
1

Introduction

This paper is based on the Text HP Virtual Partitions, published by Prentice Hall
PTR ISBN # 0-13-065419-1. All of the topics in this paper are covered in much
more detail in the book.

I refer to chapters in the vPars book many times in this paper. There is a lot
of good vPars background and many useful examples in this paper; however,
vPars are a complex topic on which I based a separate book so there is no way I
could cover all aspects of vPars in one paper. I refer to the chapters in the vPars
book as a source of more detail on a given topic.

About Virtual Partitions

With Virtual Partitions (vPars) you can take almost any HP 9000 server and turn it
into many "virtual" computers. These virtual computers can each be running their
own instance of HP-UX and associated applications. The virtual computers are
isolated from one another at the software level. Software running on one Virtual

HP World 2002

Hewlett Packard Virtual
Partitions (vPars)

Marty Poniatowski

Hewlett-Packard Company

2 informIT Hewlett-Packard Company

Partition will not affect software running in any other Virtual Partition. In the Vir-
tual Partitions you can run different revisions of HP-UX, different patch levels of
HP-UX, different applications, or any software you want and not affect other par-
titions.

There are some base requirements that must be met in order to run vPars on
your system. At the time of this writing, the following minimum requirements
must be met for each vPar on your system:

• Minimum of one CPU.

• Sufficient memory to run HP-UX and any other software that will be
present in the vPar.

• A boot disk off of which HP-UX can be booted. At the time of this writing
it is not possible to share bus adapters between vPars. Therefore, a sepa-
rate bus adapter is required for each of the vPars. This requirement may
have been removed by the time you read this book.

• A console for managing the system. The console can be either physical or
virtual. We’ll cover the console in detail in the book.

• An HP 9000 system supported by HP-UX 11i. At the time of this writing
only HP-UX 11i is supported in vPars. With systems based on Itanium
Processor Family (IPF) processors, there are plans to support numerous
operating systems in vPars in the future.

The system we’ll use in most of the examples throughout this paper is an rp
54xx (formerly know as L-Class) system that meets all of the requirements in the
previous list. You may also want to have additional disks and a separate LAN card
in your vPars. I strongly recommend the LAN card so that you can establish TEL-
NET, or other, sessions to your vPars rather than connect to them only from the
console. The LAN card is also required to perform backup and Ignite-UX related
work.

If you have Instant Capacity on Demand (iCOD) employed on your server,
all CPUs must be activated in order for vPars to work. When employing Processor
Sets (psets) in a vPar, use only bound CPUs.

There is a vPars product bundled with HP-UX 11i as well as a full, or add-on
product. There are very few limitations with the add-on product. The bundled

Virtual Partitions Background 3

product has a limitation of a maximum of two vPars and one of the vPars can have
only one CPU.

This paper was written with Virtual Partitions software that had recently
been released for the first time. There have been many enhancements to Virtual
Partitions since the writing of this paper. There is a Graphical User Interface being
considered for vPars that I haven’t covered in this paper. There is something to be
said for working with a product when it is new. You really get a good understand-
ing of the functionality of the product by using the command line only and per-
forming a lot of manual procedures. In addition, Superdome vPars software is in
covered in an Appendix in the vPars book but not in this paper.

Virtual Partitions Background

HP-UX Virtual Partitions (vPars) allow you to run multiple instances of HP-UX
on the same HP 9000 server. From a hardware perspective a vPar consists of CPU,
memory, and I/O that is a subset of the overall hardware on the computer. From a
software perspective a vPar consists of the HP-UX 11i Operating Environment
and all application-related software to successfully run your workload. Figure 1-1
shows a conceptual diagram of the way in which HP 9000 computer system
resources can be allocated to support multiple vPars.

4 informIT Hewlett-Packard Company

Figure 1-1 Example of HP System Resource Allocation with vPars

The components of which your HP 9000 is comprised can be allocated in a
variety of ways. You can see that the eight-way system shown has a different
number of processors, different amount of memory, and different number of I/O
cards allocated to each vPar. The unused components can be added to any of the

vPar1

Proc 0

vPar1 vPar2

Proc 1 Proc 2 Proc 3 Proc 4 Proc 5 Proc 6 Proc 7

Memory

I/O 0

I/O 1

I/O 2

I/O 3

I/O 4

I/O 5

I/O 6

I/O 7

I/O 8

I/O 9

I/O 10

I/O 11

vPar3 Unused
Components

OS
vPar2 vPar3

OSOS

Uses of Virtual Partitions 5

vPars or be the basis for yet another vPar. In addition, components can be moved
from one vPar to another (with some restrictions described later in the book).

Uses of Virtual Partitions

I have worked on many vPars installations that have a variety of uses for vPars.
The following are a sampling of the reasons to use vPars:

Increased System Utilization - Many servers are underutilized. With
vPars you can devote a subset of system resources to
each vPar. With each vPar running its own instance of
HP-UX 11i and associated applications, you’ll get
higher overall system utilization.

Flexibility - Many applications have resource needs that change.
With vPars you can devote fewer system components
when application needs are low and additional
resources when an application needs them. An
increased end-of-the-month workload, for instance,
can be given more system resources to complete faster.

Server Consolidation - Running multiple instances of HP-UX 11i and
their associated applications on one HP server reduces
the overall number of servers required. Web servers
that had run on different servers can now be run in dif-
ferent vPars on the same computer.

Application Isolation - HP vPars are fully software-isolated from one
another. A software failure in one vPar does not affect
other vPars.

Mixed Production, Test, and Development - Production and testing can
take place on the same server with vPars. When testing
is complete, the test vPar can become the production
vPar. Similarly, development usually takes place on a
separate system. With the software isolation of vPars,
however; development can take place on the same sys-
tem with other applications.

6 informIT Hewlett-Packard Company

These are just a sampling of the uses I’ve seen for vPars. Many others will
emerge as vPars become widely used and systems experts implement them in
more computing environments.

Preparing to Create Virtual Partitions

After having loaded vPars software we can create partitions. Chapter 1 of the
vPars book covers loading HP-UX 11i and vPars software in detail. At the
time of this writing vPars software comes on a separate CD-ROM. Now
we’re ready to create Virtual Partitions. After we create Virtual Partitions in
this paper we have to boot the partitions we’ve created. Although we will
boot the partitions in this paper, the details of booting Virtual Partitions, and
HP 9000 booting in general, are covered in detail in Chapter 3 of the vPars
book.

With both HP-UX 11i and the Virtual Partitions software on our disk,
we can begin the process of creating partitions. Our goal is to have a system
that looks like that in Figure 1-2:

Preparing to Create Virtual Partitions 7

Figure 1-2 Virtual Partitions Software Stack

There are many components in Figure 1-2. We already have many of
the components in this diagram on our system. Starting from the bottom we
have the hardware, firmware, Virtual Partition Monitor (covered as part of
the boot process in Chapter 3 of the vPars book), and HP-UX 11i installed on
two different disks. There are two HP-UX 11i instances shown in the left-
most two stacks of Figure 1-2. These are the operating systems we already
have loaded.

The two HP-UX 11i instances can’t run simultaneously on our rp 54xx
(formerly know as L-Class) system because we have not yet created our Vir-

HP 9000 Hardware Platform

HP 9000 Firmware

Virtual Partition Monitor

Instance of
HP-UX 11i

(release 1
patch level a)

Instance of
HP-UX 11i

(may be different
release and patch)

Instance of
other OS

(IPF-based system
only in future)

Middleware Middleware Middleware

Applications ApplicationsApplications

...

8 informIT Hewlett-Packard Company

tual Partitions. Without Virtual Partitions created, we can boot HP-UX off of
one or the other of these disks but we can’t run both. Let’s now create our
Virtual Partitions so we can indeed have two instances of HP-UX 11i run-
ning simultaneously. After Virtual Partitions have been created, you can pro-
ceed to load the middleware and applications shown on top of HP-UX 11i in
Figure 1-2.

Although we’re covering running multiple instances of HP-UX 11i in
the Virtual Partitions we create, we won’t be restricted to only HP-UX 11i in
the future. On systems based on the Itanium Processor Family (IPF) CPUs,
we’ll be able to run additional operating systems. The rightmost Virtual Par-
tition In Figure 1-2 depicts this future capability. This capability does not
exist at the time of this writing, so it is not covered. Look for an updated
revision of the vPars book in the future to cover this capability once it exists
and keep an eye on www.hp.com for both IPF and Virtual Partition enhance-
ments.

Although the examples in this paper take place on four-way (four-pro-
cessor) rp 54xx (formerly know as L-Class) systems, vPars run on most HP
servers. The more components of which your HP server is comprised, the
more vPars you can have on the server and the more options you have for
crafting vPars. In the examples in this paper we’ll end up with a four-way rp
54xx (formerly know as L-Class) with two fully configured Virtual Parti-
tions. Next we’ll cover loading software.

Loading the Software Required for Virtual Partitions

We cover installing Virtual Partitions software in this section. I assume that
you already have HP-UX 11i installed on your system or know how to do so.

Keep in mind that HP-UX must be loaded for each Virtual Partition
you wish to run. If, for instance, you want to run two Virtual Partitions, as
we do in our examples in this book, HP-UX 11i will need to be loaded for
both Virtual Partitions. The procedure covered for loading HP-UX 11i needs
to be performed for every Virtual Partition you want to run. HP-UX 11i can
be loaded from media, such as your HP-UX 11i distribution on a CD-ROM
or from an Ignite/UX server. You can use any method to load HP-UX 11i
and the Virtual Partitions software for every Virtual Partition you want to
run.

Loading the Software Required for Virtual Partitions 9

At the time of this writing there are two vPars products: a product with
the full functionality covered throughout the book and a free product that has
a subset of the full product. The free product has a limitation of a maxi-
mum of two vPars, and one of the vPars can have only one CPU.

When you buy the full product, product number T1355AC, a CD-ROM
is provided that has on it the following components:

- vPars software
- patches
- vPars administration guide
- booklet
- WINSTALL files used for booting

At some point the full product will be on standard distribution rather
than a separate CD-ROM. The free product, called VPARSBASE at the time
of this writing, can be downloaded from www.software.hp.com.

Figure 1-3 shows an example of the software components that appear
below the full product T1355AC.

Figure 1-3 Example of Loading vPars Software

10 informIT Hewlett-Packard Company

Figure 1-3 shows the three components of which T1355AC is com-
prised: the kernel, monitor, and run environment. The additional components
listed earlier, patches and WINSTALL, will also have to be loaded for vPars
to be fully operational.

After loading this software, a reboot takes place to build the kernel.
This is done for you automatically; however, vPars kernel-related back-
ground is covered in both Chapters 2 and 4 of the vPars book.

