
A Fast Track to Oracle9 i Release 2 on HP-UX 11 i∗

Sanhita Sarkar
Oracle Corporation,

500 Oracle Parkway, M/S 401ip3
Redwood Shores, CA 94065
Sanhita.Sarkar@oracle.com

Phone: (650) 506-4611
Fax: (650) 413-0166

Keywords and Phrases.- Oracle9i, HP-UX 11.0, HP-UX 11i, Oracle9i Data Guard, Oracle9i Streams, Oracle9i Real
Application Clusters, Cache Fusion, HP C compiler and linker, Profile Based Optimization, HP Hyper Messaging Protocol,
HP HyperFabric, HP Caliper, Intel Itanium Processor Family, Asynchronous I/O, Lightweight timer, Process scheduling,
Performance benchmarks, etc.

ABSTRACT

Oracle9i Database Release 2 greatly extends the technology of Oracle9i with key enhancements in certain areas like Data
Guard, Oracle9i Streams, automated memory and space management, partitioning techniques, OLAP, high availability,
security, performance features, etc. It also provides better support for IA-64 platforms like HP-UX. With all the added
features, Oracle9i Release 2 still remains a software product which can be optimized depending upon the platform-specific
features and capabilities. This paper will discuss the new features in Oracle9i Release 2 that are actually advantageous for
development and performance of database applications on HP-UX. Examples of revolutionary extensions in Oracle9i
Release 2 for HP-UX, are Oracle9i Real Application Clusters using the HP Hyper Messaging Protocol (HMP) over
HyperFabric II; enhanced high availability features and support for the most recent developments in the IA-64 architecture.
Discussion on HP-specific enhancements for Oracle9i Release 2 will also include modifications to the existing
implementations of HP Lightweight Timer and HP SCHED_NOAGE process scheduling policy. It will also provide a quick
overview of other existing performance features and HP-specific enhancements in Oracle9i database required for optimal
performance, e.g., useful oracle optimizer hints and parameters, turning on asynchronous I/O through HP asynchronous
driver, etc. It will discuss how to optimally configure Oracle9i Release 2 on HP-UX by granting proper system privileges,
tuning kernel parameters and managing the HP-UX shared memory segments. It will also comment on some of the post-
installation issues and their solutions, for example, tuning the large virtual memory data pages to meet application needs
and using the new LD_PRELOAD feature of the HP loader/linker for loading shared libraries required by an application. It
is a common knowledge that one technique for improving performance, in addition to operating system and database level
tuning, is to create efficient machine code and optimal programs by optimizing at the compiler and linker levels. This paper
will acknowledge the efficient use of HP C compiler/linker flags and profile based optimization techniques for Oracle9i
Release 2 on HP-UX 11i. While analyzing the enhancements, this paper will also refer to some of the recent record-
breaking Oracle/HP benchmarks. To summarize, this paper will discuss a direction or a fast track to Oracle9i database
Release 2 in making HP-UX a more robust platform for efficient database applications.

∗ HP World 2002: Los Angeles, California, USA

1. INTRODUCTION

Performance, scalability, manageability and
high availability are basic requirements for today’s
business-intelligence applications. Oracle9i Release 2 has
added features and capabilities that extend the existing

investments of Oracle9i, in mission-critical
infrastructure. Some of the key developments are in the
areas of Data Guard, Oracle9i Streams, automated
memory and space management, partitioning techniques,
OLAP, high availability, security, performance features,
etc. These features are advantageous for performance and
development of database applications on any operating

2

system in general, including HP-UX. Some of these new
features will be discussed in Section 2. The already
existing features in the Oracle9i release since the version
9.0.1, which are quite critical for performance tuning, are
tabulated in Section 3. For more details about different
Oracle9i features, please refer to [18].

The ultimate performance depends on a well
designed application running against an efficient
database, best optimized according to the operating
system features and capabilities. An important need for
proper configuration and optimization of Oracle products
on HP-UX will be discussed in Section 4. Section 5 will
provide a recap of the existing HP-specific enhancements
in Oracle9i. The new features and extensions in Oracle9i
Release 2 specific to HP-UX like the IA-64 support, the
use of HP HMP (Hyper Messaging protocol) for Oracle9i
Real Application Clusters and the modifications to the
implementations of HP lightweight timer and
SCHED_NOAGE process scheduling policy, will be
discussed in Section 6.

