 S9(6) COMP

 YYMMDD
 YYMMDD

 CMH-DUE-DATE
 CMH-CHECK-NO-2

 
 redefine



  POST-DATE  S9(6) COMP  YYMMDD  CMH-POST-DATE  
  APPROVAL-DATE  S9(6) COMP  YYMMDD  CMH-APPROVAL-DATE  
  DEPOSIT-DATE  S9(6) COMP  YYMMDD  CMH-DEPOSIT-DATE  
      
 CHECK-MAINT-
DTL

    TFCMDFIL.COPYLIB  

  LIABILITY-DATE  S9(6) COMP  YYMMDD  CMD-LIABILITY-DATE  
      
 TAX-PRINT-XREF     TFTCPFIL.COPYLIB  
  QTR-PERIOD  9(4)  YYQQ  TCP-QTR-PERIOD  
      
 BANK-
TRANSFERS

    TFBFXFIL.COPYLIB  

  DATE-ADDCHG  S9(6) COMP  YYMMDD  BANK-XFER-DATE-ADDCHG  
  POST-DATE  S9(6) COMP  YYMMDD  BANK-XFER-POST-DATE  
  LIABILITY-DATE  S9(6) COMP  YYMMDD  BANK-XFER-LIABILITY-DATE  
  PRH-ENTRY-NO  9(2)   BANK-XFER-PRH-ENTRY-NO  also holds binary

num
  FUNDS-XFER-DATE  S9(6) COMP  YYMMDD  BANK-XFER-FUNDS-XFER-DATE  
  PROCESS-DATE  S9(6) COMP  YYMMDD  BANK-XFER-PROCESS-DATE  
      
 MAG-CPN-EX     TFMCEFIL.COPYLIB  
  DEP-DATE  9(6)  YYMMDD  MTCIDDT-DEP-DATE  
  LIABILITY-DATE  S9(6) COMP  YYMMDD  MCE-LIABILITY-DATE  
  LIAB-PERIOD-

MMYY
 X4  MMYY  MCE-LIABILITY-PERIOD  

  LAST-UPD-DATE  S9(6) COMP  YYMMDD  MCE-LAST-UPD-DATE  
      
 BANK-HISTORY     TFBHSFIL.COPYLIB  
  DATE-ADDED  S9(6) COMP  YYMMDD  BHS-DATE-ADDED  
  XPECT-XFER-DATE  S9(6) COMP  YYMMDD  BHS-XPECT-XFER-DATE  
  QTR-PERIOD  9(4)  YYQQ  BHS-QTR-PERIOD  
  BANK-DATE  S9(6) COMP  YYMMDD  BHS-BANK-DATE  
      



 PAYROLL-DATES      
  PAYROLL-DATE  S9(6) COMP  YYMMDD   
  CALC-DATE  9(6)  YYMMDD   
      
 PRINT-QUEUE      
  QTR-PERIOD  X(4)  YYQQ   
  DATE-ADDCHG  S9(6) COMP  YYMMDD   
      
 ENTITYX      
  ENTITYX-DATA  X()    
          PAYEE (key)  pos 197-202  YYMMDD   
      
 PRPROC-CODE-
XREF

     

  LAST-UPD-DATE  S9(6) COMP  YYMMDD   
  STATUS-DATE  S9(6) COMP  YYMMDD   
      
 CHECK-REG-TRX      
  DATE-ADDED  S9(6) COMP  YYMMDD   
  POST-DATE  S9(6) COMP  YYMMDD   
  DEPOSIT-DATE  S9(6) COMP  YYMMDD   
      
 MAG-TAPE-HIST      
  DEPOSIT-DATE  9(6)  YYMMDD   
  TAPE-RETURN-

DATE
 S9(06)COMP  YYMMDD   

  DATE-ORIG-
CREATED

 S9(06) COMP  YYMMDD   

  DATE-LAST-
CREATED

 S9(06) COMP  YYMMDD   

  DATE-EXTRACT-
CREATED

 
 S9(06) COMP

 
 YYMMDD

  

  LAST-UPD-DATE  S9(06) COMP  YYMMDD   
      



 OPEN-ITEM-
HEADER

     

  POST-DATE  S9(6) COMP  YYMMDD   
  PERIOD-START-

DATE
 S9(6) COMP  YYMMDD   

  PERIOD-END-DATE  S9(6) COMP  YYMMDD   
  DUE-DATE  S9(6) COMP  YYMMDD   
  COLLECTION-DATA

    CREATING-PGM
    COLLECTION-
DATE
    COLLECTION-
TYPE

 X(8)
   X(2) pos 1-2
    S9(6) COMP pos 3-6
    X(2) pos 7-8

 
 

 YYMMDD

  

  ORIG-PRINT-DATE  S9(6) COMP  YYMMDD   
      
 OPEN-ITEM-
DETAIL

     

  LIABILITY-DATE  S9(6) COMP  YYMMDD   
      
 FEE-HIST-DTL      
  BILLING-PERIOD  9(4)  YYMM   
  DATE-ADDCHG  S9(6) COMP  YYMMDD   
  LIABILITY-DATE  S9(6) COMP  YYMMDD   
      
 FEE-HIST-SUM      
  BILLING-PERIOD  9(4)  YYMM   
  LAST-UPDATE-

DATE
 S9(6) COMP  YYMMDD   

  TERM-DATE  S9(6) COMP  YYMMDD   
      
 BALANCE-
TOTALS

     

  CLIENT-TAX-ACCT-
YEAR

 
 X(16)

 
 

  



     CLIENT-ID
     TAX-CODE
     ACCOUNT-TYPE
      YEAR

    X(08) pos 1-8
    X(04) pos 9-12
    9(02) pos 13-14
    9(02) pos 15-16

 
 
 

 YY
  BALANCE-TOTALS-

DATA
   PRIOR-PERIODIC-
DATE

 
 X(33)
 S9(06) COMP pos 1-4

 
 

 YYMMDD

  OCCURS 4 TIMES

  UPDATE-TIME-
STAMP
    UPDATE-DATE
    UPDATE-TIME

 S9(12) COMP
    S9(06) COMP pos 1-4
    S9(06) COMP pos 5-8

 
 YYMMDD

  