All of the vPars software must be loaded on every HP-UX 11i volume
that will be used on your vPars server. The loading of this software will take
place for every HP-UX 11i instance that you wish to run simultaneously on
your vPars server. There are two ways to load the HP-UX 11i operating sys-
tem and vPars software on all of the volumes used for vPars. The first, which
is the method used throughout this book, is to load HP-UX 11i and vPars
software on all vPars volumes prior to creating Virtual Partitions. The sec-
ond is to load only the volume of the first vPar with all software, create as
many vPars as you want, and then use vparboot -p vp_name -I ignite_kernel to
boot and load HP-UX 11i on the other disks. In this paper, I first load HP-
UX 11i and vPars software on all disks before creating vPars.

A lot of software has been loaded as a result of loading the vPars soft-
ware. The /sbin directory has in it the vpar commands we’ll use in upcoming
sections. The following is a long listing of the vpar commands in /sbin.

ll /sbin/vpar*
-r-xr-xr-x 1 bin bin 128760 Oct 18 22:08 /sbin/vparboot
-r-xr-xr-x 1 bin bin 161216 Oct 18 22:07 /sbin/vparcreate
-r-xr-xr-x 1 bin bin 101040 Oct 18 22:04 /sbin/vpard
-r-xr-xr-x 1 bin bin 59592 Oct 18 22:04 /sbin/vpardump
-r-xr-xr-x 1 bin bin 30520 Oct 18 22:04 /sbin/vparextract
-r-xr-xr-x 1 bin bin 140072 Oct 18 22:08 /sbin/vparmodify
-r-xr-xr-x 1 bin bin 47232 Oct 18 22:04 /sbin/vparreloc
-r-xr-xr-x 1 bin bin 127808 Oct 18 22:08 /sbin/vparremove
-r-xr-xr-x 1 bin bin 132008 Oct 18 22:08 /sbin/vparreset
-r-xr-xr-x 1 bin bin 152040 Oct 18 22:08 /sbin/vparstatus
-r-xr-xr-x 1 bin bin 26152 Oct 18 22:04 /sbin/vparutil
#

These are the commands that you’ll use to create, view, modify, and
work with vPars in general. Chapter 2 of the vPars book is devoted to
describing these commands and giving examples of using most of them in
their various forms. In addition, the tear-out card included with the book
summarizes many of these commands.

There are several files in /stand related to the vPars kernel. The follow-
ing listing shows some of these:

Loading the Software Required for Virtual Partitions 11

ll /stand/vp*
-rw------- 1 root root 8232 Nov 16 07:09 /stand/vpdb
-r-xr-xr-x 1 bin bin 849992 Oct 18 22:02 /stand/vpmon
#

vpmon is loaded at the time of system startup and is the basis for run-
ning vPars. Chapter 3 of the vPars book covers booting in detail, including
bringing up vpmon. vpdb is the vPars database that contains all information
related to all of the vPars running on your system. This file is automatically
synchronized by the vPars application to ensure that all vPars have the same
information about all vPars on your system.

There are several startup-related files, including those shown below,
which are covered in more detail in Chapter 8 of the vPars book covering
startup.

/etc/rc.config.d/vpard
/etc/rc.config.d/vparhb
/etc/rc.config.d/vparinit

/sbin/init.d/vpard
/sbin/init.d/vparhb
/sbin/init.d/vparinit

Of particular interest is vparhp, which is the heartbeat daemon related
to keeping vpdb synchronized on all of your vPars.

Very important to your work related to vPars are the online man pages.
The following listing shows the man pages loaded on my system at the time
of this writing.

man -k vpar
vparboot(1M) - boot a virtual partition
vparcreate(1M) - create a virtual partition
vpardump(1M) - manage monitor dump files
vparextract(1M) - extract memory images from a running virtual

partition system
vparmodify(1M) - modify the attributes of a virtual partition
vparreloc(1M) - relocate the load address of a vmunix file,

determine if a vmunix file is relocatable,
or promote the scope of symbols in a
relocatable vmunix file

vparremove(1M) - remove a virtual partition
vparreset(1M) - reset a virtual partition
vparresources(5) - description of virtual partition resources

12 informIT Hewlett-Packard Company

and their requirements

vparstatus(1M) - display information about one or more

virtual partitions

vpartition(1) - display information about the Virtual

Partition Command Line Interface

vparutil(1M) - get and set SCSI parameters for SCSI

controllers from a virtual partition

#

Many of these man pages appear in Appendix A of the vPars book.

At this point we have HP-UX 11i and the Virtual Partitions software
loaded on the system.

Virtual Partitions Command Summary

There are several commands used to create and work with Virtual Partitions.
A table in the vPars book as well as a tear-out card provide an overview of
many commonly used Virtual Partitions-related commands. Table 1-1 is an
abbreviated version of command summary:

Table 1-1 Virtual Partition Commands

Command Description

ISL>

Initial System Load prompt.

Virtual Partitions Monitor is loaded from ISL> with:
ISL> hpux /stand/vpmon
MON>
To load Virtual Partitions directly from ISL>, use:
ISL> hpux /stand/vpmon vparload -p vPar_name

Virtual Partitions Command Summary 13

MON>

Virtual Partitions Monitor
prompt. (Also see vparload
command.)

This is loaded from ISL with:
ISL> hpux /stand/vpmon
MON>
To load an alternate database from ISL, use:
ISL> hpux /stand/vpmon -D db_file
To load one vPar from MON , use:
MON> vparload vPar_name

Many other commands can be issued from MON. Type help or ? to list.
(Commands include: scan, vparinfo, ls, log, getauto, lifls, cbuf, cat.)

vparload

Load Virtual Partitions
from MON> prompt only.

To boot a Virtual Partition from MON>:
MON> vparload -p vPar_name

vparboot

Boot a Virtual Partition
from the command line
only.

To boot a Virtual Partition from the command line:
vparboot -p vPar_name

vparcreate

Create a Virtual Partition.

To create a Virtual Partition with three processors (num) total, two
bound (min) , 2048MB RAM, all components on 0/0, boot disk at 0/
0/1/1.2.0, with a kernel of /stand/vmunix, autoboot on, and console
at 0/0/4/0:

vparcreate -p vPar_name -a cpu::3 -a cpu:::2:4
-a mem::2048 -a io:0/0 -a io:0/0/1/1.2.0:boot
-b /stand/vmunix -B auto

vparmodify

Modify the attributes of a
Virtual Partition.

To add processor at path 109 (adds this proc to those already assigned):
vparmodify -p vPar_name -a cpu:109

vparremove

Delete a Virtual Partition.

To delete a Virtual Partition in the currently running database:
vparremove -p vPar_name

vparreset

Reset a Virtual Partition.

To reset a Virtual Partition without TOC (t), hard (h), bypassing display
of PIM data (q), or forcing (f):

vparreset -p vPar_name

Command Description

14 informIT Hewlett-Packard Company

vparresources(5) man page

Provides description of Vir-
tual Partitions and their
resources.

This is a manual page that describes Virtual Partition resources in gen-
eral and how resources are specified in other commands, such as
vparmodify.

vparstatus

Display the status of Virtual
Partitions.

To display the status of a Virtual Partition in verbose mode:
vparstatus -v -p vPar_name

vpartition man page

Display information about
the Virtual Partition Com-
mand Line Interface.

Provides the following brief description of Virtual Partitions com-
mands:

vparboot Boot (start) a virtual partition.
vparcreate Create a new virtual partition.
vparmodify Modify an existing virtual partition.
vparremove Remove (delete) an existing virtual partition.
vparreset Simulate a TOC or hard reset to a virtual partition.
vparstatus Display virtual partition and available resources informa-

tion.

Specify CPU Resources by: Number of bound and unbound CPUs: cpu::num
CPU hardware path(s): cpu:path
Minimum and maximum number: cpu:::[min][:[max]]

Specify Memory by: Size mem::size
Base and range: mem:::base:range
combination of both above.

Specify I/O: Use path: io:path[:attr1[,attr2[...]]]
(see man page vparresources for details).

To add resources use: (This
adds component relative to
what already exists if run-
ning vparmodify.)

-a cpu:path
-a cpu::num (can be done with vPar running)
[-a cpu::num] [-a cpu:::[min]:[max]] -[a cpu:path] (::: is vparcreate

only)
-a io:path[:attr1[,attr2[...]]
-a mem::size
-a mem:::base:range

To delete resources use
(This deletes component
relative to what already
exists if running vparmod-
ify.)

-d cpu:path
-d cpu::num (can be done with vPar running)
-d io:path[:attr1[,attr2[...]]
-d mem::size
-d mem:::base:range

Command Description

Steps to Create Virtual Partitions 15

We’ll use some of the commands shown in Table 1-1 in the upcoming
section on creating virtual partitions. There is more detail on the Virtual Par-
tition commands in Appendix A, which contains the online manual pages for
the commands.

Let’s now move on to creating our virtual partitions.

Steps to Create Virtual Partitions

In this section we’ll cover the steps to create Virtual Partitions. These are
steps I performed while working with vPars with some of the very first
installations. This list should serve as a framework for working with vPars.

To modify resources use:
(This modifies to absolute
number rather than rela-
tive.)

-m cpu::num (can be done with vPar running)
-m cpu:::[min][:max]]
-m io:path[:attr1[,attr2[...]]
-m mem::size

vPars setboot Options:
-a
-b
-p
-s
no options

Changes the alternate boot path of the Virtual Partition.
Sets the autoboot attribute of the Virtual Partition.
Changes the primary boot path of the Virtual Partition.
No effect.
Displays information about boot attributes.

To set Autoboot on:
setboot -b on

vPars States:
load

boot

up
shut
down
crash
hung

The kernel image of a Virtual Partition is being loaded into memory.
This is done by the Virtual Partition monitor.

The Virtual Partition is in the process of booting. The kernel image has
been successfully loaded by the Virtual Partition monitor.

The Virtual Partition has been successfully booted and is running.
The Virtual Partition is in the process of shutting down.
The Virtual Partition is not running and is down.
The Virtual Partition has experienced a panic and is crashing.
The Virtual Partition is not responding and is hung.

Command Description

16 informIT Hewlett-Packard Company

You may chose not to perform some of the steps and to add others. It is only
a framework for getting vPars working on your system.

In our upcoming examples to create our Virtual Partitions, we’ll exe-
cute the steps shown in Figure 1-4.

Steps to Create Virtual Partitions 17

Figure 1-4 Steps to Create Virtual Partitions

1) Load HP-UX 11i onto the disks on which you want to run a Virtual Partition* (media or Ignite/UX
server.)

2) Load Virtual Partitions software onto the disk(s) on which you want to run a Virtual Partition.

3) Gather information on system components and hardware paths using ioscan, dmesg, and other
commands.

4) List components of which Virtual Partitions will be comprised.

5) Build new HP-UX 11i kernels on all volumes on which Virtual Partitions will run* with

6) Create first Virtual Partition with vparcreate.