2. KEY DEVELOPMENTS IN
ORACLE9i RELEASE 2

This section describes a few of the several
enhancements in Oracle9i Release 2 in the areas of data
protection and high availability, information
integration, database management, partitioning
techniques and performance features. These
developments are to ensure better functionality and
performance of Oracle9i Release 2 across all platforms,
in general. It is therefore imperative for the HP/Oracle
developers to be knowledgeable about them. Each of
these development features is described in the following
sub-sections. The enhancements in Oracle9i Release 2,
specific to HP-UX, will be described in the later sections.

2.1. Oracle9i (9.2) Data Guard

The loss of critical data or an inability to access
data for an extended period of time can be catastrophic to
a company doing e-business. The goal of Oracle9i Data
Guard is to maintain a copy of the Production or Primary
database to protect against corruption, human errors and
disasters. In the event of a failure of the primary
database, a Standby database can be activated to act as
the new Primary database.

The Oracle9i Data Guard configuration is
comprised of a collection of loosely connected systems,
consisting of a single Primary database and a number of
Standby databases. When using a Standby database, the
changes made to the Primary database during
transactions are logged locally and additionally, the redo
log data generated by the changes are sent to the Standby
database. These changes are applied to the Standby
database which runs in a managed recovery mode or a
read-only mode - the concept of a Standby database
physically equivalent to the Primary database. Such a
Standby database is called a Physical Standby database.

Oracle9i Release 2 extends the concept of a
Physical Standby database technology of Oracle9i to that
of a Logical Standby database. A Logical Standby
database has the same logical schema as the Primary
database but may have different physical objects such as
additional indexes and materialized views. Unlike the
Physical Standby databases, Logical Standby databases
may be available for reporting as well as for simultaneous
application of redo logs. A Logical Standby database is
SQL maintained. Here a redo record from the Primary is
not directly applied to the Logical Standby using block
media recovery but rather the transactions are mined
from the Primary database logs and applied to the
Standby using SQL (using Log Miner technology [12]).
The advantages of a Logical Standby in Oracle9i Release
2 are as follows:

• The Standby can remain Open and can be
used to run reporting applications;

• The Standby can have a different physical
layout than Primary and may be specially optimized for
running reporting applications more effectively;

• The Standby database may be of a different
version of Oracle (has to be 9i version 9.2 and onwards)
and may be on a different version of the same operating
system;

• The SQL-maintained Standby database has a
better tolerance to corrupt logs because it eliminates the
opportunity for a corrupt redo block to physically corrupt
the Standby;

• The SQL-maintained Standby requires no
application changes at the Primary database. However,
additional information often needs to be captured at the
Primary site to fully identify columns or primary keys
within the redo records.

3

The Standby databases in the Oracle9i Release 2
Data Guard configuration can be a mix of both Physical
and Logical databases. The Oracle9i Release 2 Data
Guard architecture has the following major components
(Figure 1):

1. The Log writer (LGWR) process is responsible for
redo log buffer management and writing the redo log
buffer entries to a redo log file or disk. The LGWR writes
a commit record when a user process commits a
transaction, or when the redo log buffer is one-third full,
or when a database writer (DBWR) process writes
modified buffers to disk. In a Standby database context,
LGWR can write both to online redo log files and
optionally to one or more Standby databases.

2. The Archiver Process (ARCn) copies online redo logs
to a designated storage device after a log switch has
occurred and when the database is in ARCHIVELOG
mode or automatic archiving is enabled. During an
extended network disconnection, log changes destined for
a Standby, are accumulated in Archived Log Files. On
resumption, the Archiver sends the changes one file at a
time to the Standby database to re-synchronize it with the
Primary.

3. The Log Transport Services manages shipment of log
information from the Primary to Standby databases (not
shown in Figure 1).

4. The Remote File Server (RFS) process receives and
acknowledges receipt of changes from Primary, updates
the Standby control file and writes changes to the
Standby or Archived Log Files at the Standby site as
required.

5. The Managed Recovery process manages the
application of log information from the Primary to a
Physical Standby database using managed block media
recovery.

6. The Log Standby Apply Services component manages
the application of log information in the Archived Log
Files received from the Primary, transforms transaction
information back to SQL (using Log Miner and Oracle
Streams) and applies the SQL to a Logical Standby
database using a streamlined interface.