      
 BAL-ADJUST-
HDR

     

  LIABILITY-DATE  S9(06) COMP  YYMMDD   
      
 BAL-ADJUST-
DTL

     

  LIAB-DATE  S9(06) COMP  YYMMDD   redefine of sts-rate
9(2)V9(4) COMP

  EXP-DATE  S9(06) COMP  YYMMDD   redefine of
transmitted-rate
9(2)V9(4) COMP

  UPDATE-TIME-
STAMP
    UPDATE-DATE

 x(8)
    S9(06) COMP pos 1-4

 
 YYMMDD

  

      
 BAL-ADJ-
RELEASE

     

  ORIGINAL-
LIABILITY-DATE

 S9(06) COMP  YYMMDD   

  RELEASED-
LIABILITY-DATE

 S9(06) COMP  YYMMDD   

  UPDATE-TIME-  X(8)    



STAMP
 UPDATE-DATE
 UPDATE-DATE

 S9(06) COMP pos 1-4
 S9(06) COMP pos 5-8

 YYMMDD
 HHMMSS

      
 BAL-ADJ-DTL-
HST

     

  ORIGINAL-
LIABILITY-DATE

 S9(06) COMP  YYMMDD   

      
 BAL-RLSE-
NOTES

     

  ORIGINAL-
LIABILITY-DATE

 S9(06) COMP  YYMMDD   

      
 RECEIPTS-SUM      
  XPECT-XFER-DATE  S9(6) COMP  YYMMDD   
  QTR-PERIOD  9(4)  YYQQ   
  BANK-XFER-DATE  S9(6) COMP  YYMMDD   
  DATE-ADDED  S9(6) COMP  YYMMDD   
  RECEIPT-DATE  S9(6) COMP  YYMMDD   
  RECEIPT-POST-

DATE
 S9(6) COMP  YYMMDD   

  RETURN-DATE  S9(6) COMP  YYMMDD   
  RETURN-POST-

DATE
 S9(6) COMP  YYMMDD   

      
 BANK-CONFIRM      
  BANK-DATE  S9(6) COMP  YYMMDD   
  DATE-ADDED  S9(6) COMP  YYMMDD   
  DATE-MATCHED  S9(6) COMP  YYMMDD   
      
 BANK-LEDGER      
  LIABILITY-DATE  S9(6) COMP  YYMMDD   
  POST-DATE  S9(6) COMP  YYMMDD   



  CHECK-DATE  S9(6) COMP  YYMMDD   
  DATE-PAID  S9(6) COMP  YYMMDD   
  LAST-UPD-DATE  S9(6) COMP  YYMMDD   
      
 CHECK-
REGISTER

     

  DUE-DATE  S9(6) COMP  YYMMDD   
  POST-DATE  S9(6) COMP  YYMMDD   
  CHECK-DATE  S9(6) COMP  YYMMDD   
  RECON-DATE  S9(6) COMP  YYMMDD   
  DEPOSIT-DATE  S9(6) COMP  YYMMDD   
      
 CLIENT-LEDGER      
  TAX-ID

   FEE-INFO-1
    FEE-COUNT-1
    FEE-COUNT-2
    FEE-PRICE
    FEE-FLAT-RATE

 X(16).
  S9(16) COMP
    S9(6)V99 COMP pos
1-4
    S9(6)V99 COMP pos
5-8
    S9(6)V99 COMP pos
9-12
    S9(6)V99 COMP pos
13-16

   
 Redefine
 

  LIABILITY-DATE
   FUNDS-COLL-
DATE

 S9(6) COMP
   S9(6) COMP

 YYMMDD
 YYMMDD

  
 redefine

  POST-DATE  S9(6) COMP  YYMMDD   
  CHECK-DATE

   LIABILITY-
PERIOD

 S9(6) COMP
    S9(6) COMP

 YYMMDD
 YYMMDD

  
 redefine

  EXTRA-DATA
    CALC-DUE-DATE
    PRINT-DATE

 X(6)
   9(6)
   9(6)

 
 YYMMDD
 YYMMDD

  
 redefine
 redefine

      
 CHECK-REG-DTL      



  LIABILITY-DATE  S9(6) COMP  YYMMDD   
      
 EFTPS-REF-DTL      
  DUE-DATE  S9(06) COMP  YYMMDD   
  ADD-DATE  S9(06) COMP  YYMMDD   
  CONFIRM-DATE  S9(06) COMP  YYMMDD   
      
 SAMEDAY-XREF-
DTL

     

  ADD-DATE  S9(6) COMP  YYMMDD   
  CONFIRM-DATE  S9(6) COMP  YYMMDD   
      

 
 
 
⇒ STSQTR

 
 FEE-PRICING-HDR      
  FEE-PRICING-ID  X(08)

  X(04)
  X(04)

 
 COST
 YYMM

  ONLY IF COST AS
FIRST FOUR AND
POS 5 = 9

  DATE-ADDCHG  S9(6) COMP  YYMMDD   
  CREDIT-CATEGORY-

DATA
 PIC X(2)    OCCURS 3 TIMES

  CREDIT-CAT-APPLY-
TO-CODES

 PIC X(1)    OCCURS 4 TIMES

      
 FEE-PRICING-DTL      
  FEE-PRICING-ID  X(08)

  X(04)
  X(04)

 
 COST
 YYMM

  ONLY IF COST AS
FIRST FOUR AND
POS 5 = 9

  FEE-ID-AND-CODE.
  FEE-PRICING-KEY
 
 

 
 X(08)
  X(04)
  X(04)

 
 
 COST
 YYMM

  ONLY IF COST AS
FIRST FOUR AND
POS 5 = 9



  TAX-CODE   X(04)
      
      
      
 CLIENT-FEE-HIST      
  COMBINE-PERIOD

   COMBINE-ID
    REM-CMBN-CODE
     RCC-CMPNY-CODE
     FILLER
   QTR-PERIOD

 X(12)
    X(8) pos 1-8
    X(8)
 
      X(4) pos 1-4
      X(4) pos 5-8
    X(4) pos 9-12

 
 
 
 
 
 