7) Boot first Virtual Partition with vparload at MON> prompt. Use vparstatus -v to see running
vPar and vparstatus -A to see available components.

8) Create second Virtual Partition with vparcreate (can also be done before booting any vPars.)

9) Boot second Virtual Partition with vparboot from the first vPar and monitor it booting with
vparstatus. After it has booted, view remaining available components with vparstatus -A.

10) Modify Virtual Partition(s) as required with vparmodify and view modifications with
vparstatus -v and vparstatus -A. Modifications can be any type, such as adding CPUs,
changing attributes, and so on.

Other tasks and comments:

- Many other tasks can be performed. Commands vparremove and vparreset were not used in steps
above.

- A typical list of components of which a vPar would be comprised looks like the following:

name cable1

processors min of 1 (bound) max of 3 (1 bound 2 unbound) with num equal to 1

memory 1024 MB

LAN 0/0/0/0 (not specified explicity)

boot disk 0/0/1/1.2.0

kernel /stand/vmunix

autoboot off (manual)

console 0/0/4/0 (not specified explicity)

mk_kernel and kmupdate (done automatically, done for all 11i instances that will run vPars.)

* HP-UX 11i must be loaded on volume before or after Virtual Partition is created. If HP-UX 11i
is loaded after vPar is created, then vparboot -p vp_name -I ignite_kernel is used to load 11i.

18 informIT Hewlett-Packard Company

1) Load HP-UX 11i

HP-UX 11i must be loaded on the volumes that will be used to host all
vPars. The method you use to install 11i, whether media, Ignite-UX, or some
other technique, are all acceptable provided that HP-UX 11i is present on all
of the disks. HP-UX 11i must be present on the first disk before you begin
the vPar creation. You can create vPars on other disks before HP-UX 11i is
loaded on them and then use vparboot -p vp_name -I ignite_kernel to boot and load
HP-UX 11i on the other disks. In this paper I first load HP-UX 11i on all
disks before creating vPars. In our upcoming example the first Virtual Parti-
tion will be created on the internal disk on an rp 54xx (formerly know as L-
Class) system. The second Virtual Partition will be created on an external
disk. After loading HP-UX 11i on one of the root volumes, I issued uname,
which resulted in the following output:

uname -a

HP-UX cvhdcon3 B.11.11 U 9000/800 136414696 unlimited-user license

#

The hostname of cvhdcon3 and HP-UX revision 11.11, which is the lat-
est HP-UX 11i available at the time of this writing, are shown.

An interesting nuance to working with vPars is the naming of hosts and
vPars. In a nutshell, you supply hostnames when installing 11i and Virtual
Partition names when creating vPars. It reduces confusion if both the host-
name and vPar name are the same for an instance of HP-UX 11i. In some
cases, however, organizations require hostnames to conform to conventions
that result in names that are difficult to remember. In this case some system
administrators pick easy-to-remember vPar names. In the upcoming exam-
ple we used different names for the vPars and hostnames.

Our upcoming examples have hostnames of cvhdcon3 and cvhdcon4.
The respective vPar names used are cable1 and cable2.

Steps to Create Virtual Partitions 19

2) Load the Virtual Partitions Application Software

The Virtual Partitions software must also be loaded on the volumes that will
be used to host all vPars. At the time of this writing there are base and full
versions of the software. The restrictions of the base software are a maxi-
mum of two vPars and a maximum of one CPU in one of the vPars. After
loading the vPars software on one of the root volumes I ran swlist which
resulted in the following output:

swlist
Initializing...
Contacting target "cvhdcon3"...
#
Target: cvhdcon3:/
#

#
Bundle(s):
#

BUNDLE11i B.11.11.0102.2 Required Patch Bundle for HP-UX 11i, Febr
uary 2001

CDE-English B.11.11 English CDE Environment
FDDI-00 B.11.11.01 PCI FDDI;Supptd HW=A3739A/A3739B;SW=J3626

AA
FibrChanl-00 B.11.11.06 PCI/HSC FibreChannel;Supptd HW=A6684A,A66

85A,A5158A
GigEther-00 B.11.11.14 PCI/HSC GigEther;Supptd HW=A4926A/A4929A/

A4924A/A4925A;SW=J1642AA
HPUX11i-OE-MC B.11.11.0106 HP-UX Mission Critical Operating Environm

ent Component
HPUXBase64 B.11.11 HP-UX 64-bit Base OS
HPUXBaseAux B.11.11.0106 HP-UX Base OS Auxiliary
HWEnable11i B.11.11.0106.8 Hardware Enablement Patches for HP-UX 11i

, June 2001
OnlineDiag B.11.11.03.08 HPUX 11.11 Support Tools Bundle, Jun 2001

RAID-00 B.11.11.01 PCI RAID; Supptd HW=A5856A
VPARSBASE A.01.00.03 HP-UX Virtual Partitions

#

The HP-UX Virtual Partitions software is the last entry shown in this
listing.

20 informIT Hewlett-Packard Company

3) Gather the System Component and Hardware Paths

You get to know your hardware at an intimate level when working with
vPars. You not only need to know the components of which your system is
comprised, you also need to know the paths of much of the hardware. Some
system components, such as System Bus Adapters and the memory control-
ler, are shared among vPars, so you don’t specify those components as part
of individual Virtual Partitions. Most other components in your system, such
as processors, I/O cards, disks, and others, are fixed to specific vPars.

In order to see the components of which our example system is com-
prised, we’ll run ioscan -f and dmesg in the following listing:

ioscan -f
Class I H/W Path Driver S/W State H/W Type Description
===
root 0 root CLAIMED BUS_NEXUS
ioa 0 0 sba CLAIMED BUS_NEXUS System Bus

Adapter (803)
ba 0 0/0 lba CLAIMED BUS_NEXUS Local PCI Bus

Adapter (782)
lan 0 0/0/0/0 btlan CLAIMED INTERFACE HP PCI 10/100

Base-TX Core
ext_bus 0 0/0/1/0 c720 CLAIMED INTERFACE SCSI C896

Ultra Wide Single-Ended
target 0 0/0/1/0.1 tgt CLAIMED DEVICE
disk 0 0/0/1/0.1.0 sdisk CLAIMED DEVICE HP DVD-ROM 304
target 1 0/0/1/0.3 tgt CLAIMED DEVICE
tape 0 0/0/1/0.3.0 stape CLAIMED DEVICE HP C1537A
target 2 0/0/1/0.7 tgt CLAIMED DEVICE
ctl 0 0/0/1/0.7.0 sctl CLAIMED DEVICE Initiator
ext_bus 1 0/0/1/1 c720 CLAIMED INTERFACE SCSI C896

Ultra Wide Single-Ended
target 3 0/0/1/1.0 tgt CLAIMED DEVICE
disk 1 0/0/1/1.0.0 sdisk CLAIMED DEVICE SEAGATE ST17340 4LC
target 4 0/0/1/1.2 tgt CLAIMED DEVICE
disk 2 0/0/1/1.2.0 sdisk CLAIMED DEVICE SEAGATE ST17340 4LC
target 5 0/0/1/1.7 tgt CLAIMED DEVICE
ctl 1 0/0/1/1.7.0 sctl CLAIMED DEVICE Initiator
ext_bus 2 0/0/2/0 c720 CLAIMED INTERFACE SCSI C87x

Ultra Wide Single-Ended
target 6 0/0/2/0.0 tgt CLAIMED DEVICE
disk 3 0/0/2/0.0.0 sdisk CLAIMED DEVICE SEAGATE ST17340 4LC
target 7 0/0/2/0.2 tgt CLAIMED DEVICE
disk 4 0/0/2/0.2.0 sdisk CLAIMED DEVICE SEAGATE ST17340 4lc
target 8 0/0/2/0.7 tgt CLAIMED DEVICE
ctl 2 0/0/2/0.7.0 sctl CLAIMED DEVICE Initiator
ext_bus 3 0/0/2/1 c720 CLAIMED INTERFACE SCSI C87x

Ultra Wide Single-Ended
target 9 0/0/2/1.7 tgt CLAIMED DEVICE
ctl 3 0/0/2/1.7.0 sctl CLAIMED DEVICE Initiator
tty 0 0/0/4/0 asio0 CLAIMED INTERFACE PCI Serial
tty 1 0/0/5/0 asio0 CLAIMED INTERFACE PCI Serial
ba 1 0/1 lba CLAIMED BUS_NEXUS Local PCI Bus

Adapter (782)
ba 2 0/2 lba CLAIMED BUS_NEXUS Local PCI Bus

Adapter (782)
ba 3 0/3 lba CLAIMED BUS_NEXUS Local PCI Bus

Adapter (782)
ba 4 0/4 lba CLAIMED BUS_NEXUS Local PCI Bus

Steps to Create Virtual Partitions 21

Adapter (782)
ba 5 0/5 lba CLAIMED BUS_NEXUS Local PCI Bus

Adapter (782)
ba 6 0/8 lba CLAIMED BUS_NEXUS Local PCI Bus

Adapter (782)
fc 0 0/8/0/0 td CLAIMED INTERFACE HP Tachyon TL/TS

Fibre Channel Mass Storage Adapter
fcp 0 0/8/0/0.8 fcp CLAIMED INTERFACE FCP Protocol

Adapter
ext_bus 4 0/8/0/0.8.0.5.0 fcparray CLAIMED INTERFACE FCP

Array Interface
target 10 0/8/0/0.8.0.5.0.0 tgt CLAIMED DEVICE
disk 5 0/8/0/0.8.0.5.0.0.0 sdisk CLAIMED DEVICE HP A5277A
disk 6 0/8/0/0.8.0.5.0.0.1 sdisk CLAIMED DEVICE HP A5277A
disk 7 0/8/0/0.8.0.5.0.0.2 sdisk CLAIMED DEVICE HP A5277A
disk 8 0/8/0/0.8.0.5.0.0.3 sdisk CLAIMED DEVICE HP A5277A
target 11 0/8/0/0.8.0.5.0.1 tgt CLAIMED DEVICE
disk 9 0/8/0/0.8.0.5.0.1.0 sdisk CLAIMED DEVICE HP A5277A
target 12 0/8/0/0.8.0.5.0.2 tgt CLAIMED DEVICE
disk 10 0/8/0/0.8.0.5.0.2.0 sdisk CLAIMED DEVICE HP A5277A
target 13 0/8/0/0.8.0.5.0.3 tgt CLAIMED DEVICE
disk 11 0/8/0/0.8.0.5.0.3.0 sdisk CLAIMED DEVICE HP A5277A
ext_bus 5 0/8/0/0.8.0.255.0 fcpdev CLAIMED INTERFACE FCP

Device Interface
target 14 0/8/0/0.8.0.255.0.5 tgt CLAIMED DEVICE
ctl 4 0/8/0/0.8.0.255.0.5.0 sctl CLAIMED DEVICE HP A5277A
ba 7 0/9 lba CLAIMED BUS_NEXUS Local PCI