7. The Data Guard Broker consists of agent processes
associated with each Data Guard site providing unified
monitoring and management infrastructure for an entire
Data Guard configuration.

It provides a command line mode (DGMGRL) and a
graphical Data Guard Manager for users to interact with
the Data Guard configuration.

The Oracle9i Release 2 also extends the
Oracle9i Data Guard with three high level data
protection modes - Maximum Protection, Maximum
Availability and Maximum Performance. These three
modes replace the guaranteed, instant, rapid and delayed
modes of data protection available in Oracle9i Release 1.
For more details on Data Guard features, new attributes
and management, refer to [13].

Database
Buffer Cache

PRIMARY
Database

Log Writer
Process

Online log
Files

Archived
Log Files

Archiver
Process

Remote
File

Server
Process

Archiver
Process

Log
Apply

Services

Managed
Recovery
Process

LOGICAL
Standby
Database

Standby Log
Files

Archived
Log Files

Log Miner,
Oracle

Streams, etc

PHYSICAL
Standby
Database

PRIMARY SITE STANDBY SITE

Broker: GUI Data Guard Manager or Command Line Interface

B
R
O
K
E
R

A
G
E
N
T

B
R
O
K
E
R

A
G
E
N
T

Figure 1: Oracle9i Release 2 Data Guard Architecture - a
possible mix of Physical and Logical Standby databases, in
addition to the Primary database.

2.2. Oracle9i (9.2) Streams

An important feature of a database management
system is the ability to share information among multiple
databases and applications. Traditionally, this has meant
that users and applications must pull information from
the database.

Today, however, new efficiencies and business
models require a more comprehensive and automated
approach. This active sharing of information includes
capturing and managing events in the database,
including and propagating those events to other
databases and applications. Decision makers are often
overwhelmed by the variety of options they face when
selecting an information sharing solution and are in need
of a single solution that meets all their information
sharing needs.

4

Oracle9i Release 2 introduces a new information
sharing feature, Oracle Streams. Oracle Streams enables
entire new classes of applications and in a single
solution, satisfies the data movement, transaction
propagation, and event management needs of most users.
The propagation of data, transactions and events takes
place in a data stream, either within a database or from
one database to another. The stream routes published
information to subscribed destinations.

Oracle Streams contains the following three
basic stages:- a) Capturing Events; b) Staging and
Propagating Events and c) Applying Events (Figure 2).

a) Capturing Events: Streams supports capture of
events (database changes and application generated
events) into a queue in two ways. Implicit capture
enables the server to use a Capture Process (an
Oracle background process) to capture Data
Manipulation Language (DML) and Data Definition
Language (DDL) changes from the redo log at the
source database, format them into Logical Change
Records (LCRs) and then enqueue them into a queue.
Explicit capture allows user events which can be
LCRs or user messages to be explicitly enqueued
with a user application. The Capture Process can
intelligently filter LCRs based upon defined rules so
that only the specified types of changes to desired
objects are captured.

b) Staging and Propagating Events: Streams uses
queues to stage events for propagation or
consumption between different queues in the same or
different databases. LCR staging provides a holding
area with security, as well as auditing and tracking
of LCR data between the queues.

c) Applying Events: An Apply Process is an Oracle
background process that dequeues events from a
queue and either applies each event directly to a
database object or passes the event as a parameter to
a user-defined procedure called an apply handler.
These apply handlers can include message handlers,
DML handlers and DDL handlers. Oracle Streams
includes a flexible apply process that enables a
default or custom apply function. A custom apply
sends an event to a user-created PL/SQL procedure
for processing. This enables data to be transformed
or formatted appropriately to meet the needs of a
specific destination database. Support for explicit
dequeue allows application developers to use Oracle
Streams to notify applications, of changes to data,
while still leveraging the change, capture and
propagation features of Oracle Streams.

There can be one-to-many, many-to-one or
many-to-many relationship between the source and
destination queues - the queues being in the same or
different databases. Figure 2 shows heterogeneous
information sharing between an Oracle database with two
destination databases which are respectively an Oracle
and a non-Oracle database. For sharing with the non-
Oracle database, the Oracle database functions as a proxy
and the events intended for the non-Oracle database are
dequeued in the Oracle database itself. An Apply Process
at the Oracle database uses Heterogeneous services to
apply the changes to the non-Oracle database across a
network connection through a gateway. For more details
on Oracle Streams, please refer to [27].