 YYQQ

  
 
 redefine
 

  CLIENT-PERIOD
    CLIENT-ID
    QTR-PERIOD-KEY

 X(12)
    X(8) pos 1-8
    X(4) pos 9-12

 
 
 YYQQ

  

  APPLY-TO-CODE
     APPLY-TO-QTR

 X(4)
   X(4)

 
 YYQQ

  
 redefine

  LIABILITY-PERIOD
     PMT-RCVD-DATE

 S9(6) COMP
    S9(6) COMP

 YYMMDD
 YYMMDD

  
 redefine

      
 FEE-TRX-FILE      
  CLIENT-PERIOD

     CLIENT-ID
      QTR-PERIOD

 X(12)
   X(8) pos 1-8
   X(4) pos 9-12

 
 
 YYQQ

  

  DATE-ADDCHG  S9(6) COMP  YYMMQQ   
  POST-DATE  S9(6) COMP  YYMMQQ   
  LIABILITY-DATE  S9(6) COMP  YYMMQQ   
      
 QE-DATA      
  CLIENT-YEAR

    CLIENT-ID
    YEAR

 X(10)
 X(08) pos 1-8
 X(02) pos 9-10

 
 
 YY

  

  CLT-TAX-ACCT-YR
     CLIENT-ID-KEY
     TAX-CODE

 X(16)
    X(8) pos 1-8
    X(4) pos 9-12

 
 
 

  



     ACCOUNT-TYPE
    YEAR-KEY

    9(2) pos 13-14
    X(2) pos 15-16

 
 YY

      
 QE-DATA-HIST  CLT-TAX-ACCT-PER

     CLIENT-ID-KEY
     TAX-CODE
     ACCOUNT-TYPE
    QTR-PERIOD

 X(18)
    X(8) pos 1-8
    X(4) pos 9-12
    9(2) pos 13-14
    9(4) pos 15-18

 
 
 
 
 YYQQ

  

  DATE-TIME  9(8) COMP    
      
 QE-DATA-TRX-HDR      
  CLIENT-PERIOD

    CLIENT-ID
    QTR-PERIOD

 X(12)
   X(8) pos 1-8
   9(4) pos 9-12

 
 
 YYQQ

  

  DATE-ADDCHG  9(6) COMP  YYMMDD   
  POST-DATE  S9(6) COMP  YYMMDD   
  AMEND-RPT-DATE  S9(6) COMP  YYMMDD   
      
 QE-DATA-TRX-DTL      
  CLT-PERIOD-ENT

    CLIENT-ID
    QTR-PERIOD
    ENTRY-NO

 x(14)
   X(8) pos 1-8
   9(4) pos 9-12
   9(2) pos 13-14

 
 
 YYQQ

  

  CLIENT-PERIOD
    CLIENT-ID
    QTR-PERIOD

 x(12)
   X(8) pos 1-8
   9(4) pos 9-12

 
 
 YYQQ

  

      
 QE-FUNDS-XFER      
  DATE-ADDCHG  S9(6) COMP  YYMMDD   
  POST-DATE  S9(6) COMP  YYMMDD   
  LIABILITY-DATE  S9(6) COMP  YYMMDD   
  FUNDS-XFER-DATE  S9(6) COMP  YYMMDD   
      
 QE-RECON      



  CLIENT-PERIOD
    CLIENT-ID
    QTR-PERIOD

 x(12)
    X(8) pos 1-8
    9(4) pos 9-12

 
 
 YYQQ

  

  COMBINE-PERIOD
    COMBINE-ID
    QTR-PERIOD

 X(12)
   X(8) pos 1-8
   X(4) pos 9-12

 
 
 YYQQ

  

  FUNDS-XFER-DATE  S9(6) COMP  YYMMDD   
  RPT-RECEIPT-DATE  S9(6) COMP  YYMMDD   
  COMPLETE-DATE  S9(6) COMP  YYMMDD   
      
 QE-RECON-NOTES      
  CLIENT-PERIOD

 CLIENT-ID
 QTR-PERIOD

 X(12)
 X(8) pos 1-8
 9(4) pos 9-12

 
 
 YYQQ

  

      
 QE-TAX-ID-XREF      
  CLIENT-PERIOD

 CLIENT-ID
 QTR-PERIOD

 X(12)
 X(8) pos 1-8
 9(4) pos 9-12

 
 
 YYQQ

  

  TAX-CODE-ID-PER
 CONSOL-TAX-CODE
 TAX-ID
 QTR-PERIOD-KEY

 X(24)
 X(4) pos 1-4
 X(16) pos 5-20
 9(4) pos 21-24

 
 
 
 YYQQ

  

      
 TAX-SUMMARY-HIST      
  COMBINE-PERIOD

 COMBINE-ID
 QTR-PERIOD

 X(12)
 X(8) pos 1-8
 X(4) pos 9-12

 
 
 YYQQ

  

  CLIENT-PERIOD
 CLIENT-ID
 QTR-PERIOD

 X(12)
 X(8) pos 1-8
 9(4) pos 9-12

 
 
 YYQQ

  

      
 TAX-RETURN-SUM      
  TAX-CODE-ID-PER

CONSOL-TAX-CODE
 X(24)
 X(4) pos 1-4

 
 

  



TAX-ID
 QTR-PERIOD-KEY

 X(16) pos 5-20
 9(4) pos 21-24

 
 YYQQ

      
 TAX-RETURN-DTL      
  TAX-CODE-ID-YR

CONSOL-TAX-CODE
TAX-ID
 YEAR

 X(22)
 X(4) pos 1-4
 X(16) pos 5-20
 X(2) pos 21-22

 
 
 
 YY

  

  CLT-TAX-ACCT-YR
 CLIENT-ID
 TAX-CODE
 ACCOUNT-TYPE
 YEAR-KEY

 X(16)
 X(8) pos 1-8
 X(4) pos 9-12
 9(2) pos 13-14
 X(2) pos 15-16

 
 
 
 
 YY

  

      
 PROCESS-LOG      
  QTR-PERIOD  9(4)  YYQQ   
  DATE-ADDED  S9(6)  YYMMDD   
      
 TAX-YE-SUMMARY      
  TAX-CODE-ID-YR

CONSOL-TAX-CODE
TAX-ID
 YEAR

 X(22)
 X(4) pos 1-4
 X(16) pos 5-20
 X(2) pos 21-22

 
 
