Extended Distance SAN with MC/ServiceGuard Opens New Disaster Recovery Opportunities

Joseph Algieri Senior Consultant Network Storage Solutions Hewlett-Packard Company

Overview

- What is a SAN
- Extended distance SAN
- Deploying MC/ServiceGuard clusters on extended distance SAN

What is a SAN?

- SAN Storage Area Network
- A specialized network used to connect servers and storage devices together
- Built using Fibre Channel switches

SAN Example

- Servers connect to "edge" switches
- Storage connects to "core" switches
- ISLs (Inter Switch Links) are used to connect switches together
- Generally, only ISLs between core switches will be > 500 meters

SAN Example

*Note: no hubs shown. Hubs would connect to edge switches

Extended Distance SAN

- Generally, long distance ISLs are used between "core" switches and short distance are used between "edge" switches
- ISL distances of up to 100km between switches

Extended Distance SAN

- •Distance provided in two manners
 - Long distance GBICs (GigaBit Interface Controller)
 - DWDM (Dense Wavelength Division Multiplexing)

ISL Guidelines and Issues

- In general, the maximum number of ISL's between any pair of switches should equal one-half the number of ports on the switch (e.g. 1-8 for Brocade 2800; 1-4 for Brocade 2400)
- It is strongly recommended that a minimum of 2 ISL's exist between any pair of switches for both performance, redundancy, and to limit SAN fabric reconfiguration
- Not all switches support dynamic load balancing between ISL's. Port-port connections are assigned on a round-robin basis at switch startup and remain fixed regardless of loading. ISL reassignment after a link failure is done automatically by the switch

SAN ISL Considerations

- Distance between sites
- SAN Bandwidth requirements
- Ensure a sufficient number of ISLs to support IO workload

SAN ISL Considerations

- Number of optical fibers available between sites
- •Fiber Cost
- Consider DWDM if a large number of fibers are necessary (cost analysis)
- DWDM can support multiple connections over a single pair of fibers

ISL Distances

- Short-wave GBIC
 - Distances up to 500 meters
- Long-wave GBICs
 - Distances up to 10km
- Long-haul GBICs
 - Distances up to 80km
- DWDM (Dense Wavelength Division Multiplexing)
 - Distances up to 100km

Distance, Wavelength, and Optical Fiber Specification

Optical Fiber Specification	62.5/125	50/125	9/125
Short Waya CRIC	175 motoro	E00 motoro	NA
Short wave GBIC	175 meters	500 meters	INA
Long-wave GBIC	NA	NA	10 Km
Long-haul GBIC	NA	NA	80 Km
DWDM*	NA	NA	100KM

*can accept either long-wave or short-wave input. Consult your DWDM vendor for details

Short-Wave GBIC

Long-Wave GBIC

Long-Haul GBIC

DWDM Up to 100 kilometers (66 miles) 9 micron optical fiber ACCUSCO 111111111 2222250000 AL ALC: NO. THE R. SAN Cloud The FC switch to DWDM connection can be a short-wave or long-wave connection HPW Conference & Expo

DWDM Illustrated

• The number of channels available depends on the vendor and model of the DWDM equipment used

Example storage and server attach over extended distance SAN*

Deploying ServiceGuard Clusters on Extended Distance SANs

- Why?
- SAN Design Considerations
- Solution Design Considerations
- Other issues

Why Extended ServiceGuard Clusters?

Clustering w/ MC/ServiceGuard + Data Replication w/ MirrorDisk/UX + Storage Infrastructure w/ Extended Distance SAN =

Low cost entry level DR solution

Why Extended ServiceGuard Clusters?

- Any storage supported by MC/ServiceGuard can be used in an extended distance cluster solution
- Use low cost modular storage in DR solutions
- Leverage existing storage

Extended Distance SAN Design Considerations

- Redundant SAN connectivity between servers and storage is highly recommended.
- SAN ISL cables between data centers must follow separate physical paths
- All legal and supported SAN configurations from HP are supported for extended distance clusters

Extended Distance SAN Examples

- Dual SANs without PV-Link support
- Dual SANs with PV-Links support
- Dual SANs and networks sharing a DWDM site interconnect

Dual SAN clouds without PV-Link support

Failure without PV-Links - interrupted data replication

Dual SAN clouds with PV-links – preferred design

Uninterrupted data replication with PV-Links

Extended Cluster with DWDM Site Interconnect

MC/ServiceGuard Cluster in a Single Data Center

- MC/ServiceGuard's intended use
- A properly designed solution protects from all single points of failure in the infrastructure.
- Protection limited to failures within the data center

MC/ServiceGuard Cluster - Single Data Center

Extended Campus Cluster Solution

- Extended Campus clusters moves MC/ServiceGuard into the DR space
- MC/ServiceGuard is the basis for all of HP's cluster DR solution product (MetroClusters & ContinentalClusters)

