
JFS Tuning and Performance

Mark Ray
Hewlett Packard

mark_ray@hp.com



JFS Tuning and Performance

• Understanding JFS
• Understanding your application
• Creating your file system
• Mount options
• File system tuneables
• System wide tuneables
• JFS ioctl() options



Understanding JFS

• JFS software versions vs. disk layout 
versions

• Variable sized extent based file system
• Extent allocation
• Transaction journaling
• Fragmentation
• Defragmenting your file systems



JFS Software Versions vs. Disk 
Layout Versions

Disk layout versionSW versionOS

2,3,4*JFS 3.311.11

11.0
10.20
10.10
10.01

JFS 3.1
JFS 3.3

JFS 3.0
JFS 2.3
JFS 2.0

2,3*
2,3*,4

2,3*
2*
2*

* Denotes default disk lay out version



Variable Sized Extent Based File 
System

Inode
32 blocks*

Extent Map

8 blocks*

50 blocks*
* Each file system block is 1k, 2k, 4k, or 8k



Extent Allocation

• Amount of writes is unknown until the file is closed
• Initial extent size is determined by size of the 1st 

write (8k minimum)
• Extend current extent when full if possible
• Extents get progressively larger
• Last extent is trimmed on last close

8k 16k 64k8k 1k



Transaction Journaling

• Log structural changes to the file system
• Circular log called Intent Log
• Provides fast file system recovery after a 

system crash
• Small synchronous writes may also be logged

Log
Rec

Log
Rec

Log
Rec

Log
Rec

Txn
Done

CommitTransaction

Intent Log



Fragmentation

• As files are created and removed, free space 
becomes fragmented

• When files are closed, the last extent is trimmed
• As files are extended, free space may come from 

non-adjacent areas

Ext
1

Ext
4

Ext
3

Ext
5

Ext
2

File A

Free space



Defragment Your File Systems

• Use fsadm –e to defragment on a regular 
basis, fsadm –E to report on fragmentation

• Performing 1 8k I/O will be much faster than 
performing 8 1k I/Os

• File systems with small block sizes are more 
susceptible to fragmentation



Understanding Your 
Application

• How are your files accessed?
– Reads vs. Writes
– Sequential vs. Random 
– Size of I/O, files, directories
– Volume and file system layout
– Parallel vs. Single access
– Data integrity vs. Performance



Creating Your File System
(newfs, mkfs)

• Block size (bsize)
– Use large block size for performance
– Use small block size to reduce wasted space

• Intent Log size (logsize)
– Increase Intent Log size for heavy log activity

• Disk layout version (version)
– Later disk layout versions contain improvements 

that can affect performance



Mount Options

• Clearing data blocks during extent allocation 
(blkclear) 

• Logging small synchronous writes in the 
intent log (datainlog, nodatainlog)

• Buffer cache options (mincache)
• Converting O_SYNC operations (convosync)
• Intent Log options



Mount Options
datainlog, nodatainlog

• Logs small synchronous writes in the Intent Log 
(datainlog)

• Datainlog simulates synchronous writes
• Available with HP OnLineJFS product

I

D

Intent LogMemory

I
D

Later...



Mount Options
mincache

• Buffer cache options (mincache)
– Mincache=closesync
– Mincache=dsync*
– Mincache=direct*/unbuffered*
– Mincache=tmpcache*

*Available only with HP OnLineJFS product



Mount Options
convosync

• Converting O_SYNC operations (convosync)
– convosync=closesync
– convosync=direct/unbuffered
– convosync=dsync
– convosync=delay

• Available only with HP OnLineJFS product



Mount Options
Intent Log

• Log level 
– nolog - with JFS 3.3, same as tmplog
– tmplog - most transactions delayed
– delaylog - some transactions delayed
– log (default) - transactions must be flushed 

before operation can be performed



Direct I/O

• Direct I/O bypasses buffer cache
• Only available with HP OnLineJFS product
• Good for large I/O and data accessed once
• Data integrity
• Enabled with mount options or VX_SETCACHE ioctl 

or through Discovered Direct I/O
• All direct I/O is synchronous

Application buffer



Dynamic File System Tunables

• Read ahead (read_pref_io and read_nstream)
• Flush behind (write_pref_io and write_nstream)
• I/O throttling (max_diskq)
• Buffer sizes (max_buf_data_size)
• Discovered Direct I/O (discovered_direct_iosz)
• Extent allocation policies (initial_extent_size and 

max_seqio_extent_size)



Read Ahead

• JFS detects sequential pattern, prefetches 
data into buffer cache

• Read ahead size is calculated using 
read_pref_io and read_nstream

• Maintains 4 ranges of read ahead size
• Sequential read ahead affected by other 

processes or threads

64k 64k 64k 64k 64k
Sequential read



Flush Behind and I/O Throttling

• Flush behind amount is calculated using 
write_pref_io * write_nstream

• Amount of data being flushed cannot exceed 
max_diskq (default 1MB)