 
 YY

  

  TAX-CODE-ID-YR-2
CONSOL-TAX-CODE
TAX-ID
 YEAR

 X(22)
 X(4) pos 1-4
 X(16) pos 5-20
 X(2) pos 21-22

 
 
 
 YY

  

      
 TAX-DLY-SUMMARY      
  TAX-CODE-ID-PER

CONSOL-TAX-CODE
TAX-ID
 QTR-PERIOD-KEY

 X(24)
 X(4) pos 1-4
 X(16) pos 5-20
 9(4) pos 21-24

 
 
 
 YYQQ

  

  DATE-ADDCHG  S9(6) COMP  YYMMDD   
      



 TAX-DLY-DEPOSIT      
  TAX-CODE-ID-PER

CONSOL-TAX-CODE
TAX-ID
 QTR-PERIOD-KEY

 X(24)
 X(4) pos 1-4
 X(16) pos 5-20
 9(4) pos 21-24

 
 
 
 YYQQ

  

  DATE-ADDCHG  S9(6) COMP  YYMMDD   
  LIAB-DATES  S9(06) COMP  YYMMDD   array 32 times
  CHECK-DATES  S9(06) COMP  YYMMDD   array 32 times
      
 QTR-TAX-HDR      
  QTR-PER  X(04)  YYQQ   
      
 QTR-TAX-DTL      
  QTR-PER  X(04)  YYQQ   
      
      
 

 
 
⇒ STSCTL
 CONTROL     QSCTLFIL.COPYLIB

 TFCTLFIL.COPYLIB
 depending on the
key, date fields
could hold valid
dates or invalid
information

  QTR-PERIOD  9(4)  YYQQ  CTL-QTR-PERIOD  
  FUNDS-XFER-DATE  S9(6) COMP  YYMMDD  CTL-FUNDS-XFER-DATE  
  CURR-PERIOD  9(5) COMP  Yynnn  CTL-CURR-PERIOD  
  IRS-TAPE-APPL-

DATE
 9(6) COMP  YYMMDD  CTL-IRS-TAPE-APPL-

DATE
 

  QE-LATE-DATE-INFO  S9(6) COMP  YYMMDD  CTL-QE-LATE-DATE-INFO  
  QE-FUNDS-XFER-

DAY-INFO
 S9(6) COMP  YYMMDD  CTL-QE-FUNDS-XFER-

DAY-INFO
 

  CHECK-TRX-POST-  S9(6) COMP  YYMMDD  CTL-CHECK-TRX-POST-  



DATE DATE
      
 GROUP-MASTER     QSGMRFIL.COPYLIB /

 TFSCMFIL.COPYLIB
 

  GROUP-MASTER-
RECORD
   GROUP-ID
   GROUP-
DESCRIPTION
   GROUP-SECURITY-
LVL
   GROUP-CLIENT-
CODE
   GROUP-CLIENT-
DIVISION
   GROUP-COMPANY-
CODE
   GROUP-PROC-
ASSOC-ID
   GROUP-STS-BANK-
ID
   GROUP-PR-PROC-ID
   GROUP-PR-COLL-ID
   GROUP-CHECK-
FIELD
   GROUP-DEPT-CODE
  FILLER
  FILLER
 GROUP-MASTER-
RECORD-ZERO
   FILLER
   GROUP-ZERO-
CHECK-DATE
  GROUP-ZERO-ACCT-
PASSWORD
  FILLER

 
 
 9(6).
 
 X(20).
 
 9(2) COMP
 
 X(5).
 
 X(3).
 
 X(4).
 
 X(4).
 
 X(2)
 
 X6)
 
 X(6).
 
 X(2)
 .
 X(2).
 X(5).
 X(7)
 
 
 9(6).
 
 9(6)

  
 
 GROUP-ID
 GROUP-DESCRIPTION
 
 GROUP-SECURITY-LVL
 
 GROUP-CLIENT-CODE
 
 GROUP-CLIENT-
DIVISION
 GROUP-COMPANY-CODE
 
 GROUP-PROC-ASSOC-ID
 
 GROUP-STS-BANK-ID
 
 GROUP-PR-PROC-ID
 
 GROUP-PR-COLL-ID
 
 GROUP-CHECK-FIELD
 
 GROUP-DEPT-CODE
 
 
 
 
 
 
 GROUP-ZERO-CHECK-
DATE

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 redefine
 
 
 no records found



 
 X(8).
 X(47)

 GROUP-ZERO-ACCT-
PASSWORD
 

with dates, assume
YYMMDD

      
 GROUP-DETAIL     QSGDLFIL.COPYLIB  
      
 REQUEST-TRX     QSRQTFIL.COPYLIB /

 TFRQTFIL.COPYLIB
 

  DATE-ADDED  S9(6) COMP  YYMMDD  RQT-DATE-ADDED  
  DATE-PROCESSED  S9(6) COMP  YYMMDD  RQT-DATE-PROCESSED  
  QTR-PERIOD  9(4)  YYQQ  RQT-QTR-PERIOD  
  STARTING-LIAB-

DATE
 9(6)  YYMMDD  RQT-STARTING-LIAB-

DATE
 

  ENDING-LIAB-DATE  9(6)  YYMMDD  RQT-ENDING-LIAB-DATE  
  STARTING-POST-

DATE
 9(6)  YYMMDD  RQT-STARTING-POST-

DATE
 

  ENDING-POST-DATE  9(6)  YYMMDD  RQT-ENDING-POST-DATE  
  SELECT-DATA

  TAX-CODE-ID-
PERIOD
  TAX-CODE-AND-ID
 TAX-ID
  RETURN-QTR-
PERIOD

 X(80)
 
 X(24) pos 1-24
   X(4) pos 1-4
   X(16) pos 5-20
 
   9(4) pos 21-24

 
 
 
 
 
 YYQQ

 RQT-SELECT-DATA
 RQT-TAX-CODE-ID-
PERIOD
 RQT-TAX-CODE-AND-ID
 
 RQT-RETURN-QTR-
PERIOD

 