Extended Cluster Solution

- Takes an MC/ServiceGuard cluster and turns it into a low cost DR solution
- Uses an extended distance SAN to provide a medium for host based replication of the cluster data

- Many special considerations
- There are no special MC/ServiceGuard configuration requirements
- All MC/ServiceGuard configuration rules and limitation must be adhered to for the solution to be supportable

- There are special cluster architecture requirements
- There are special solution infrastructure requirements

- To ensure a complete DR solution, solution monitoring must be addressed
- Protection from a rolling-disaster is not automatic and can be very tricky

- A rolling disaster occurs when a data center failure occurs while recovery from an initial failure requiring data resynchronization is in progress
- Results in a total loss of data requiring a restore from backup

- Protecting from a rolling disaster is difficult because MirrorDisk/UX is the data replication tool being used
- MirrorDisk/UX does not inherently contain functionality required to protect from a rolling disaster

- Other tools must be integrated into the solution to help protect from a rolling disaster
- This portion of the solution will be custom and will be driven by the customer's availability requirements

Extended Cluster Architecture Requirements

- Primary data centers must always contain the same number of nodes
- No lock disk support for clusters with > 4 nodes (MC/ServiceGuard limitation)
- Single cluster lock disk solutions ARE NOT supported

Extended Cluster Architecture Requirements

- Solutions requiring more than 4 nodes must either use a three data center solution or a two data center solution with quorum server (lock disks cannot be used)
- Maximum number of nodes in the cluster is 16 (MC/ServiceGuard limitation)

Extended Cluster Architecture Requirements

- Data replication is host based via MirrorDisk/UX over extended distance SAN
 - Can put performance pressure on the servers
- Cluster must be deployed so that the failure of an entire data center can be recovered from by the MC/ServiceGuard cluster quorum protocols

Extended Cluster Infrastructure Requirements

- Two separate SANs clouds required between data centers
- Two separate IP networks required between data centers to carry cluster heartbeat
- Redundant cables between data centers must follow different physical routes to avoid the back-hoe problem

Combining Extended Distance SAN and MC/ServiceGuard

- No special or custom configurations or licenses are required
- Solution utilizes standard SAN support
- Solution utilizes standard MC/ServiceGuard support

Extended Cluster Monitoring Requirements

- Extended clusters require extensive solution monitoring
 - Event Management Service
 - OpenView
 - Clusterview
 - BMC
 - CA
 - Operator vigilance
 - ??

General Considerations

- Extended distance cluster solutions are very complex to design, monitor, and operate properly
- Properly designing, deploying, and managing an extended distance cluster is much more difficult to do than it looks
- Engage HP Consulting to ensure proper solution design, deployment, and management

Cluster Quorum

- Following the failure of a node or nodes in a cluster, a new cluster consisting of the surviving nodes must be able to form
- Care must be taken to ensure the cluster protocols can achieve quorum and a new cluster can form following a complete data center failure

Cluster Quorum

- Three ways to achieve quorum after a failure
 - New cluster contains > ½ of the nodes from the prior cluster
 - New cluster contains ¹/₂ of the nodes from the prior cluster and the quorum server votes for it
 - New cluster contains 1/2 of the nodes from the prior cluster and a cluster lock disk

Cluster Quorum

- Both three-site clusters and two-site clusters with cluster quorum server will ensure quorum can be achieved after a site failure without the use of cluster lock disks
- A two site cluster with dual cluster lock disks will be able to achieve quorum after a complete data center failure

Extended Cluster Supported Topologies

- Two Data Center Design
 - Cluster Quorum Server
 - Dual Cluster Lock Disks
- •Three Data Center Design

Two Data Center Design with Lock Disks

Dual Data Center Design with Quorum Server

Three Data Center Design

Dual Cluster Lock Disk Algorithm Flowchart

Dual Data Center Extended Cluster Issues

- Dual data center solutions require the use of dual cluster lock disks or a cluster quorum server
- Use of dual cluster lock disks opens the door to "Split-Brain" syndrome
- Single cluster lock disk configurations are NOT supported as a single cluster lock is a SPOF

Split-Brain Syndrome

- Split-brain syndrome is when two separate viable clusters form from a single cluster
- Split-Brain can occur after a failure that breaks all network and SAN links between the data centers
 - The "back-hoe" problem
 - Failure of non redundant DWDM equipment

Split-Brain Syndrome

- Only a cluster configured with dual cluster lock disks can suffer split-brain
- Requires a failure of all inter-data center network and SAN links

Split-Brain Syndrome

- Three-data center clusters and two-data center clusters using cluster quorum server cannot suffer split-brain syndrome
- Only a slight chance of split-brain occurring in a properly designed and deployed solution

Split-Brain example: Single cluster before failure

Split-Brain example: Multiple connection failure

Split-Brain example: Two clusters form

Other Issues

- No Oracle Ops support
- Not supported with Veritas Volume Manager mirroring