Bus Adapter (782)
fc 1 0/9/0/0 td CLAIMED INTERFACE HP Tachyon

TL/TS Fibre Channel Mass Storage Adapter
fcp 1 0/9/0/0.8 fcp CLAIMED INTERFACE FCP Protocol

Adapter
ext_bus 6 0/9/0/0.8.0.4.0 fcparray CLAIMED INTERFACE FCP Array

Interface
target 15 0/9/0/0.8.0.4.0.0 tgt CLAIMED DEVICE
disk 12 0/9/0/0.8.0.4.0.0.0 sdisk CLAIMED DEVICE HP A5277A
disk 13 0/9/0/0.8.0.4.0.0.1 sdisk CLAIMED DEVICE HP A5277A
disk 14 0/9/0/0.8.0.4.0.0.2 sdisk CLAIMED DEVICE HP A5277A
disk 15 0/9/0/0.8.0.4.0.0.3 sdisk CLAIMED DEVICE HP A5277A
target 16 0/9/0/0.8.0.4.0.1 tgt CLAIMED DEVICE
disk 16 0/9/0/0.8.0.4.0.1.0 sdisk CLAIMED DEVICE HP A5277A
target 17 0/9/0/0.8.0.4.0.2 tgt CLAIMED DEVICE
disk 17 0/9/0/0.8.0.4.0.2.0 sdisk CLAIMED DEVICE HP A5277A
target 18 0/9/0/0.8.0.4.0.3 tgt CLAIMED DEVICE
disk 18 0/9/0/0.8.0.4.0.3.0 sdisk CLAIMED DEVICE HP A5277A
ext_bus 7 0/9/0/0.8.0.255.0 fcpdev CLAIMED INTERFACE FCP

Device Interface
target 19 0/9/0/0.8.0.255.0.4 tgt CLAIMED DEVICE
ctl 5 0/9/0/0.8.0.255.0.4.0 sctl CLAIMED DEVICE HP A5277A
ba 8 0/10 lba CLAIMED BUS_NEXUS Local PCI

Bus Adapter (782)
lan 1 0/10/0/0 btlan CLAIMED INTERFACE HP A5230A/

B5509BA PCI 10/100Base-TX Addon
ba 9 0/12 lba CLAIMED BUS_NEXUS Local PCI

Bus Adapter (782)
lan 2 0/12/0/0 btlan CLAIMED INTERFACE HP A5230A/

B5509BA PCI 10/100Base-TX Addon
pbc 0 32 pbc CLAIMED BUS_NEXUS Bus Converter
processor 0 33 processor CLAIMED PROCESSOR Processor
pbc 1 36 pbc CLAIMED BUS_NEXUS Bus Converter
processor 1 37 processor CLAIMED PROCESSOR Processor
pbc 2 96 pbc CLAIMED BUS_NEXUS Bus Converter
processor 2 97 processor CLAIMED PROCESSOR Processor
pbc 3 100 pbc CLAIMED BUS_NEXUS Bus Converter
processor 3 101 processor CLAIMED PROCESSOR Processor
memory 0 192 memory CLAIMED MEMORY Memory
#

22 informIT Hewlett-Packard Company

dmesg

Jul 31 20:03
gate64: sysvec_vaddr = 0xc0002000 for 2 pages
NOTICE: nfs3_link(): File system was registered at index 3.
NOTICE: autofs_link(): File system was registered at index 6.
NOTICE: cachefs_link(): File system was registered at index 7.
0 sba
0/0 lba
0/0/0/0 btlan
0/0/1/0 c720
0/0/1/0.1 tgt
0/0/1/0.1.0 sdisk
0/0/1/0.3 tgt
0/0/1/0.3.0 stape
0/0/1/0.7 tgt
0/0/1/0.7.0 sctl
0/0/1/1 c720
0/0/1/1.0 tgt
0/0/1/1.0.0 sdisk
0/0/1/1.2 tgt
0/0/1/1.2.0 sdisk
0/0/1/1.7 tgt
0/0/1/1.7.0 sctl
0/0/2/0 c720
0/0/2/0.0 tgt
0/0/2/0.0.0 sdisk
0/0/2/0.2 tgt
0/0/2/0.2.0 sdisk
0/0/2/0.7 tgt
0/0/2/0.7.0 sctl
0/0/2/1 c720
0/0/2/1.7 tgt
0/0/2/1.7.0 sctl
0/0/4/0 asio0
0/0/5/0 asio0
0/1 lba
0/2 lba
0/3 lba
0/4 lba
0/5 lba
0/8 lba
0/8/0/0 td
td: claimed Tachyon TL/TS Fibre Channel Mass Storage card at 0/8/0/0
0/8/0/0.8 fcp
0/8/0/0.8.0.5.0 fcparray
0/8/0/0.8.0.5.0.0 tgt
0/8/0/0.8.0.5.0.0.0 sdisk
0/8/0/0.8.0.5.0.0.1 sdisk
0/8/0/0.8.0.5.0.0.2 sdisk
0/8/0/0.8.0.5.0.0.3 sdisk
0/8/0/0.8.0.5.0.1 tgt
0/8/0/0.8.0.5.0.1.0 sdisk
0/8/0/0.8.0.5.0.2 tgt
0/8/0/0.8.0.5.0.2.0 sdisk
0/8/0/0.8.0.5.0.3 tgt
0/8/0/0.8.0.5.0.3.0 sdisk
0/8/0/0.8.0.255.0 fcpdev
0/8/0/0.8.0.255.0.5 tgt
0/8/0/0.8.0.255.0.5.0 sctl
0/9 lba
0/9/0/0 td
td: claimed Tachyon TL/TS Fibre Channel Mass Storage card at 0/9/0/0
0/9/0/0.8 fcp
0/9/0/0.8.0.4.0 fcparray
0/9/0/0.8.0.4.0.0 tgt
0/9/0/0.8.0.4.0.0.0 sdisk
0/9/0/0.8.0.4.0.0.1 sdisk
0/9/0/0.8.0.4.0.0.2 sdisk
0/9/0/0.8.0.4.0.0.3 sdisk
0/9/0/0.8.0.4.0.1 tgt
0/9/0/0.8.0.4.0.1.0 sdisk
0/9/0/0.8.0.4.0.2 tgt
0/9/0/0.8.0.4.0.2.0 sdisk
0/9/0/0.8.0.4.0.3 tgt

Steps to Create Virtual Partitions 23

0/9/0/0.8.0.4.0.3.0 sdisk
0/9/0/0.8.0.255.0 fcpdev
0/9/0/0.8.0.255.0.4 tgt
0/9/0/0.8.0.255.0.4.0 sctl
0/10 lba
0/10/0/0 btlan
0/12 lba
0/12/0/0 btlan
32 pbc
33 processor
36 pbc
37 processor
96 pbc
97 processor
100 pbc
101 processor
192 memory
btlan: Initializing 10/100BASE-TX card at 0/0/0/0....

System Console is on the Built-In Serial Interface
btlan: Initializing 10/100BASE-TX card at 0/10/0/0....
btlan: Initializing 10/100BASE-TX card at 0/12/0/0....
Entering cifs_init...
Initialization finished successfully... slot is 9
Logical volume 64, 0x3 configured as ROOT
Logical volume 64, 0x2 configured as SWAP
Logical volume 64, 0x2 configured as DUMP

Swap device table: (start & size given in 512-byte blocks)
entry 0 - major is 64, minor is 0x2; start = 0, size = 8388608

Dump device table: (start & size given in 1-Kbyte blocks)
entry 0000000000000000 - major is 31, minor is 0x12000; start = 117600,

size = 4194304
Starting the STREAMS daemons-phase 1
Create STCP device files
Starting the STREAMS daemons-phase 2

$Revision: vmunix: vw: -proj selectors: CUPI80_BL2000_1108 -c 'Vw
for CUPI80_BL2000_1108 build' -- cupi80_bl2000_1108 'CUPI80_BL2000_1108' Wed
Nov 8 19:24:56 PST 2000 $
Memory Information:

physical page size = 4096 bytes, logical page size = 4096 bytes
Physical: 4194304 Kbytes, lockable: 3231756 Kbytes, available: 3711728 Kbytes

#

The output of ioscan -f and dmesg provide a lot of useful information
about our system. We’ll use the components and paths in ioscan output and
the memory information in dmesg to create a list of components for the
respective vPars in the upcoming step. We now know, for instance, that the
paths of two of the LAN cards are at 0/0/0/0 and 0/10/0/0. We know the
paths of all four processors of 33, 37, 97, and 101. The console is located at
0/0/4/0. From the dmesg output we know that we have a total of four GBytes
of RAM that can be spread among the vPars.

From these two outputs we have the information we need to create the
Virtual Partitions in the next step.

24 informIT Hewlett-Packard Company

4) List the Components of the Virtual Partitions

From the ioscan and dmesg messages we can select the components of our
first Virtual Partition. The following is a list of components we’ll include in
this partition:

First vPar cable1

name cable1
processors min of one (bound) max of three (two unbound)

with num (bound + unbound) equal to one
memory 1024 MB
LBA Core I/O 0/0 (all components on 0/0 are implied)
LAN 0/0/0/0 (not specified explicitly, on 0/0)
boot disk 0/0/1/1.2.0
kernel /stand/vmunix (this is default)
autoboot off (manual)
console 0/0/4/0 (not specified explicitly, on 0/0)

You may want to set autoboot to auto during installation and set to
manual after installation. This makes booting easier during installation.

Some of the components require some explanation concerning the way
in which they are implemented with vPars. The following is a more detailed
discussion of some of these components, including CPU, memory, and LAN,
bootdisk, setboot, kernel, and console.

CPU

The CPUs used in both this partition (cable1) and the one we will define
shortly (cable2) are specified with min, max, and num. We will have min
bound CPUs that have I/O interrupts assigned to them and are therefore ideal
for I/O-intensive applications. The additional CPUs assigned to the vPars are
unbound, which do not process I/O interrupts. Therefore, unbound CPUs are
ideal for processor-intensive applications as opposed to I/O-intensive appli-
cations. unbound CPUs can be freely moved from one vPar to another while
vPars are running, so having min bound CPUs gives us the freedom to move

Steps to Create Virtual Partitions 25

around the unbound CPUs. Bound CPUs can also be added to and deleted
from Virtual Partitions only when the partition is down.

On machines that employ Non-Uniform Memory Access (NUMA)
you would use hardware paths (path) to specify CPUs. This is to ensure that
you minimize the distance between CPUs and memory. On systems such as
the rp 7400 (formerly know as N-Class) and rp 54xx (formerly know as L-
Class) that do not employ NUMA, min is recommended to define bound
CPUs.

