
Securing Desktop Access to
Host Systems –

Protecting Critical Data

Eric Raisters
Security Technical Lead

WRQ, Inc.
ericr@wrq.com

What’s the problem?

• 70 - 80% of security breaches come from
inside the firewall. (FBI and CSI surveys as
recent as 2000)

• New regulations (e.g. HIPAA) require
confidential data to be transmitted securely.

• Popularity of the Internet increases risk.
– B2B/Web services
– Working from home

Assumptions

• Securing the desktop is a whole topic on it’s
own.

• Both desktop and host systems have a base
level of security.

• The network between them is not secure.
• This is geared towards desktops running

Windows, but could equally apply to other
desktops.

Proprietary Products - Pluses

• More difficult to crack if don’t know
algorithm; have to reverse-engineer

• Usually better administration utilities,
services, and documentation

Open Source/Standard -
Pluses

• Lots of eyes and hands working on it
• Not dependent on the trustworthiness of

several programmers or one company
• Algorithms proven to be cryptologically

sound

The Three A’s of Network
Security

• Authentication
– proving who you are
– getting proof back (mutual authentication)

• Authorization
– proving what resources you may use

• Audit
– logging who has done what
– primarily a server-side responsibility

• [Administration]

How Do We Securely
Communicate?

PC Host

Firewall

??????????????????

?????

PC

Historically - Clear Text
“Security Through Obscurity”

PC Host

Firewall

PC

Data Password Name

Data PwdName

Middleware Model (Proxy)

PC

Host

Firewall

PC
Data Pwd
Name

Encrypted
Data Password

Name
Data Password Name

Proxy
Server

Clear text

Clear text

Firewall
Proxy
Server

D
ata Pw

d

N
am

e
C

le
a
r te

x
t

Data Password Name

Encrypted

Encrypted Tunnels Model
(Direct)

PC Host

Firewall

PC

Data Password Name

Data PwdName

Encrypted

Encrypted

VPN (via IPSec) Basics

VPN

Client

VPN

Server
2. Negotiate Phase 2 SA
(inbound & outbound SA)

5. Encrypt
packets using
outbound SA

6. Decrypt
packets using

inbound SA and
send to

application

1. Use IKE to negotiate

Phase 1 SA

4. Decrypt
packets using

inbound SA and
send to

application

3. Encrypt
packets with
outbound SA

SOCKS Clients - Features

• Standard protocol developed by NEC
– Application client makes a request to SOCKS to

communicate with the application server.
– On behalf of the application client, SOCKS establishes a

proxy circuit to the application server, then relays the
application data between the client and the server.

• Designed for traversing TCP-based client/server
applications

• Version 5 provides secure authentication and
encryption with GSSAPI

SOCKS Client - Pluses
• Standards-based protocol
• Facilitates firewall traversal
• Widely available in client programs
• Can be used regardless of the protocol

the application uses
• Imposes little overhead on network

communications

SOCKS Client - Minuses
• May require identd running on client PC

(requires the use of DNS server or relay)
• Requires that applications be modified

to become “SOCKSified”
• Additional server to administer that may

be separate from network servers

SSL / TLS / OpenSSL

• SSL (Secure Sockets Layer) v3.x
– proprietary protocol originally developed by

Netscape for Web (HTTP) security
– the de facto security standard for the Web

• TLS (Transport Layer Security) v1.0
– standards-based version that uses open-

source algorithms
– currently an IETF draft

SSL / TLS - Features

• Uses public key cryptography and
X.509 certificates to authenticate

• Negotiates session keys for symmetric
encryption

• Includes 56-bit DES, 128-bit RC-4,
168-bit 3DES encryption

• Provides data integrity and encryption

SSL / TLS Basics

SSL / TLS

Client

SSL / TLS

Server or

Gateway

1. Establish
secure tunnel

2. Authenticate
server

4. Encrypted

session

3. Authenticate
client (optional)

Telnet

Server

5. Unencrypted
session

SSL / TLS - Pluses

• Proven technology for securing the Web
• IETF standard coming (IBM is pushing)
• OpenSSL available for UNIX/Linux

SSL / TLS - Minuses

• Open standard may not interoperate
with proprietary SSL — different key
negotiation and encryption algorithms

• Certificates difficult to administrate
• Not many choices for Telnet or FTP

server vendors (primarily IBM big iron)
• Possible trademark and royalty issues

Kerberos

• Created at MIT in the early 1980s
• Current open-standard version is 5.0
• Used for authentication, data integrity,

and encryption
• Implemented in Windows 2000 and XP

via the Security Service Provider
Interface (SSPI)

Kerberos - Features

• Secure authentication
– Password never travels over the network
– Memory-only credentials caches

• Data stream protections
– Detection of data stream modification
– 56-bit DES or 168-bit 3DES encryption
– Telnet, FTP, rlogin, rcp, rsh protocols

Kerberos Basics

Kerberos

Client Domain

Controller

KDC

Telnet,
FTP, etc.
Server

1. Request TGT

2. Return TGT

3. Using TGT,
request ST

4. Return ST

5. Present ST

6. Encrypted
session

Kerberos - Pluses

• Mature, open standard that’s never
been broken

• Minimal administration and server
overhead

• Programmatic access - GSSAPI
• Widely available for UNIX/Linux,

Windows, Unisys, OpenVMS,
• No patent or royalty encumbrances

Kerberos - Minuses

• The KDC(s) must be secured
• Prone to offline attacks on TGT;

brute force attacks feasible on 56-bit
keys

• Significant cost of implementation
– Requires applications be “kerberized”
– Administrators require specialized training

Secure Shell (SSH)

• Provides strong authentication -
password, public key, Kerberos

• SSH-1 (deprecated) and SSH-2
• Replaces Telnet, rlogin, rsh, and rcp
• Secure forwarding of TCP connections,

including X-11 protocol
• FTP replacement sftp in SSH-2

Secure Shell - Features

• 56-bit DES, 168-bit 3DES, 128-bit
Arcfour, 128-bit CAST, 443-bit Blowfish
and AES algorithms up to 256-bits

• OpenSSL libraries used for SSH-1
compatibility

Secure Shell Basics

Secure

Shell

Client

Secure

Shell

Server

1. Establish
secure tunnel

2. Authenticate
server

4. Encrypted

session

3. Authenticate
client

OS

TCP Stack

OS

TCP Stack
5. Arbitrary

TCP port
forwarding

Secure Shell - Pluses

• Internet draft, open-source standard
• Only one firewall port open
• No patent or royalty encumbrances
• Protocol-independent
• Available on UNIX/Linux, OpenVMS,

Windows

Secure Shell - Minuses

• Administration problems
– Certificates difficult to manage in timely

manner if using user key
– Specialized administration required if using

Kerberos
• Requires regular security updates as

bugs and holes are identified and fixed
in the open-source implementation.

Security Availability

SOCKS
VPN

SSL/
TLS

Kerberos

Secure
Shell

UNIX/Linux • * • •
OpenVMS • •
MPE Only through middleware servers
Mainframe • • * •
Unisys • •
Windows • • • •

Questions?

Thank you!