Capture
Process QUEUE

LCR
User Message

LCR
User Message

.

.

.

Redo Log

Database
Objects

Apply Process

Changes

LCRs

Changes

Dequeue
Events

Heterogeneous
Services

ORACLE Database

User
Changes

User 1 User N

GATEWAY

Apply Changes

Database
Objects

NON-ORACLE
Database

Propagate
Events

QUEUE
User Message

LCR
User Message

LCR
…………

Apply
Process

LCRs or
Messages

Database
Objects

Message
Handler

Procedure

DML
Handler

Procedure
DDL

Handler
Procedure

DML
LCRs DDL

LCRs
LCRs or
Messages

Changes

…….

ORACLE database

User Application C
produces messages

LCRs or Messages

User Application D
Consumes Messages

LCRs or Messages

User
Application E

consumes
messages

LCRs or
messages

Figure 2: Heterogeneous data sharing using Oracle9i
Streams.

2.3. Oracle9i (9.2) Real Application
Clusters (RAC)

Oracle9i Real Application Clusters (RAC) is a
cluster software architecture with scalability and high
availability features harnessing the processing power of
multiple interconnected computers. The Real Application
Clusters (RAC) software and a collection of hardware
(nodes or servers) known as a cluster, unite the
processing power of each component to create a robust
computing environment.

5

2.3.1. Overview of the Oracle9i RAC
architecture

Oracle9i RAC provides a single view of a
database that is stored on many separate servers
belonging to the same cluster. Data is stored on a shared
disk and each server has access to a shared memory
cache which is spread across all the servers in the cluster.
It uses a cache-to-cache block transfer mechanism known
as Cache Fusion to transfer read-consistent images of
blocks from one instance to another, thus reducing disk
access to a large extent. This is done by the Global
Cache Service (GCS) and Global Enqueue Service
(GES) integrated within the RAC, along with the
operating system dependent (OSD) Cluster Manager
(CM) and a high speed, low latency interconnect to
satisfy remote requests for data blocks. The GCS and
GES allow a) application transparency, by providing a
similar mechanism of shared resource access as in a
single-instance Oracle9i database; b) fault tolerance, by
providing a distributed Global Resource Directory which
is available across all active instances in the cluster, for
the nodes to record information about resources; c)
resource affinity, by periodically nominating an instance
as a resource master based on data access patterns; and d)
data integrity, by interacting with the OSD Cluster
Manager for accurate status information of all instances.
The different processes specific to a RAC database are
the Global Cache Service Processes (LMSn), the Global
Enqueue Service Monitor (LMON), the Global
Enqueue Service Daemon (LMD), the Lock Process
(LCK) and the Diagnosability Daemon (DIAG) (Figure
3).

2.3.1.1. Cache Fusion and its advantages

The synchronization of data across multiple
caches in the nodes of a cluster is called cache
coherency. This is to ensure that reading a memory
location through any cache will return the most recent
data written to that location through any other cache. So
it is also termed as cache consistency. A diskless cache
coherency mechanism in Oracle9i RAC that provides
copies of blocks directly from a holding instance's
memory cache to a requesting instance's memory cache is
called Cache Fusion.

The Cache Fusion addresses several types of
concurrency like Concurrent Reads, Concurrent Reads
and Writes and Concurrent Writes on multiple nodes.
An example scenario of Cache Fusion processing is when
an instance (the requester) requests a data block from

another instance (the holder), for modification purpose.

Variable
SGA

Redo Log
Buffer

Buffer
Cache

DIAG DIAG

Variable
SGA

Redo Log
Buffer

Buffer
Cache

Instance X Instance Y

LMON LMD LCK LGWR DBWRLMS LMON LMD LCK LGWR LMS DBWR

……..

Inter Process Communication (IPC)

Redo Log
Files

Redo Log
Files

Data files &
Control Files

Figure 3: Oracle9i RAC-specific Instance Processes.

Figure 4 shows the requester posting such a
request to the GCS. The holder keeps a copy of the
requested block at a previous image state (PI), changes
its mode from exclusive to null (X->N) and the role from
local (L) to global (G) (as the block may later be
changed by instances other than the requester). It then
sends the block to the requesting instance along with the
message that it has a PI of the block in role N and that
the block on receipt needs to be changed to exclusive
mode (N->X) with a global (G) role. The recipient
follows the rule and sends the confirmation to GCS. It is
important to note here that the data block has not been
written to disk before the resource is granted to the
requester. As a result, the performance overhead to
manage shared data between instances is greatly
diminished in this case (Figure 4). For more details on
RAC, Cache Fusion and its advantages, please refer to
[21].