      
 TEXT-DETAIL     QSTXTFIL.COPYLIB /

 TFTXTFIL.COPYLIB
 

  CLIENT-PERIOD
  CLIENT-ID-KEY
  QTR-PERIOD-KEY

 X(12)
   X(8) pos 1-8
   X(4) pos 9-12

 
 
 YYQQ

 TXT-CLIENT-PERIOD
 TXT-CLIENT-ID-KEY
 XT-QTR-PERIOD-KEY

 

  TEXT-KEY
 CLIENT-ID
 QTR-PERIOD
 TEXT-TYPE

 X(14)
 X(8) pos 1-8
 X(4) pos 9-12
 X(2) pos 13-14

 
 
 YYQQ

 TXT-TEXT-KEY
 TXT-CLIENT-ID
 TXT-QTR-PERIOD
 TXT-TEXT-TYPE

 

  TXT-TEXT  X(70)    



 FILLER
 CLIENT-NOTE-TEXT
 CLIENT-NOTE-USER
 CLIENT-NOTE-DATE
 FILLER

 X(70)
 X(50) pos 1-50
 X(8) pos 51-58
 9(6) pos 59-64
 X(6) pos 65-70

 
 
 
 YYMMDD

 redefine

  PHS-LAST-UPD-DATE  S9(6) COMP  YYMMDD   
  TXT-TEXT-KEY

 TXT-QTR-PERIOD
 TXT-FILLER
 TXT-TEXT-TYPE

 X(14)
 X(04) pos 1-4
 X(08) pos 5-12
 X(02) pos 13-14

 
 YYQQ

  

  LAST-UPD-DATE  S9(06) COMP  YYMMDD  TCD-LAST-UPD-DATE  
      
 RJE-FILE-HEADER     TFRFHFIL.COPYLIB  
  LAST-UPDATE-DATE  S9(6) COMP  YYMMDD  RFH-LAST-UPDATE-DATE  
  DATE-RECEIVED  S9(6) COMP  YYMMDD  RFH-DATE-RECEIVED  
  DATE-RERUN  S9(6) COMP  YYMMDD  RFH-DATE-RECEIVED  
  DATE-POSTED  S9(6) COMP  YYMMDD  RFH-DATE-POSTED  
      
 BANK-FILE     QSBNKFIL.COPYLIB /

 TFBNKFIL.COPYLIB
 

  START-DATE  S9(6) COMP  YYMMDD  BANK-START-DATE  
  END-DATE  S9(6) COMP  YYMMDD  BANK-END-DATE  
  LAST-UPD-DATE  S9(6) COMP  YYMMDD  BANK-LAST-UPD-DATE  
  TAPE-APPROVAL-

DATE
 S9(6) COMP  YYMMDD  BANK-TAPE-APPROVAL-

DATE
 

      
 BANK-BALANCE     TFBKBFIL.COPYLIB  
  STMNT-DATE  S9(6) COMP  YYMMDD  BANK-STMNT-DATE  
  STMNT-UPD-DATE  S9(6) COMP  YYMMDD  BANK-STMNT-UPD-DATE  
  CURR-DATE  S9(6) COMP  YYMMDD  BANK-CURR-DATE  
  CURR-UPD-DATE  S9(6) COMP  YYMMDD  BANK-CURR-UPD-DATE  
      
 AUDIT-FILE      
  AUDIT-DATE  S9(6) COMP  YYMMDD   



      
 RJE-YTD-CURR      
  LIABILITY-DATE  9(6) COMP  YYMMDD   
  LAST-UPD-DATE  9(6) COMP  YYMMDD   
      
 RJE-YTD-QTR      
  QTR-PERIOD-1  9(4)  YYQQ   
  QTR-PERIOD-2  9(4)  YYQQ   
  QTR-PERIOD-3  9(4)  YYQQ   
  QTR-PERIOD-4  9(4)  YYQQ   
  LAST-UPD-DATE  9(6) COMP  YYMMDD   
      
 TI-DATA      
  TI-DATE  S9(06) COMP  YYMMDD   
  EFF-DATE  S9(06) COMP  YYMMDD   
  EFF-QUARTER  X(04)  YYQQ   
  CREATE-DATE  S9(06) COMP  YYMMDD   
  LAST-UPD-DATE  S9(06) COMP  YYMMDD   
      
 AUDIT-DETAIL      
  RPTED-DATE  S9(06) COMP  YYMMDD   
  TI-DATE  S9(06) COMP  YYMMDD   
  EFFECTIVE-DATE  S9(06) COMP  YYMMDD   
  LAST-UPD-DATE  S9(06) COMP  YYMMDD   
  RATE-EFFECTIVE-

QTR
 X(4)  YYQQ   

      
 BILLING-CONTROL      
  LAST-PERIOD-START  S9(06) COMP  YYMMDD   
  LAST-PERIOD-END  S9(06) COMP  YYMMDD   
  CURR-PERIOD-

START
 S9(06) COMP  YYMMDD   

  CURR-PERIOD-END  S9(06) COMP  YYMMDD   
      



 NEXT-TRX-
NUMBERS

     

  LAST-UPDATE-DATE  S9(6)COMP  YYMMDD   
      
 EFTPS-CONTROL      
  813-JULIAN-DATE  X(06)  YYnnn   
  CONTROL-UPD-DATE  S9(06) COMP  YYMMDD   
      
 EFTPS-REJECT      
  REJECT-UPD-DATE  S9(06) COMP  YYMMDD   
      

 
 

⇒ STSINA
 INA-LEDGER-01 - 08     TFILDFIL.COPYLIB  all ina-ledger sets

look the same
  TAX-ID

 FEE-INFO-1
   FEE-COUNT-1
 FEE-COUNT-2
 FEE-PRICE
 FEE-FLAT-RATE

 X(16).
 X(16).
 S9(6)V99 COMP pos 1-4
 S9(6)V99 COMP pos 5-8
 S9(6)V99 COMP pos 9-12
 S9(6)V99 COMP pos 13-16

   
 redefine;
 ISSUE; require
more ana. To see
when amounts are
used over tax-id

  LIABILITY-DATE
 FUNDS-COLL-DATE

 S9(6) COMP
 S9(6) COMP

 YYMMDD
 YYMMDD

  
 redefine

  POST-DATE  S9(6) COMP  YYMMDD   
  CHECK-DATE

   LIABILITY-PERIOD
 S9(6) COMP
 S9(6) COMP

 YYMMDD
 YYMMDD

  
 redefine

  EXTRA-DATA
 CALC-DUE-DATE
 PRINT-DATE

 X(6)
 9(6)
 9(6)