For our work on cable1 and cable2 and for my work with vPars in gen-
eral, the most common desire is to have a min number of bound CPUs in all
vPars and then move around unbound CPUs as the applications in vPars
need them. For instance, when vparcreate is run we would specify the fol-
lowing:

vparcreate -p cable1 -a cpu:::1:3 -a cpu::1

At the time of creation cable1 will have one bound CPU only because
we specified a min of one and a num of one. num is the total bound +
unbound CPUs, and since we specified one for num, we’ll get one bound
CPU (I have seen some vPars material use num and some use total so
num and total are interchangeable in this book.) Since max is three we have
left the door open to add as many as two additional unbound CPUs. If we
have two unbound CPUs on our system, we can move them among the vPars
as required with vparmodify. To remove the two unbound CPUs from
cable2 and add them to cable1, we would issue the two following vparmod-
ify commands:

vparmodify -p cable2 -m cpu::1 <-- reduces cable2 from 3 to 1

vparmodify -p cable1 -m cpu::3 <-- increases cable1 from 1 to 3

We first removed the two unbound CPUs from cable2 and then added
them to cable1. If the two unbound CPUs were not assigned to a vPar, we
would not have to remove them from cable2 prior to adding them to cable1.

There are many ways to work with CPUs, so by characterizing your
applications and understanding the options for using bound and unbound
CPUs, you can use the processor mix that best meets your needs.

man page

 vparcreate
appendix a

man page

 vparmodify
appendix a

26 informIT Hewlett-Packard Company

Memory

We have identified one GByte of memory for cable1. Memory can be speci-
fied by range or size.

To add one GByte of memory to cable1 using size we would use the
following vparcreate command:

vparcreate -p cable1 -a mem::1024

This vparcreate command specifies only the memory for use in
cable1. The full vparcreate command for creating cable1 will be shown in
an upcoming section.

The memory is specified in MBytes (1024 MBytes = 1 GByte) in mul-
tiples of 64 MBytes. At the time of this writing, the Virtual Partition Monitor
consumes roughly 128 MBytes of RAM, so this will not be available to allo-
cate to a Virtual Partition. Modifying memory allocation requires that the
Virtual Partition be down, at the time of this writing.

On machines that employ Non-Uniform Memory Access (NUMA) you
would use the range. Range is a subset of size. On systems such as the rp
7400 (formerly know as N-Class) and rp 54xx (formerly know as L-Class)
that do not employ NUMA, the size is recommended to define memory. The
syntax for specifying memory by range is as follows:

mem:::base:range

None of the examples in this book were prepared using NUMA sys-
tems so you won’t see any examples using the range syntax; all examples
use the size syntax.

LAN

The LAN interface used for this first Virtual Partition is on Local Bus
Adapter (LBA) zero. This means that any other components on LBA zero
would have to be in this Virtual Partition as well. At the time of this writing,
components on an LBA can’t be shared between vPars.

man page

vparcreate
 appendix a

Steps to Create Virtual Partitions 27

Note that we have decided not to use the hostname as our Virtual Parti-
tion name. As mentioned earlier, it is desirable to use the same name for the
hostname and vPar. Because our hostnames are a little hard to remember the
system administrator decided to use simple vPar names. When we loaded
HP-UX 11i on the system we selected the hostnames (you can also run
set_parms after loading 11i to set the system name and other parameters) of
cvhdcon3 and cvhdcon4. We then chose the simple vPar names of cable1
and cable2, respectively.

Boot Disk

The ioscan issued earlier in this paper showed many disk devices. The boot
device for our first Virtual Partition is the internal disk with the hardware
path 0/0/1/1.2.0.

At the time of this writing, components that are at or below the Local
Bus Adapter (LBA) level are devoted to a single Virtual Partition. This
means that although the output of our earlier ioscan command shows four
internal disks, all four of these disks must be in the same Virtual Partition
because they are on the same LBA.

Kernel

We’ll use the default HP-UX kernel of /stand/vmunix for the kernel in this
Virtual Partition. Since we’re using the default kernel, we don’t have to
specify this as part of the vparcreate command; however, we’ll include it in
the vparcreate command for completeness purposes.

setboot Command

In our example we have autoboot set to off for our Virtual Partition. The set-
boot command on a non-vPars system reads from and writes to stable stor-
age. On a vPars system the setboot command interacts with the Virtual
Partition database. In our upcoming example we’ll set the autoboot to off
when we create cable1 with vparcreate. Running setboot on a vPars system
has the effects shown in Table 1-2:

man page

vparcreate
 appendix a

28 informIT Hewlett-Packard Company

Table 1-2 setboot and Virtual Partitions

The setboot command is one of the aspects of working with vPars that
is different from a non-vPars system.

Console

Chapter 5 of the vPars book contains detailed information on the way in
which the console operates in a vPars environment. In our first partition we
have specified LBA 0/0 as a component of vPar cable1. Since the physical
console at 0/0/4/0 is on the Core I/O card at 0/0, it is an implied component
of cable1 and we do not have to specify the physical console in this partition.
The other Virtual Partitions on this system will use the virtual console func-
tionality of vPars whereby issuing Ctrl-A cycles between virtual console dis-
plays.

Database

The Virtual Partition database that contains all vPar-related information is
/stand/vpdb. This is managed, and synchronized for you, so you don’t need
to pay too much attention to it if you don’t want to. You can, however; create

vPars setboot Option Description

-a Changes the alternate boot path of the Virtual Partition.
To set the alternate boot path:
setboot -a 0/8/0/0.8.0.5.0.0.0

-b Sets the autoboot attribute of the Virtual Partition.
To set Autoboot on:
setboot -b on

-p Changes the primary boot path of the Virtual Partition.
To set the primary boot path:
setboot -p 0/0/1/1.2.0

-s Has no effect.

no options Displays information about boot attributes.

Steps to Create Virtual Partitions 29

an alternate database if you wish. You may want to do this in order to create
a completely different Virtual Partition configuration for your system with-
out affecting your currently running database.

When creating Virtual Partitions with vparcreate you can use the -D
option and specify an alternate database name that is a file in the /stand
directory, such as /stand/vpdb.app2. When you boot vPars from this data-
base (with ISL> hpux /stand/vpmon -D db_file) it is the default, so all
modifications made to vPars defined in this database are made to it rather
than the default.

Second vPar cable2

We’ll list the same categories of components for cable2 as we did for cable1
in the following list:

name cable2

processors min of one (bound) max of three (two unbound)

with num (bound + unbound) equal to one

memory 1024 MB

LAN 0/10/0/0

boot disk 0/8/0/0.8.0.5.0.0.0

kernel /stand/vmunix (this is the default)

autoboot off (manual)

console virtual console to be created

We now have a list of components for two vPars. The result is that our
rp 54xx (formerly know as L-Class) system has been divided into two vPars
that look like Figure 1-5:

man page

vparcreate
 appendix a

30 informIT Hewlett-Packard Company

Figure 1-5 rp 54xx (formerly know as L-Class) with Two vPars (unused
components not shown)

Figure 1-5 reflects what our system will look like when we perform the
upcoming steps to create our two vPars. Note that two unbound processors,
shown as 2,3 in Figure 1-5, can be assigned to cable1 and cable2 as required.

Processor
0

Processor
2,3

Processor
1

Processor
2,3

PCI
Bridge

Main
Memory

PCI
Bridge

SCSI

LAN

Console

SCSI

LAN

Main
Memory

vPar1 (cable1) vPar2 (cable2)

vPar1 vPar2

1 GByte

H/W path by min

0/0/0/0

0/0/1/1.2.0

0/0/4/0

1 GByte

0/0/10/0

0/8/0/0.8.0.5.0.0.0
auto is offauto is off

vPar Name cable1 vPar Name cable2

<= 2 by min H/W path by min <= 2 by min

Steps to Create Virtual Partitions 31

5) Virtual Partition Kernel-Related Work

Each Virtual Partition has its own instance of HP-UX 11i, which has its own
HP-UX kernel. It is likely that you’ll customize these kernels in a variety of
ways to suit the applications you have running in the respective vPars. When
you install the vPars software, it automatically reconfigures the kernel to
include the vPar drivers and make the kernel relocatable. You do not have to
perform the kernel-related steps in this section because they are performed
for you when vPars software is loaded. It is still informative; however, to see
the steps that were manually performed in this section to get better insight
concerning the way vPars operate. In this step we’ll investigate the files that
have been updated by the vPars application and build the new kernel. Keep
in mind that the new kernel needs to be built on every volume that has HP-
UX 11i on it and will run a vPar.

Because memory is shared among multiple vPars, the kernel must be
relocatable in memory. At the time of this writing, there are patches that
allow the kernel to be built as a relocatable kernel. We won’t perform any
checks related to patches.

The file /sbin/vecheck is a vPar file that is required on the system. The
following listing is a portion of /usr/conf/gen/config.sys that checks to see if
/sbin/vecheck has been loaded on the system:

Determine whether the linker supports kernel relocation. If it does,
link the kernel using the relocation options.
LOADOPTS_ADDL=` \

if [-f /sbin/vecheck]; then \
${WHAT} ${LD} | \
${AWK} '$$0 ~ /92453-07 linker/ { \

split($$7, vers, "."); \
if (vers[1] == "B" && \
(vers[2] == 11 && vers[3] >= 25) || vers[2] > 11) \

print "${LOADOPTS_RELOC}"; \
else print "${LOADOPTS_STATIC}"; }'; \

else \
echo "${LOADOPTS_STATIC}"; \

fi; \

`

The following is a long listing of /sbin/vecheck which was loaded with
the vPar software:

32 informIT Hewlett-Packard Company

ll /sbin/vecheck
-r-xr-xr-x 1 bin bin 20533 Mar 5 19:01 /sbin/vecheck
#

Next let’s take a look at /stand/system to see the vpar driver that has
been added to the file:

cat /stand/system

* Source: /ux/core/kern/filesets.info/CORE-KRN/generic
* @(#)B.11.11_LR
*

* Additional drivers required in every machine-type to
* create a complete
* system file during cold install. This list is every driver that the
* master.d/ files do not force on the system or is not identifiable by
* ioscan.
* Other CPU-type specific files can exist for their special cases.
* see create_sysfile (1m).