Instance 1
N -> X

Instance 2
X -> N

Global Cache Service
(GCS)Request

1

Forward

2

3

4

Figure 4: Cache Fusion: Requesting a changed block for a
modification operation.

6

2.3.2. Oracle 9i (9.2) RAC Guard I

Oracle9i Release 2 extends the technology of
RAC with the enhanced Oracle9i Real Application
Clusters (RAC) Guard I along with the introduction of
Oracle9i Real Application Clusters Guard II.

The RAC Guard I formerly the RAC Guard, is
an integral component of the Oracle9i Real Application
Clusters software. It works with Real Application
Clusters and the port-specific Cluster Manager to
monitor and maintain availability of a
Primary/Secondary cluster-node configuration. Its
components (Figure 5) are the a) RAC Guard Packs
which control the Oracle instances, IP addresses,
monitors and listeners on each node; the b) PFSCTL
control utility which controls the RAC Guard operations
through a command-line user interface; the c) RAC
Guard monitors detecting termination of an instance or
unavailability of services and initiating failover; the d)
RAC Guard Configuration template providing
configuration templates for ease of RAC Guard
configuration (not shown in Figure 5); and e)
PFSSETUP Utility helping in automatic generation of
necessary RAC Guard files with correct values, derived
from the customized templates (not shown in Figure 5).

Customer Application or Middleware

Cluster Manager

PACK

Oracle Primary
Instance

Listeners

Public IPx

Monitors

Disk Group

Cluster Manager

PACK

Oracle Secondary
Instance

Listeners

Public IPy

Monitors

Disk Group

FAILOVER

Primary NODE X Secondary NODE Y

PFSCTL PFSCTL

IPx IPy

Figure 5: Oracle9i (9.2) RAC Guard I Architecture for a
two-node cluster.

During failovers, there are some automatic
actions that the RAC Guard I undertakes along with

user-prompted commands, in order to get the desired
final outcome. A possible failover scenario in a two-node
cluster may be either of the three: a) the Primary instance
fails; b) the Secondary instance fails and c) both the
Primary and Secondary instances fail. Figure 6 shows
how the first case is handled automatically by the RAC
Guard I, in cooperation with the user and how the
instances are restored after the failover. Step 1 shows
both nodes A and B operating normally with Packs A
and B respectively running on them. The Packs A and B
contain the IP addresses and the Primary and Secondary
instances for the nodes A and B respectively. Step 2
shows the failure of the Primary instance. In Step 3, the
Secondary instance becomes the Primary instance. Pack
A starts on Node B in foreign mode. This means that
only its relocatable IP address is configured to be up on
Node B. Step 4 shows how the user can restore the
secondary instance role to node A by a restore command.
The RAC Guard I starts Pack A on Node A with the
Secondary instance role, because Pack B on Node B has
already the Primary instance role due to failover. Step 5
shows how the user can restore the original instance
roles. With a move_primary command by the user, the
RAC Guard I halts Pack B and the Secondary instance
running on Node A becomes the Primary instance. When
the user enters the restore command, the RAC Guard I
starts Pack B on Node B with the Secondary instance
role. Step 6 shows the packs A and B now running on
their home nodes with their original roles.

The RAC Guard I architecture is thus designed
to build on the strengths of traditional high-availability
solutions and provides the following functionalities:

• Automatic fast recovery and bounded recovery time
from instance failures;

• Automatic capture of diagnostic data for certain
types of failure;

• Enforced primary and secondary configurations;

• No delay when reestablishing connections after a
failure.

For further details on RAC Guard I, please refer
to [22].

2.3.3. Oracle9i (9.2) RAC Guard II

The Primary/Secondary instance configuration
in RAC Guard I is the least complicated type of high
availability configuration to configure and administer.

7

The administrative overhead for a Primary database in
this configuration is the same as the overhead of a single-
instance configuration. In such configurations, the
secondary instance does not have to remain idle but can
be available for read-only operations. Even though this a
good high availability solution, it does not ensure
exceptional scalability with growing clusters.