 
 YYMMDD
 YYMMDD

  
 redefine
 redefine

 CES-HISTORY      
  TAX-ID

 FEE-INFO-1
   FEE-COUNT-1
 FEE-COUNT-2

 X(16).
 X(16).
 S9(6)V99 COMP pos 1-4
 S9(6)V99 COMP pos 5-8

   
 redefine



 FEE-PRICE
 FEE-FLAT-RATE

 S9(6)V99 COMP pos 9-12
 S9(6)V99 COMP pos 13-16

  LIABILITY-DATE
 FUNDS-COLL-DATE

 S9(6) COMP
 S9(6) COMP

 YYMMDD
 YYMMDD

  
 redefine

  POST-DATE  S9(6) COMP  YYMMDD   
  CHECK-DATE

   LIABILITY-PERIOD
 S9(6) COMP
 S9(6) COMP

 YYMMDD
 YYMMDD

  
 redefine

  EXTRA-DATA
 CALC-DUE-DATE
 PRINT-DATE

 X(6)
 9(6)
 9(6)

 
 YYMMDD
 YYMMDD

  
 redefine
 redefine

      
 INA-SUMMARY      
  KEY

 CLT-STATUS
 QTR-PERIOD
 CLIENT-ID
 ACTUAL-PERIOD

 X(18)
 X(2) pos 1-2
 9(4) pos 3-6
 X(8) pos 7-14
 9(4) pos 15-18

   

      
 

 
⇒ STSCIS
 CIS-TABS     QSCDEFIL.COPYLIB  depending on key,

filler92 can be
redefined any
numerous ways

  FILLER92
 DESCRIPTION
  RESPON-DEPT
 OPEN-DATE
 CLOSE-DATE
 SURETY-LEVEL
 BILLABLE
 REASON-FEES

 X(92)
 X(30) pos 1-30
 X(02) pos 31-32
 9(06) pos 33-38
 9(06) pos 39-44
 9(03) pos 45-47
 X(02) pos 48-49
 9(06) pos 50-55

 
 
 
 YYMMDD
 YYMMDD

  

 CIS-TABS  FILLER92  X(92)   QSCTBFIL.COPYLIB  
 CIS-TABS  FILLER92  X(92)   QSRFDFIL.COPYLIB  



 REQ-TYPE-FLAG
 CHANGE-TYPE-FLAG

 X(02) pos 1-2
 
 X(02) pos 3-4

 

 CIS-TABS  FILLER92  X(92)   QSSPCFIL.COPYLIB  
 CIS-TABS  FILLER92

 NUM-EQUIV
  NO-TIMES
  NO-ACTIVE
  CLOSE-OPEN-STEP
  CLOSE-TYPE
  ADD-FLAG

 X(92)
 S9(03) pos 1-3
 S9(03) pos 4-6
 S9(03) pos 7-10
 X(02) pos 11-12
 X(02) pos 13-14
 X(02) pos 15-16

  QSSPDFIL.COPYLIB
 

 

 CIS-TABS  FILLER92
 CREATE-WIP
 INITIATOR
 RECEIVER
 CLOSE-TO-STEP
 INITIATE-STEP
 REQ-FIELD-TAB

 X(92)
 X(02)pos 1-2
 X(04)pos 3-6
 X(04) pos 7-10
 X(02) pos 11-12
 X(06) pos 13-18
 X(06) pos 19-24

  QSSPTFIL.COPYLIB
 

 

 CIS-TABS  FILLER92
 SCOPE
 NAME-TYPE
 SUPR-IN
 AE-XREF

 X(92)
 X(04) pos 1-4
 X(08) pos 5-12
 X(03) pos 13-15
 X(03) pos 16-18

  QSUSTFIL.COPYLIB  

 CIS-TABS  FILLER92
 USER

 X(92)
 X(04) pos 1-4

  QSUTTFIL.COPYLIB  

      
 INQ-DTL     QSINQFIL.COPYLIB /

 TFINQFIL.COPYLIB
 

  PERIOD  X(4)  YYQQ   
  NOTICE-DATE  9(6)  YYMMDD   
  LOGIN-DATE  9(6)  YYMMDD   
  LOGOFF-DATE  9(6)  YYMMDD   
  MAIL-DATE  9(6)  YYMMDD   
  LOGIN-DATE-SORT  9(6)  YYMMDD   
  START-STEP-TS  9(12)  YYMMDDH   



HMMSS
  TOT-AMOUNT-CIS     I3 invalid integer

type
  TAX-AMOUNT-CIS     I3 invalid integer

type
  PEN-AMOUNT     I3 invalid integer

type
  INT-AMOUNT     I3 invalid integer

type
  FORM-AMOUNT     I3 invalid integer

type
 NOTES-DTL     QSNOTFIL.COPYLIB

 TFNOTFIL.COPYLIB
 

  CREATE-TS  9(12)  YYMMDDH
HMMSS

 NOTES-DTL-CREATE-TS  

      
 STEPS-DTL     QSSTPFIL.COPYLIB  
  START-STEP-TS  9(12)  YYMMDDH

HMMSS
  

  STOP-STEP-TS  9(12)  YYMMDDH
HMMSS

  

      
 TAX-ALERT-DTL     QSTADFIL.COPYLIB  
  ALERT-DATE  9(6)  YYMMDD   
      

 
 

⇒ TAXMAN
 KEY-MASTER      
  DATE  X(6)  YYMMDD   
      

 
⇒ LEDGER
 MONTHLY-LEDGER      



  MONTHLY-PERIOD  X(4)  YYQQ   
      
 PROCESS-INFO      
  LIAB-DATE  S9(6) COMP  YYMMDD   
  POST-DATE  S9(6) COMP  YYMMDD   
      

 
 