*
* Drivers/Subsystems
sba
lba
c720
sctl
sdisk
asio0
cdfs
cxperf
olar_psm
olar_psm_if
dev_olar
diag0
diag1
diag2
dmem
dev_config
iomem
nfs_core
nfs_client
nfs_server
btlan
maclan
dlpi
token_arp
inet
uipc
tun
telm
tels
netdiag1
nms

Steps to Create Virtual Partitions 33

hpstreams
clone
strlog
sad
echo
sc
timod
tirdwr
pipedev
pipemod
ffs
ldterm
ptem
pts
ptm
pckt
td
fddi4
gelan
GSCtoPCI
iop_drv
bs_osm
vxfs
vxportal
lvm
lv
nfsm
rpcmod
autofsc
cachefsc
cifs
prm
vpar <--- vpar driver added here
STRMSGSZ 65535
nstrpty 60
dump lvol
maxswapchunks 2048
#

The vpar driver is a master driver described in /usr/conf/master.d as
shown below:

pwd
/usr/conf/master.d
cat vpar
$CDIO
vpar 0
$$$

$DRIVER_INSTALL
vcn -1 209
vcs -1 -1

34 informIT Hewlett-Packard Company

vpar_driver -1 -1
$$$

$DRIVER_DEPENDENCY
vcn vpar
vcs vpar
vpar vcs vcn vpar_driver
vpar_driver vpar
$$$

$DRIVER_LIBRARY
*
* The driver/library table. This table defines which libraries a given
* driver depends on. If the driver is included in the dfile, then the
* libraries that driver depends on will be included on the ld(1) command
* line. Only optional libraries *need* to be specified in this table,
* (but required ones can be included, as well).
*
* Driver handle <libraries>
*
* subsystems first
vcn libvpar-pdk.a
vcs libvpar-pdk.a
vpar libvpar-pdk.a
vpar_driver libvpar-pdk.a
$$$

$LIBRARY
*
* The library table. Each element in the library table describes
* one unique library. The flag member is a boolean value, it is
* initialized to 1 if the library should *always* be included on
* the ld(1) command line, or 0 if the library is optional (i.e. it
* is only included when one or more drivers require it). The order
* of the library table determines the order of the libraries on the
* ld(1) command line, (i.e. defines an implicit load order). New
* libraries must be added to this table.
* Note: libhp-ux.a must be the last entry, do not place
* anything after it.
*
* Library <required>
*
libvpar-pdk.a 0
$$$
#

You can see in this file there are multiple drivers present. The vcn and
vcs drivers are used to support the console in a vPars environment. Since
you’ll probably only have one physical console for multiple partitions, you
need a way to share the physical device. The use of these drivers is described
in Chapter 4 in the vPars book in which kernel configuration is covered. For
now it is sufficient to know that these drivers exist as part of the vPars instal-
lation and must be built into the kernel.

Steps to Create Virtual Partitions 35

Now that the kernel has what it needs to be built relocatable and the
drivers are present for vPars, we can run mk_kernel to build the new kernel
and kmupdate to move the new kernel-related files into place. This is done
automatically for you, but the following commands show how you would
perform this process:

mk_kernel
Generating module: krm...
Compiling /stand/build/conf.c...
Loading the kernel...
Generating kernel symbol table...
kmupdate

Kernel update request is scheduled.

Default kernel /stand/vmunix will be updated by
newly built kernel /stand/build/vmunix_test
at next system shutdown or startup time.

#

Keep in mind that this procedure needs to be performed for all HP-UX
11i operating systems that will run a Virtual Partition.

6) Create the First Virtual Partition

The vparcreate command is used to create a vPar. The summary of this
command is shown in Table 1-1 and its man page appears in Appendix A.
The general form of the command is as follows:

vparcreate -p vp_name [-B boot_attr] [-D db_file] [-S static_attr]
[-b kernel_path] [-o boot_opts] [-a rsrc] [-a...]

man page

vparcreate
 appendix a

36 informIT Hewlett-Packard Company

When creating this vPar, I placed the vparcreate command in a file so
that I could modify it for the second vPar and execute it. The vparcreate
command is shown below:

cat /tmp/cable1
vparcreate -p cable1 -B manual -b /stand/vmunix -a cpu::1
-a cpu:::1:3 -a mem::1024 -a io:0/0 -a io:0/0/1/1.2.0:boot
#

After changing the permissions on this file and running it, the vPar
cable1 was successfully created. Next we’ll boot the vPar we just created.

7) Boot the First Virtual Partition

Now that the first vPar has been created and the kernel automatically rebuilt
to support vPars, we can boot the first vPar which we named cable1.

We’ll both boot off the first vPar and check its status. We need to load
the Virtual Partition Monitor (vpmon) at the ISL> prompt. vpmon is a ram-
disk kernel, similar to vmunix, that needs to be loaded at the time of boot.
From the ISL> prompt we are going to run vpmon to get the MON> prompt.
From the MON> prompt we boot our Virtual Partition with vparload, as
shown in the following example:

ISL> hpux /stand/vpmon

Boot
: disk(0/0/1/1.2.0.0.0.0.0;0)/stand/vpmon
421888 + 142056 + 4247112 start 0x23000
cable1: WARNING: No boot device specified

Welcome to VPMON (type '?' for a list of commands)

MON> vparload -p cable1

[MON] Console client set to cable1

[MON] cable1 loaded

.

Steps to Create Virtual Partitions 37

.

.

You may see messages different from those shown in the example after
the vparload command was issued. In any event, the system progressed
through the remainder of the boot process and booted the one Virtual Parti-
tion cable1 that we created. We now have a subset of the system components
dedicated to this Virtual Partition.

The vparload command has the following three forms:

form1: vparload -all

form2: vparload -auto

form3: vparload -p vp_name [-b kernelpath] [-o boot_options]
[-B hardware_path]

We issued the third form shown above.
Now that the partition has booted, let’s first obtain the status of the one

Virtual Partition we created, called cable1, that we have running:

vparstatus -p cable1 -v

[Virtual Partition Details]
Name: cable1
State: Up
Attributes: Dynamic,Manual
Kernel Path: /stand/vmunix
Boot Opts:

[CPU Details]
Min/Max: 1/3
Bound by User [Path]:
Bound by Monitor [Path]: 33
Unbound [Path]:

[IO Details]
0.0
0.0.1.1.2.0 BOOT

[Memory Details]
Specified [Base /Range]:

(bytes) (MB)
Total Memory (MB): 1024
#

man page

 vparload
 appendix a

man page

 vparstatus
 appendix a

38 informIT Hewlett-Packard Company

The output of vparstatus shows that cable1 is up. The -v option is used
to obtain a verbose output. You can see from this listing that the bound CPU
at hardware path 33 (the bound CPU we specified with the min) is part of the
partition, that there is one GByte of memory in the partition, and that the I/O
components we specified are in the partition. Had there been other partitions
configured, we would have seen their output as well.

Note that the console at 0/0/4/0 is an implied component of this vPar.
So too is the LAN interface at 0/0/0/0. Both of these components are part of
the Core I/O card that we specified as part of cable1 with the -a io:0/0 argu-
ment to the vparcreate command.

We can now run vparstatus -A to view the available components of
our system. Since we created a first partition with only one CPU, we should
see three CPUs and many other system components available, as shown in
the following listing:

vparstatus -A

[Unbound CPUs (path)]: 37
97
101

[Available CPUs]: 3

[Available I/O devices (path)]: 0.1
0.2
0.3
0.4
0.5
0.8
0.9
0.10
0.12
32
36
96
100

[Unbound memory (Base /Range)]: 0x0/128
(bytes) (MB) 0xc000000/1856

0x180000000/1088
[Available memory (MB)]: 3072
#

man page

 vparstatus
 appendix a

man page

 vparcreate
 appendix a

Steps to Create Virtual Partitions 39

This output shows many components available for our second parti-
tion. Based on our earlier planning exercise, we know the components that
we wish to include in the second vPar, and this vparstatus -A command
confirms that they are indeed available.

For cable2 we want one CPU initially, and there are three available. We
want the I/O cards for boot and LAN at 0/8 and 0/10 respectively We want
one GByte of memory and there are now roughly three GBytes available.
We have all of the components we need to proceed to our next step of creat-
ing cable2.

8) Create the Second Virtual Partition

We earlier listed all of the components of which our second partition is to be
comprised and confirmed that these components are still available with the
vparstatus -A command. HP-UX 11i has already been loaded on a second
disk on the same system used to create our first Virtual Partition cable1. We
can create our second Virtual Partition, which we’ll call cable2. We’ll create
the second while the first is running and boot the second vPar from the first.

Here are the components we earlier listed for our second vPar:

name cable2
processors min of one (bound) max of three (two unbound)

with num (bound + unbound) equal to one
memory 1024 MB
LAN 0/10
LBA 0/8
boot disk 0/8/0/0.8.0.5.0.0.0
kernel /stand/vmunix (this is the default)
autoboot off (manual)
console virtual console to be created

There are several differences between the list of components for the
two vPars. We have devoted a different LAN card and boot disk. We have
specified the CPUs in the same manner in both vPars with min (this will be
bound) of one and max of three, num of one, and let the vPars software iden-
tify the one bound processor. These two Virtual Partitions will use different

man page

 vparstatus
 appendix a

40 informIT Hewlett-Packard Company

I/O paths for their devices. Let’s now run the vparcreate command to create
cable2:

We can now proceed to create the second partition with the command
shown in the following file:

cat /tmp/cable2
vparcreate -p cable2 -B manual -b /stand/vmunix -a cpu::1
-a cpu:::1:3 -a mem::1024 -a io:0/8
-a io:0/8/0/0.8.0.5.0.0.0:boot -a io:0/10
#

After executing this file we can determine if the second vPar has been
created and the components of which it is comprised by running vparstatus:

vparstatus -v

[Virtual Partition Details]
Name: cable1
State: Up
Attributes: Dynamic,Manual
Kernel Path: /stand/vmunix
Boot Opts:

[CPU Details]
Min/Max: 1/3
Bound by User [Path]:
Bound by Monitor [Path]: 33
Unbound [Path]:

[IO Details]
0.0
0.0.1.1.2.0 BOOT

[Memory Details]
Specified [Base /Range]:

(bytes) (MB)
Total Memory (MB): 1024

[Virtual Partition Details]
Name: cable2
State: Down
Attributes: Dynamic,Manual
Kernel Path: /stand/vmunix
Boot Opts:

[CPU Details]

man page

vparcreate
 appendix a

man page

 vparstatus
 appendix a

Steps to Create Virtual Partitions 41

Min/Max: 1/3
Bound by User [Path]:
Bound by Monitor [Path]: 37
Unbound [Path]:

[IO Details]
0.8
0.8.0.0.8.0.5.0.0.0, BOOT
0.10

[Memory Details]
Specified [Base /Range]:

(bytes) (MB)
Total Memory (MB): 1024
#

This output shows that the first vPar is intact and that the second has
been successfully created with the name, kernel file, CPU, I/O, and memory
components we specified. Note that each vPar has one bound CPU assigned
to it. The LAN card assigned to cable2 appears in the output because we
specified LBA 0/10 as one of the components of cable2. The console at 0/0/
4/0 and the LAN interface at 0/0/0/0 are implied components of cable1 and
do not appear in the vparstatus -v output.

With the second vPar created, we can proceed to the next step and boot
it.