Pack A
Primary
Instance

IP

NODE A NODE B

Pack B
Secondary
Instance

IP

NODE A

Pack A
Primary
Instance

IP

NODE B

Pack B
Secondary Instance

IP

NODE A

Pack A
Secondary
Instance

IP

NODE B

Pack B
Primary
Instance

IP

Pack A
Primary
Instance

IP

NODE A NODE B

Pack B
Secondary
Instance

IP

NODE A

NODE B

Pack A
IP

Pack B
Secondary
Instance

Pack B
Primary
Instance

IP

STEP 2:
Primary

instance fails

STEP 3:
Automatic
failover:

Pack A starts
up on Node B

Secondary
instance
becomes
Primary
instance

STEP 4:
User restores

secondary role
to Node A

STEP 6:
User

restores
secondary

role to
Node B

NODE A

Pack A
Secondary
Instance

IP

Pack A
Primary
Instance

IP

NODE B

STEP 5:
User moves

primary
instance

Secondary
becomes
primary

Pack B halts

STEP 1:
Normal

operation

Figure 6: Oracle9i (9.2) RAC Guard I Operation.

Real Application Clusters Guard II in Oracle9i
Release 2 extends the notion of a two-node
(Primary/secondary) active/active cluster to an n-node,
fully active cluster where all instances can support the
services in the cluster database. Active/active instance
configurations have typically been complex to configure.
With the advent of Real Application Clusters Guard II,

easy to manage full active configurations are available. It
supports comprehensive workload management to
maintain high availability for RAC databases and their
applications. RAC Guard II transfers application loads
based on the concept of service names. Service names
have been adopted for high availability because one does
not have to make application changes to implement
them. In addition, service names provide location
transparency to the database instances that offer the
service. Service names enable a single-system image that
simplifies the configuration, operation, and recovery of
workloads. RAC Guard II, therefore supports workload
management based on service levels and ensures high
availability for applications using database services [23].

2.4. Automated space and memory
management

Automated space and memory management
along with automatic undo segment management have
been introduced as some of the new self-management
features in Oracle9i.

To further simplify the space management at
the database level, Oracle9i Release 2 allows all
tablespaces including the SYSTEM tablespace to be
Locally Managed thus simplifying the task of the
database administrator. This can be done by specifying
the EXTENT MANAGEMENT LOCAL clause in the
CREATE DATABASE statement. Locally managed
tablespaces provide better performance and greater ease
of management over dictionary-managed tablespaces [11,
12]. The conditions that need to be met for this are :

• There should be a default temporary tablespace other
than the SYSTEM tablespace;

• Rollback segments must not be created in dictionary-
managed tablespaces but rather one should use
automatic undo management;

• One cannot create any dictionary-managed
tablespaces in the database or migrate a locally-
managed tablespace to a dictionary-managed
tablespace. Migration of an existing dictionary-
managed SYSTEM tablespace to a locally-managed
tablespace is allowed by the use of the
DBMS_SPACE_ADMIN package.

Additionally, in Oracle9i Release 2, the
Recovery Manager (RMAN) has a better space
management feature while restoring the archived redo
logs. The MAXSIZE option of the RECOVER <object>

8

DELETE ARCHIVELOG command limits how much
disk space RMAN may use when restoring logs during
media recovery. This enables improved space
management of archived log files thus freeing the DBA
from managing the space allocation of the archived logs
[24].

In the area of automated memory management,
Oracle9i Release 2 frees the DBA from time-consuming
tuning and diagnostic tasks, by providing built-in
advisories. For example, the Shared Pool Advisory
shows shared pool usage for improving parse time with
minimum CPU resources and provides information on
the optimal size of the library cache on the system. The
PGA Advisory predicts the result of altering the PGA
memory on the overall instance performance. Also see
Section 2.6 and for more details on memory
management, please refer to [20].

2.5. Enhancements in Partitioning
Techniques

Partitioning capabilities in Oracle9i Release 2
have been expanded to support composite range-list
partitioning. This makes it much easier to perform
operations on a list of partitions, by partitioning first by a
range value, say, a month, with a sub-partition on the list
value (Figure 7). It is advantageous for data maintenance
operations, for example, while doing backups of data for
geographic regions by month. Furthermore, list
partitioning now supports the concept of a default
partition, so that, if a data row does not conform to the
designated list of values, then the data row can be placed
in a default partition instead of being rejected and
generating an error. This means that applications no
longer need to contain code to handle exception cases
[11, 12].