⇒ FAX
 FAX-DETAIL      
  ENTRY-NO  9(02)    contains binary

numbers
  TRANS-DATE  S9(06) COMP  YYMMQQ   
  CHECK-DATE  S9(06) COMP  YYMMQQ   
      
 FAX-NOTES-HDR      
  DATE-TIME-SENT  S9(12)  YYMMDDH

HMMSS
  

  LIABILITY-DATE  S9(06) COMP  YYMMDD   
  UPDATE-TIME-

STAMP
 S9(12) COMP  YYMMDDH

HMMSS
  

      
 

 
⇒ RDATA
 RETURN-DATA      
  RDATA1  X(232)    holds forms

information
  RDATA2  X(232)    holds forms

information
      
 FIELDNAME-KEY      
  LAST-UPD-DATE  S9(6) COMP  YYMMDD   
      



 
⇒ WGE
 WAGE-HEADER      
  CLIENT-QTR-STATE

 CLIENT-ID
 PERIOD
 STATE

 X(14)
 X(08) pos 1-8
 X(04) pos 9-12
 X(02) pos 13-14

 
 
 YYQQ

  

  STATE-QTR-EIN
 STATE
 PERIOD
 EIN

 x(22)
 X(02) pos 1-2
 X(04) pos 3-6
 X(16) pos 7-22

 
 
 YYQQ

  

  DATE-ADDCHG  S9(06) COMP  YYMMDD   
  POST-DATE  S9(06) COMP  YYMMDD   
      
 WAGE-DETAIL      
  NEW-HIRE-DATE  S9(07)V99 COMP  MMDDYY   
      
 LCL-WAGE-HEADER      
  CLIENT-QTR-LOCAL

 CLIENT-ID
 PERIOD
 STATE
 LOCAL

 x(16)
 X(08) pos 1-8
 X(04) pos 9-12
 X(02) pos 13-14
 X(02) pos 15-16

 
 
 YYQQ

  

  LOCAL-QTR-EIN
 STATE
 LOCAL
 PERIOD
 EIN

 x(24)
 X(02) pos 1-2
 X(02) pos 3-4
 X(04) pos 5-8
 X(16) pos 9-24

 
 
 
 YYQQ

  

  DATE-ADDCHG  S9(06) COMP  YYMMDD   
  POST-DATE  S9(06) COMP  YYMMDD   
      
 CLIENT-PERIODS      
  CLIENT-PERIOD

 CLIENT-ID
 PERIOD

 X(12)
 X(08) pos1-8
 X(04) pos 9-12

 
 
 YYQQ

  



  CLIENT-ACT-START  S9(06) COMP  YYMMDD   
  FINAL-WAGE-DATE  S9(06) COMP  YYMMDD   
      
 WAGE-HEADER-A      
  CLIENT-QTR-STATE

 CLIENT-ID
 PERIOD
 STATE

 X(14)
 X(08) pos 1-8
 X(04) pos 9-12
 X(02) pos 13-14

 
 
 YYQQ

  

  STATE-QTR-EIN
 STATE
 PERIOD
 EIN

 x(22)
 X(02) pos 1-2
 X(04) pos 3-6
 X(16) pos 7-22

 
 
 YYQQ

  

  CLIENT-PERIOD
 CLIENT-ID
 PERIOD

 X(12)
 X(08) pos 1-8
 X(04) pos 9-12

 
 
 YYQQ

  

  ENTRY-NO  X(02)    may hold binary
numbers

  DATE-ADDCHG  S9(06) COMP  YYMMDD   
  POST-DATE  S9(06) COMP  YYMMDD   
      
 WAGE-DETAIL-A      
  CLIENT-PERIOD

 CLIENT-ID
 PERIOD

 X(12)
 X(08) pos 1-8
 X(04) pos 9-12

 
 
 YYQQ

  

  CLIENT-QTR-STATE
 CLIENT-ID
 PERIOD
 STATE

 X(14)
 X(08) pos 1-8
 X(04) pos 9-12
 X(02) pos 13-14

 
 
 YYQQ

  

  ENTRY-NO  X(02)    but may hold binary
numbers

  NEW-HIRE-DATE  S9(07)V99 COMP  MMDDYY   
      
 LCL-WAGE-HDR-A      
  CLIENT-QTR-LOCAL

 CLIENT-ID
 x(16)
 X(08) pos 1-8

 
 

  



 PERIOD
 STATE
 LOCAL

 X(04) pos 9-12
 X(02) pos 13-14
 X(02) pos 15-16

 YYQQ

  LOCAL-QTR-EIN
 STATE
 LOCAL
 PERIOD
 EIN

 x(24)
 X(02) pos 1-2
 X(02) pos 3-4
 X(04) pos 5-8
 X(16) pos 9-24

 
 
 
 YYQQ

  

  CLIENT-PERIOD
 CLIENT-ID
 PERIOD

 X(12)
 X(08) pos 1-8
 X(04) pos 9-12

 
 
 YYQQ

  

  ENTRY-NO  X(02)    may hold binary
  DATE-ADDCHG  S9(06) COMP  YYMMDD   
  POST-DATE  S9(06) COMP  YYMMDD   
      
 LCL-WAGE-DTL-A      
  CLIENT-PERIOD

 CLIENT-ID
 PERIOD

 X(12)
 X(08) pos 1-8
 X(04) pos 9-12

 
 
 YYQQ

  

  CLIENT-QTR-LOCAL
 CLIENT-ID
 PERIOD
 STATE
 LOCAL

 x(16)
 X(08) pos 1-8
 X(04) pos 9-12
 X(02) pos 13-14
 X(02) pos 15-16

 
 
 YYQQ

  

  ENTRY-NO  X(02)    may hold binary
      
 WC-SUMMARY      
  STATE-QTR-EIN

 STATE
 PERIOD
 EIN

 x(22)
 X(02) pos 1-2
 X(04) pos 3-6
  X(16) pos 7-22

 
 
 YYQQ

  

      
 

 
⇒ STSW2F



W2-TAX-EIN-MAST
REPORT-YEAR
REPORT-CEN
REPORT-YR

9(04)
9(002) pos 1-2
9(002) pos 3-4

CCYY
CC
YY

STATUS-DATE 9(009) COMP YYMMDD
LAST-UPD-DATE 9(009) COMP YYMMDD

W2-DATA
EMPE-YEAR X(04) CCYY
STATUS-DATE S9(6) COMP YYMMDD
LAST-UPD-DATE S9(6) COMP YYMMDD

W2C-DATA
W2C-KEY
RPTING-YEAR
EMPLR-FEIN
EMPLE-SSN
RECORD-TYPE

x(26)
X(004) pos 1-4
X(012) pos 5-16
X(010) pos 17-26
X(002) pos 27-28

CCYY



Table 2:

HANDLING OF INVALID DATA.