9) Boot the Second Virtual Partition

Since we already have the first vPar running, called cable1, and the second
vPar created, called cable2, we can boot the second vPar from the first.
There are many options to boot vPars. Since we already have the first vPar
running, we’ll simply boot the second from the first with vparboot and then
run vparstatus -v as shown in the following example. If we type subsequent
vparstatus commands we can see the status of vPar cable2 progress from
Load, to Boot in the next output, and finally Up when the vPar is running, as
shown in the following listing:

man page

 vparstatus
 appendix a

man page

 vparboot
 appendix a

42 informIT Hewlett-Packard Company

vparboot -p cable2
vparboot: Booting cable2. Please wait...

vparstatus
[Virtual Partition]

Boot
Virtual Partition Name State Attributes Kernel Path Opts
============================== ===== ========== ========================= =====
cable1 Up Dyn,Manl /stand/vmunix
cable2 Load Dyn,Manl /stand/vmunix

[Virtual Partition Resource Summary]
CPU Num Memory (MB)

CPU Bound/ IO # Ranges/
Virtual Partition Name Min/Max Unbound devs Total MB Total MB
============================== ================ ==== ====================
cable1 1/ 3 1 0 4 0/ 0 1024
cable2 1/ 3 1 0 4 0/ 0 1024

vparstatus
[Virtual Partition]

Boot
Virtual Partition Name State Attributes Kernel Path Opts
============================== ===== ========== ========================= =====
cable1 Up Dyn,Manl /stand/vmunix
cable2 Boot Dyn,Manl /stand/vmunix

[Virtual Partition Resource Summary]
CPU Num Memory (MB)

CPU Bound/ IO # Ranges/
Virtual Partition Name Min/Max Unbound devs Total MB Total MB
============================== ================ ==== ====================
cable1 1/ 3 1 0 4 0/ 0 1024
cable2 1/ 3 1 0 4 0/ 0 1024

vparstatus
[Virtual Partition]

Boot
Virtual Partition Name State Attributes Kernel Path Opts
============================== ===== ========== ========================= =====
cable1 Up Dyn,Manl /stand/vmunix
cable2 Up Dyn,Manl /stand/vmunix

[Virtual Partition Resource Summary]
CPU Num Memory (MB)

CPU Bound/ IO # Ranges/
Virtual Partition Name Min/Max Unbound devs Total MB Total MB
============================== ================ ==== ====================
cable1 1/ 3 1 0 4 0/ 0 1024
cable2 1/ 3 1 0 4 0/ 0 1024

#

This progression of states of cable2 reflects the time it takes to boot the
operating system from the second volume on which this vPar is run.

In addition to load, boot, and up, there are other states in which you
may find a Virtual Partition as well. Table 1-3 summarizes the states of Vir-
tual Partitions at the time of this writing:

Steps to Create Virtual Partitions 43

Table 1-3 Virtual Partitions States

With more than one vPar running, you would use the built-in vPars
drivers to toggle the console between any number of Virtual Partitions using
Ctrl-A. Figure 1-6 shows using the console to view cable1 with a hostname
of cvhdcon3. Issuing Ctrl-A connects to vPar cable2 with a hostname of
cvhdcon4. When you issue Ctrl-A to switch to the next vPar in the console
you are supplied with the name of the vPar to which you have connected in
brackets, such as [cable1].

vPars State Description

load The kernel image of a Virtual Partition is being loaded into memory. This
is done by the Virtual Partition monitor.

boot The Virtual Partition is in the process of booting. The kernel image has
been successfully loaded by the Virtual Partition monitor.

up The Virtual Partition has been successfully booted and is running.

shut The Virtual Partition is in the process of shutting down.

down The Virtual Partition is not running and is down.

crash The Virtual Partition has experienced a panic and is crashing.

hung The Virtual Partition is not responding and is hung.

44 informIT Hewlett-Packard Company

Figure 1-6 Console Shown Using Ctrl-A to Toggle Between vPars

In addition to using the console to switch between vPars, you can also
use the LAN cards configured into the respective vPars to open a TELNET
or other type of session to the vPars. This is the same technique you would
use to connect to any system over the network and is one of the primary rea-
sons you always want to have a LAN card configured as part of every vPar.

We did not cover the configuration of the two LAN cards, one in each
vPar, in this paper. The LAN configuration would have to be completed for
both vPars in order to use the networking cards for such operations as a TEL-
NET session. Chapter 13 of the vPars book covers many networking topics,
including the /etc/hosts file; /etc/rc.config.d/netconf file, which must be
configured on each vPar; and many others.

Steps to Create Virtual Partitions 45

10) Modify the Virtual Partition

It is likely that you’ll want to modify your Virtual Partitions in a variety of
ways. You may want to add or remove a CPU, for instance. Let’s take a look
at an example of adding a CPU to a Virtual Partition.

In the upcoming example there is a four-processor system on which
there are the two Virtual Partitions we just created: cable1 and cable2. Each
vPar has one bound CPU that was assigned by min when the vPars were cre-
ated. Let’s run vparstatus to see the components of which these two Virtual
Partitions are comprised and confirm that each has one bound CPU:

vparstatus -p cable1 -v

[Virtual Partition Details]
Name: cable1
State: Up
Attributes: Dynamic,Manual
Kernel Path: /stand/vmunix
Boot Opts:

[CPU Details]
Min/Max: 1/3
Bound by User [Path]:
Bound by Monitor [Path]: 33 <-- one bound CPU @ 33
Unbound [Path]:

[IO Details]
0.0
0.0.1.1.2.0 BOOT

[Memory Details]
Specified [Base /Range]:

(bytes) (MB)
Total Memory (MB): 1024
#

vparstatus -p cable2 -v

[Virtual Partition Details]
Name: cable2
State: Up
Attributes: Dynamic,Manual
Kernel Path: /stand/vmunix

man page

 vparstatus
 appendix a

46 informIT Hewlett-Packard Company

Boot Opts:

[CPU Details]
Min/Max: 1/3
Bound by User [Path]:
Bound by Monitor [Path]: 37 <-- one CPU in use at 37
Unbound [Path]:

[IO Details]
0.8.0.0.8.0.5.0.0.0 BOOT
0.10.0.0

[Memory Details]
Specified [Base /Range]:

(bytes) (MB)
Total Memory (MB): 1024
#

The output of these two vparstatus commands shows that cable1 has
one bound CPU and cable2 has one bound CPU. On the rp 54xx (formerly
know as L-Class) system on which these vPars were created there are a total
of four CPUs. This means that two CPUs should be available. Let’s run
vparstatus -A to view the available components on a system:

vparstatus -A

[Unbound CPUs (path)]: 97
101

[Available CPUs]: 2

[Available I/O devices (path)]: 0.1
0.2
0.3
0.4
0.5
0.9
0.12
32
36
96
100

[Unbound memory (Base /Range)]: 0x0/64
(bytes) (MB) 0xc000000/1856

0x180000000/128
[Available memory (MB)]: 2048
#

man page

 vparstatus
 appendix a

Steps to Create Virtual Partitions 47

This output confirms that there are two CPUs available at hardware
paths 97 and 101. We can add these CPUs in a variety of ways. Let’s use the
vparmodify command to change the num of CPUs in cable1 to two CPUs.
We do this by adding one to the current number of CPUs with -a. This is a
relative operation in that one CPU will be added to the current number of
CPUs. You can use vparmodify -m if you want to specify the absolute num-
ber of CPUs for the vPar rather than the relative number. The following
shows this vparmodify command:

vparmodify -p cable1 -a cpu::1
#

We can now run vparstatus -p cable1 -v to confirm that the CPU has
been added, shown in the following listing:

vparstatus -p cable1 -v

[Virtual Partition Details]
Name: cable1
State: Up
Attributes: Dynamic,Manual
Kernel Path: /stand/vmunix
Boot Opts:

[CPU Details]
Min/Max: 1/3
Bound by User [Path]:
Bound by Monitor [Path]: 33 <-- original CPU @ 33
Unbound [Path]: 97 <-- unbound CPU @ 97

[IO Details]
0.0
0.0.1.1.2.0 BOOT

[Memory Details]
Specified [Base /Range]:

(bytes) (MB)
Total Memory (MB): 1024
#

The vparstatus output shows that the CPU at hardware path 97 has
indeed been added to cable1 with the vparmodify command as unbound.

man page

vparmodify
 appendix a

man page

 vparstatus
 appendix a

48 informIT Hewlett-Packard Company

In addition, we can run GlancePlus or top to confirm that there are two
CPUs in use on cable2. The following is a top output run on cable2:

top

System: cvhdcon3 Thu Oct 4 15:30:42 2001
Load averages: 0.19, 0.51, 0.62
124 processes: 110 sleeping, 14 running
Cpu states:
CPU LOAD USER NICE SYS IDLE BLOCK SWAIT INTR SSYS
0 0.37 0.0% 0.2% 0.0% 99.8% 0.0% 0.0% 0.0% 0.0%
1 0.02 0.0% 0.0% 0.8% 99.2% 0.0% 0.0% 0.0% 0.0%

--- ---- ----- ----- ----- ----- ----- ----- ----- -----
avg 0.19 0.0% 0.2% 0.4% 99.4% 0.0% 0.0% 0.0% 0.0%