January and
February

March and
April

May and
June

East Sales
Region:
NY, VA

West Sales
Region:
CA, OR

Central Sales
Region:
IL, TX

Figure 7: Composite Range-List Partitioning by range-
value and list-value.

Additionally, parallel Data Manipulation
Language (DML) is now supported on non-partitioned
data tables, greatly enhancing the performance of a large
update operation [14].

2.6. Enhancements in Performance
features

Oracle9i Release 2 has the capability of dynamic
sampling of optimizer statistics if a new initialization
parameter OPTIMIZER_DYNAMIC_SAMPLING is set
to a certain level between 0 and 10. This feature, if
enabled, will dynamically gather statistics if the existing
statistics are incomplete or known to be inaccurate.
Dynamic sampling of optimizer statistics thus helps to
improve performance by improving the quality of the
statistics used by the query optimizer.

The new “out-of-the-box” Performance Tuning
Intelligent Advisories in Oracle9i Release 2 allow the
administrator to simulate a variety of hypothetical
scenarios. These advisories use minimal resources and
are available though the standard SQL interface.

• The Shared Pool Advisory statistics help to improve
parse time and to minimize CPU usage. They track
the memory usage incurred by SQL executions and
helps shorten SQL execution time and minimize
unnecessary CPU and I/O usage.

• The Mean-Time-To-Recover (MTTR) Advisory
makes it possible for the administrator to set the time
requirements to recover from a system crash without
jeopardizing run-time performance.

• The PGA Aggregate Target Advisory makes it
possible for the server to dynamically control the
amount of PGA memory allotted to SQL work areas
according to the PGA_AGGREGATE_TARGET
limit set by the DBA.

For more details on Oracle9i Release 2
performance features, please refer to [20].

3. A RECAP OF THE EXISTING
FEATURES IN ORACLE9i

This section provides a recapitulation of the
performance features that exist since Oracle9i Release
version 9.0.1. Table 1 provides a list of the performance
features that help in tuning applications on any operating
system, e.g., HP-UX 11i. All these generic features as

9

well as their tuning capabilities have been extensively
discussed in [31]. The performance enhancements in

Oracle9i Releases 1 and 2 specific to HP-UX, will be
discussed respectively in Sections 5 and 6.

TABLE 1: Performance Features in Oracle 9i version 9.0.1 and beyond

Oracle9i Performance Features Purpose

FIRST_ROWS_n Optimization

With the initialization parameter OPTIMIZER_MODE set to FIRST_ROWS_n, the optimizer uses a cost-
based approach, regardless of the presence of statistics, and optimizes with a goal of best response time to return

the first n number of rows (where n can equal 1, 10, 100, or 1000).

Literal Replacement with bind variables

CURSOR_SHARING parameter

When bind variables are used in a SQL statement, the cost-based optimizer assumes that SQL cursor sharing is
intended and that different invocations of the cursor are supposed to use the same execution plan. This helps

effective sharing of the SQL area in the library cache.

A new CURSOR_SHARING parameter can now be set to SIMILAR to force similar statements to share SQL
by replacing literals with system-generated bind variables. Replacing literals with bind variables improves cursor

sharing with reduced memory usage, faster parses, and reduced latch contention.

Identifying Unused Indexes With the ALTER INDEX MONITORING USAGE functionality, one can find the indexes that are not being
used over a period of time and may drop them if necessary, thus reducing the cost of index maintenance.

System Statistics For each plan generated by the query optimizer, estimates for I/O and CPU costs are also computed. This helps
the optimizer to pick the most efficient plan with optimal proportion between I/O and CPU cost.

Optimizer Hints The following hints are new with 9i: NL_AJ, NL_SJ, CURSOR_SHARING_EXACT, FACT, NO_FACT
and FIRST_ROWS_ n.

Outline Editing While the optimizer usually chooses optimal plans for queries, there are times when users know things about the
execution environment that are inconsistent with the heuristics that the optimizer follows. By editing outlines
directly, one can tune the SQL query without having to alter the application. The DBMS_OUTLN package
(synonym for OUTLN_PKG) and the new DBMS_OUTLN_EDIT package provide procedures used for

managing stored outlines and their outline categories.