SQL> desc payee_record
 Name              Null?  Type
 ------------------------------- -------- ----
 PAYEE_TABLE               VARCHAR2(6)
 PAYEE_ID                 VARCHAR2(14)
 PAYEE_NAME                VARCHAR2(30)
 PAYEE_ADDR1               VARCHAR2(30)
 PAYEE_ADDR2               VARCHAR2(30)
 PAYEE_CITY                VARCHAR2(16)
 PAYEE_STATE               VARCHAR2(2)
 PAYEE_ZIP                VARCHAR2(10)
 PAYEE_ESCROW_FLAG            VARCHAR2(1)
 PAYEE_DAILY_BANK_ID           VARCHAR2(2)
 PAYEE_QE_BANK_ID             VARCHAR2(2)
 PAYEE_PI_BANK_ID             VARCHAR2(2)
 PAYEE_EFT_OK_FLAG            VARCHAR2(1)
 PAYEE_ABA_TRA_NO             VARCHAR2(8)
 PAYEE_TRA_CHECK_DIG           VARCHAR2(1)
 PAYEE_ACCT_NO              VARCHAR2(17)
 PAYEE_TXP_TAX_TYPE            VARCHAR2(5)
 PAYEE_PERIOD_END_FREQ          VARCHAR2(1)
 PAYEE_PERIOD_END_EOP_DUE         VARCHAR2(1)
 PAYEE_TXP_AMT_TYPE_1           VARCHAR2(1)
 PAYEE_TXP_TAX_CODE_1           VARCHAR2(4)
 PAYEE_TXP_AMT_TYPE_2           VARCHAR2(1)
 PAYEE_TXP_TAX_CODE_2           VARCHAR2(4)
 PAYEE_TXP_AMT_TYPE_3           VARCHAR2(1)



 PAYEE_TXP_TAX_CODE_3           VARCHAR2(4)
 PAYEE_TAX_ID_LEN             NUMBER(2)
 PAYEE_ID_NUMERIC_FLAG          VARCHAR2(1)
 PAYEE_ID_ZERO_FILL_FLAG         VARCHAR2(1)
 PAYEE_ACCESS_CODE_LEN_X         VARCHAR2(2)
 PAYEE_ADDENDA_TAX_ID_FMT         VARCHAR2(16)
 PAYEE_UPD_DATE              DATE
 PAYEE_UPD_USER              VARCHAR2(4)
 PAYEE_ZERO_ACH_FLAG           VARCHAR2(1)
 FILLER_0                 VARCHAR2(3)

SQL>



Table 3:

BRIDGEWARE SCRIPT USED
TO HANDLE INVALID DATA.

Entity
 Entity-key   x8
 Entity-data  x140

Entity-data

Script used;

Open cprx image ststax pass={password} mode=1

Open oradb remote user={userid} pass={password} &
  Oracle {dblogin}/{dbpass} &
Home =/opt/oracle/app/oracle/product/8.1.7

Set oradb commitrate 10000

format payee_record                  :      record
 PAYEE_TABLE           :    x6
 PAYEE_ID             :    x14
 PAYEE_NAME            :    x30
 PAYEE_ADDR1           :    x30
 PAYEE_ADDR2           :    x30



 PAYEE_CITY            :    x16
 PAYEE_STATE           :    x2
 PAYEE_ZIP            :    x10
 PAYEE_ESCROW_FLAG        :    x1
 PAYEE_DAILY_BANK_ID       :    x2
 PAYEE_QE_BANK_ID         :    x2
 PAYEE_PI_BANK_ID         :    x2
 PAYEE_EFT_OK_FLAG        :    x1
 PAYEE_ABA_TRA_NO         :    x8
 PAYEE_TRA_CHECK_DIG       :    x1
 PAYEE_ACCT_NO          :    x17
 PAYEE_TXP_TAX_TYPE        :    x5
 PAYEE_PERIOD_END_FREQ      :    x1
 PAYEE_PERIOD_END_EOP_DUE     :    x1
 PAYEE_TXP_AMT_TYPE_1       :    x1
 PAYEE_TXP_TAX_CODE_1       :    x4
 PAYEE_TXP_AMT_TYPE_2       :    x1
 PAYEE_TXP_TAX_CODE_2       :    x4
 PAYEE_TXP_AMT_TYPE_3       :    x1
 PAYEE_TXP_TAX_CODE_3       :    x4
 PAYEE_TAX_ID_LEN         :    x2
 PAYEE_ID_NUMERIC_FLAG      :    x1
 PAYEE_ID_ZERO_FILL_FLAG     :    x1
 PAYEE_ACCESS_CODE_LEN_X     :    x2
 PAYEE_ADDENDA_TAX_ID_FMT     :    x16
 PAYEE_UPD_DATE          :    z6
 PAYEE_UPD_USER          :    x4
 PAYEE_ZERO_ACH_FLAG       :    x1
 FILLER_0             :    x3
end



define  entity      using cprx.entity

Read payee_in = cprx.entity format payee_record &
  for cprx.entity_key=’PAYEE’

Setvar cprx.payee_table = ‘PAYEE’
Setvar cprx..payee_id = payee-id
Setvar cprx.payee_name = payee-name

If last-upd-date = 991231
  Setvar cprx.last_upd_date = 30001231
Else if last-upd-date > 0
  Setvar cprx.last_upd_date = last-upd-date
Else
  Setvar cprx.last_upd_date = null
Endif

Copy cprx to payee_table
endread