• Processes block until amount of outstanding 
flushes drops below max_diskq

64k64k 64k 64k 64k
Sequential write

max_diskq
flush behind



Buffer Sizes

• JFS uses a default maximum buffer size of 8k 
• Maximum buffer size can be changed to 

65536 by tuning max_buf_data_size
• For large reads and read ahead, JFS “chains” 

buffers together
• Change max_buf_data_size to 64k for large 

reads and writes

8k
more

8k
more

8k
more

8k
more 8k8k

more
8k

more
8k

more 64k



Discovered Direct I/O

• If read and write size is greater than or 
equal to discovered_direct_iosz, then 
direct I/O will be used

• Only available with HP OnLineJFS 
product

• Has same advantages and 
disadvantages as direct I/O



Extent Allocation Policies

• First extent is usually the smallest
• initial_extent_size can be used to 

change the size of the initial extent 
(default 8 blocks)

• max_seqio_extent_size can be used to 
change maximum size of an extent 
(default 2048 blocks)



System Wide Tunables

• Fancy Read Ahead 
(vx_fancyra_enable)

• Buffer cache (nbuf, bufpages, 
dbc_min_pct, dbc_max_pct)

• JFS Inode Cache (vx_ninode)
• Directory Name Lookup Cache (ncsize, 

vx_ncsize)



Fancy Read Ahead

• Detects non-sequential patterns
• Capable of handling multiple patterns 

from one or more threads
• Enabled using system wide tuneable 

vx_fancyra_enable

64k 64k 64k128k 128k
Patterned Read



Buffer Cache

• Buffered I/O can be done asynchronously
• Dbc_max_pct specifies maximum percent of memory 

that can be used by dynamic buffer cache
• Dynamic buffer cache grows quickly, shrinks slowly
• Use nbuf / bufpages to specify static buffer cache
• Buffers must be flushed or invalidated when file 

system is synced or unmounted

dbc_min_pct dbc_max_pct

Memory



JFS Inode Cache

• Memory cache of most recently accessed 
inodes

• Size of cache is dynamic
• Default maximum size based on amount of 

memory
• Maximum size can be tuned using vx_ninode
• Must have 1 inode cache entry in memory for 

every opened file



Directory Name Lookup Cache

• DNLC is a cache of most recently used 
directory and file names

• DNLC is searched first before searching 
actual directories

• Caches directory names of 39 
characters or less

• DNLC sized by ncsize and vx_ncsize



Keep Your Directories Small

• Keep directories small (<10,000 entries)
• Directories are typically fragmented files
• Simultaneous searches can lead to directory 

contention
• Avoid ll(1) or stat() of files in large directories
• Large directories can be defragmented*

* Version 4 disk layout



JFS ioctl() Options
Cache Advisories

• VX_SETCACHE ioctl()
– VX_RANDOM - Treat I/O as random
– VX_SEQ - Perform maximum read ahead
– VX_DIRECT - Bypass buffer cache
– VX_NOREUSE - Invalidate buffer after use
– VX_DSYNC - Data synchronous I/O
– VX_UNBUFFERED - Bypass buffer cache

• Available with HP OnLineJFS product



JFS ioctl() Options
Allocation Policies

• VX_SETEXT ioctl() sets a fixed extent size 
and optionally reserves space for the file
– VX_NOEXTEND - do not extend past current reservation 
– VX_TRIM - trim file after last close
– VX_CONTIGUOUS - reserved space must be contiguous
– VX_ALIGN - extents must be aligned on an extent sized 

boundary
– VX_NORESERVE - reservation will not survive crash
– VX_CHGSIZE - reserve space and update inode

• Available with HP OnLineJFS product



Patches
• Several patches have been created for JFS 

3.3 on 11.0 and 11.11 to address various 
performance related problems

• PHKL_27212 (11.0); PHKL_27121 (11.11)
– Sequential I/O if read size < 64k
– Multiple readers with Fancy Read Ahead
– Sequential I/O with Fancy Read Ahead
– Random reads
– Backward and forward



Summary

VX_SETCACHE
VX_SETEXT

vx_fancyra_enable
vx_ninode
vx_ncsize
nc_size

nbuf
bufpages

dbc_min_pct
dbc_max_pct

read_pref_io
read_nstream
write_pref_io
write_nstream

max_diskq
max_buf_data_size

discovered_direct_iosz
initial_extent size

max_seqio_extent_size

mincache
convosync
datainlog

nodatainlog
log

delaylog
tmplog
nolog

bsize
logsize
version

Per-file 
attributes

System wide 
tuneables

File system 
tuneables

Mount 
options

newfs 
mkfs