Memory: 93636K (57816K) real, 322124K (239536K) virtual, 746284K free Page# 1/4

CPU TTY PID USERNAME PRI NI SIZE RES STATE TIME %WCPU %CPU COMMAND
0 ? 36 root 152 20 0K 832K run 0:00 0.33 0.33 vxfsd
1 ? 1342 root 158 10 80K 212K sleep 0:10 0.28 0.28 cclogd
0 ? 1149 root 152 20 4644K 7260K run 0:06 0.21 0.21 prm3d
1 ? 922 root 154 24 540K 808K sleep 0:00 0.15 0.15 hpterm
0 pty/ttyp1 3114 root 186 24 596K 528K run 0:00 0.17 0.15 top
1 ? 1146 root -16 20 7788K 7240K run 0:03 0.14 0.13 midaemon
1 ? 3 root 128 20 0K 32K sleep 0:04 0.11 0.11 statdaemon
0 ? 2018 root 154 20 3908K 1908K sleep 0:00 0.05 0.04 alarmgen
1 ? 1272 root 152 20 856K 960K run 0:00 0.04 0.04 opcmona
1 ? 1372 root 152 20 1076K 2356K run 0:00 0.04 0.04 samd
0 ? 0 root 128 20 0K 0K sleep 0:11 0.02 0.02 swapper
1 ? 1 root 168 20 448K 204K sleep 0:00 0.02 0.02 init
0 ? 2 root 128 20 0K 32K sleep 0:00 0.02 0.02 vhand
0 ? 4 root 128 20 0K 32K sleep 0:00 0.02 0.02 unhashdaemo
1 ? 20 root 147 20 0K 32K sleep 0:00 0.02 0.02 lvmkd
0 ? 22 root 147 20 0K 32K sleep 0:00 0.02 0.02 lvmkd
1 ? 24 root 147 20 0K 32K sleep 0:00 0.02 0.02 lvmkd
0 ? 339 root 154 20 152K 204K sleep 0:00 0.02 0.02 syncer
0 ? 342 root 168 20 76K 192K sleep 0:00 0.02 0.02 vphbd
0 ? 345 root 168 20 156K 216K sleep 0:00 0.02 0.02 vpard
0 ? 410 root 154 20 80K 224K sleep 0:00 0.02 0.02 syslogd
0 ? 446 root 127 20 156K 424K sleep 0:00 0.02 0.02 netfmt
0 ? 552 root 154 20 740K 816K sleep 0:00 0.02 0.02 rpc.statd
0 ? 558 root 154 20 1004K 1032K sleep 0:00 0.02 0.02 rpc.lockd
0 ? 586 root 154 20 180K 316K sleep 0:00 0.02 0.02 inetd
0 ? 855 root 154 20 1064K 472K sleep 0:00 0.02 0.02 sendmail:
0 ? 863 root 154 20 772K 712K sleep 0:00 0.02 0.02 snmpdm
0 ? 896 root 154 20 620K 552K sleep 0:00 0.02 0.02 mib2agt
0 ? 914 root 154 20 1332K 444K sleep 0:00 0.02 0.02 cmsnmpd
1 ? 951 root 154 20 4044K 1840K sleep 0:00 0.02 0.02 rpcd
1 pty/ttyp1 952 root 158 24 512K 180K sleep 0:00 0.02 0.02 sh
0 ? 974 root 168 20 152K 304K sleep 0:04 0.02 0.02 scrdaemon
0 ? 996 root 154 20 200K 336K sleep 0:00 0.02 0.02 pwgrd
0 ? 1039 root 154 10 308K 428K sleep 0:00 0.02 0.02 diagmond
0 ? 1093 root 154 20 1224K 816K sleep 0:00 0.02 0.02 ttd
1 ? 1135 root 154 20 2588K 1624K sleep 0:00 0.02 0.02 perflbd
0 ? 1156 root 154 20 2952K 1572K sleep 0:00 0.02 0.02 swagentd
0 ? 1167 root 154 20 224K 252K sleep 0:00 0.02 0.02 emsagent
0 ? 1168 root 127 20 2380K 2204K sleep 0:00 0.02 0.02 scopeux

This output shows two CPUs, labeled 0 and 1, in cable1. The System
name of cvhdcon3 is shown at the output because the hostname for cable1 is
cvhdcon3.

Steps to Create Virtual Partitions 49

Although this is a simple example showing how a Virtual Partition can
be modified, it also demonstrates the power of vPars. While both vPars on
the system are running, a processor can be added to one or both without
interruption of the programs running in the vPars.

Note that the -a option to vparmodify changed the number of CPUs
relative to the current number. In our case the current number of CPUs was
one and using -a cpu::1 added one CPU to the current number of one result-
ing in two CPUs. This is true also when we use the -d option to vparmodify
to remove processors. The following example shows running vparstatus to
see the two CPUs, using vparmodify to change the number of CPUs back to
one (this is also relative to the current number of CPUs, which is two,) and a
vparstatus to confirm that this change has taken place:

vparstatus -p cable1 -v

vparstatus -p cable1 -v

[Virtual Partition Details]
Name: cable1
State: Up
Attributes: Dynamic,Manual
Kernel Path: /stand/vmunix
Boot Opts:

[CPU Details]
Min/Max: 1/3
Bound by User [Path]:
Bound by Monitor [Path]: 33 <-- bound CPU @ 33
Unbound [Path]: 97 <-- unbound CPU @ 97

[IO Details]
0.0
0.0.0.0
0.0.1.1.2.0 BOOT
0.0.4.0 CONSOLE

[Memory Details]
Specified [Base /Range]:

(bytes) (MB)
Total Memory (MB): 1024
vparmodify -p cable1 -d cpu::1
vparstatus -p cable1 -v

[Virtual Partition Details]
Name: cable1
State: Up
Attributes: Dynamic,Manual
Kernel Path: /stand/vmunix
Boot Opts:

[CPU Details]
Min/Max: 1/3

man page

vparmodify
 appendix a

man page

 vparstatus
 appendix a

50 informIT Hewlett-Packard Company

Bound by User [Path]:
Bound by Monitor [Path]: 33 <-- original CPU @ 33
Unbound [Path]: <-- no unbound CPUs

[IO Details]
0.0
0.0.0.0
0.0.1.1.2.0 BOOT
0.0.4.0 CONSOLE

[Memory Details]
Specified [Base /Range]:

(bytes) (MB)
Total Memory (MB): 1024
#

We could perform many other modifications to the vPars with the two
unbound CPUs that are available, such as adding two CPUs to one of the
vPars or one CPU to each vPar.

Please keep in mind the relative nature of components when using
vparmodify and that some changes, such as modifying memory or adding
I/O components, require the vPar to be down at the time of this writing.

Virtual Partition Dump Files

When a Virtual Partition crashes, a dump file is created in
/stand/vmpon.dmp. When the Virtual Partition boots, files are created in
/var/adm/crash/vpar. The files have an extension with a number indicating
the number of the dump that occurred. For instance, vpmon.1,
vpmon.dmp.1, and summary.1 indicate the first set of files that are saved in
/var/adm/crash/vpar.

An example of what you might see in /stand and /var/adm/crash/vpar
related to dumps are shown in the following listing:

VPARNAME = extraq1

ll /stand
total 100400
-rw-r--r-- 1 root sys 19 Jul 13 15:04 bootconf
drwxr-xr-x 4 root sys 2048 Oct 18 11:43 build
drwxrwxrwx 5 root sys 1024 Oct 18 13:06 dlkm
drwxrwxrwx 5 root root 1024 Oct 18 11:21 dlkm.vmunix.prev
-rw-r--r-- 1 root sys 3388 Oct 18 13:16 ioconfig
-r--r--r-- 1 root sys 82 Jul 13 15:34 kernrel
drwxr-xr-x 2 root sys 1024 Oct 18 13:18 krs
drwxr-xr-x 2 root root 1024 Oct 18 13:16 krs_lkg

man page

vparmodify
 appendix a

Steps to Create Virtual Partitions 51

drwxr-xr-x 2 root root 1024 Oct 18 13:18 krs_tmp
drwxr-xr-x 2 root root 8192 Jul 13 15:04 lost+found
-rw------- 1 root root 12 Oct 18 13:16 rootconf
-r--r--r-- 1 root sys 2035 Oct 18 11:42 system
-r--r--r-- 1 root sys 994 Jul 13 15:28 system.01
-r--r--r-- 1 root sys 999 Jul 13 15:56 system.02
-r--r--r-- 1 root sys 994 Jul 13 15:28 system.base
drwxr-xr-x 2 root sys 1024 Jul 13 15:37 system.d
-r--r--r-- 1 root sys 2035 Oct 18 10:55 system.prev
-rwxr-xr-x 1 root root 22682568 Oct 18 13:16 vmunix
-rwxr-xr-x 1 root root 22682568 Oct 18 11:04 vmunix.prev
-rw------- 1 root sys 8232 Oct 18 13:36 vpdb
-rw------- 1 root root 8232 Jul 17 14:11 vpdb.OLD
-r-xr-xr-x 1 bin bin 837616 Aug 31 18:59 vpmon
-rw------- 1 root root 5078504 Oct 10 10:43 vpmon.dmp <-- vPar dump

ll /var/adm/crash/vpar <-- vPar dump directory
total 46464
-rw-r--r-- 1 root root 2 Oct 10 10:43 count
-rw-r--r-- 1 root root 16794 Jul 17 13:26 summary.0
-rw-r--r-- 1 root root 17953 Jul 18 10:35 summary.1
-rw-r--r-- 1 root root 19538 Jul 18 11:36 summary.2
-rw-r--r-- 1 root root 10012 Oct 10 10:43 summary.3
-r-xr-xr-x 1 root root 855928 Jul 17 13:26 vpmon.0
-r-xr-xr-x 1 root root 855928 Jul 18 10:35 vpmon.1
-r-xr-xr-x 1 root root 855928 Jul 18 11:36 vpmon.2
-r-xr-xr-x 1 root root 837616 Oct 10 10:43 vpmon.3
-rw------- 1 root root 5078504 Jul 17 13:26 vpmon.dmp.0
-rw------- 1 root root 5078504 Jul 18 10:35 vpmon.dmp.1
-rw------- 1 root root 5078504 Jul 18 11:36 vpmon.dmp.2
-rw------- 1 root root 5078504 Oct 10 10:43 vpmon.dmp.3

The /var/adm/crash/vpar directory has in it the vPar dump-related
files for four (0-3) crashes.

The dump file created in /stand is saved in /var/adm/crash/vpar and
extended with the crash number. The dump file in /stand is overwritten with
each crash, but you have a history with all of the dump files and related
information in /var/adm/crash/vpar. Please leave in place the /stand/
vpmon.dmp file.

vparmgr GUI

There is always the age-old question when working with UNIX
whether a task should be done at the command line or using a Graphical
User Interface (GUI). The vparmgr GUI many of the tasks described in this
paper.

Figure 1-7 shows the main Virtual Partition Manager page that the you
first see when the application is started that provides status. It gives basic
information about the number of vPars and the resources on the system.

52 informIT Hewlett-Packard Company

From this screen you can perform a variety of tasks including creating new
vPars, modifying existing vPars, booting vPars, and getting more detailed
information about the system's vPar configuration.

Figure 1-7 Main vparmgr Screen

Figure 1-8 is the vPar modify screen which is displayed when a user
selects an existing vPar and click modify. The user can then change the con-
figuration of this vPar. The actions available through the modify screen are
similar to what is available in the create wizard.

Steps to Create Virtual Partitions 53

Figure 1-8 vparmgr Modify Screen

Figure 1-9 is the screen displayed when the user selects the available
row on the status screen and clicks details. It shows more detailed informa-
tion about the available resources on the system.

Figure 1-9 vparmgr Available Screen

Steps to Create Virtual Partitions 54

With vparmgr you have the flexibility of using the graphical interface
or command line when working with vPars.

Summary

There were some vPars-related commands in this paper that were not used.
The vparreset and vparremove commands summarized in Table 1-1 were
not issued at all for instance. The vparremove command can be run on any
vPar provided that it is in the down state. The general steps to get vPars up
and running and to perform some modification were covered to give you a
simple framework from which to work. There are some other commands that
were not covered, for which there are manual pages in Appendix A as well.
More detail in specific areas appears in other chapters of the vPars book and
I encourage you to review the online man pages for all of the vPars in
Appendix A.

There are also some considerations related to server technology that we
did not cover. If you have Instant Capacity on Demand (iCOD) employed on
your server, all CPUs must be activated in order for vPars to work. When
employing Processor Sets (psets) in a vPar, use only bound CPUs.

man page

 vparreset
 appendix a

man page

vparremove
 appendix a