CPU Costing The optimizer now calculates the cost of access paths and join orders based on the estimated computer resources,
including I/O, CPU, and memory.

Tuning Oracle-Managed Files Oracle internally uses standard file system interfaces to create and delete files as needed for tablespaces,
tempfiles, online logs, and controlfiles.

FAST_START_MTTR_TARGET
Parameter

The parameter helps to specify in seconds the expected "mean time to recover" (MTTR), which is the
expected amount of time Oracle takes to perform recovery for an instance.

Dynamic Memory Management With release 9i, it is now possible to dynamically adjust the shared memory allocated for Oracle Shared Global
Area (SGA) and the process-private memory allocated for the Process Global Area (PGA). There is an

automatic mode to dynamically adjust the size of the tunable portion of the SGA and PGA memory by an
instance. The sizes of the tunable portions are respectively adjusted based on the SGA_MAX_SIZE limit and an

overall PGA memory target explicitly set by the DBA.

4. CONFIGURING AND OPTIMIZING
ORACLE9i RELEASE 2 ON HP-UX

As both functionality and performance of Oracle
RDBMS are sensitive to the operating system kernel
configuration, compiler optimization and efficient use of
operating system libraries, it is highly recommended to
abide by all the installation and configuration
recommendations in order to get the maximal
performance of Oracle on HP-UX. This section describes

the steps for configuring and optimizing Oracle products
on HP-UX.

4.1. Configuring Oracle9i Release 2
on HP-UX

The steps to configure Oracle9i Release 2 on
HP-UX are almost the same as those for Oracle9i Release
1 except for a few changes. A similar section in [31]
discusses all details that one needs to be aware of while
trying to configure Oracle9i on HP-UX. These are the a)
required system privileges; the b) recommended HP-UX

10

kernel parameter settings; and the c) recommended
operating system patches, patch bundles and
compiler/linker versions. Unlike Release 1, it is not
necessary to disable Data Prefetch [31] while running
certain applications with Oracle9i Release 2 on HP
Superdome (HP-UX 11i) due to the latch alignment
changes in the later.

4.1.1. Oracle9i Release 2 on HP-UX: Pre-
installation Recommendations

The system privileges required for Oracle9i to
perform asynchronous I/O and use HP SCHED_NOAGE
process scheduling policy, are MLOCK, RTSCHED and
RTPRIO.

Certain kernel operating system parameters
e.g., shmmax, maxdsiz_64bit, etc, can be configured to
fit specific system needs, resulting in a better application
performance by an effective allocation of system
resources. For example, the SHMMAX kernel parameter
setting is critical for regulating the allocation of HP-UX
shared memory segments for a 64-bit Oracle Instance.
When a 64-bit Oracle server creates a database instance,
the server creates memory segments by dividing the
available shared memory by the value of the HP-UX
SHMMAX kernel parameter. For example, if 64 GB of
shared memory is available for a single Oracle instance
and the value of the SHMMAX parameter is 1 GB, the
Oracle server creates 64 shared memory segments for
that instance. It is recommended to set the SHMMAX
parameter value to the amount of available physical
memory on the system. Doing this, ensures that the entire
shared memory for a single Oracle instance is assigned to
one shared memory segment and the instance needs only
one protection key (each shared memory segment for an
Oracle instance receives a unique protection key of the
PA-RISC processor). To display the list of active shared
memory segments on the system, enter the following
command,

ipcs -m

If the Oracle server creates more than six
segments for the instance, one should increase the value
of the SHMMAX kernel parameter. Please refer to
Section 7.1.4 for its performance implications. On HP-
UX 11i, the kernel parameters are dynamically re-
configurable. That means, users may dynamically alter
parameters related to process memory, shared memory,
etc, without going through a system reboot. Please refer
to [17] for more information on recommended HP-UX
kernel parameter settings for Oracle9i Release 2.

One also needs to make sure of installing the
recommended versions of operating system patches,
patch bundles, compiler/linker, etc. This is to ensure
stability and performance of Oracle9i Release 2 on HP-
UX. As the recommendations for the above steps are
applicable to both HP-UX 11.0 and 11i, I have used the
term HP-UX to cover both. For more details on each of
the above steps as well as for the modifications made in
Oracle9i Release 2, please refer to [31] and [17].

4.1.2. Oracle9i Release 2 on HP-UX:
Post-installation Recommendations

This section will cover some of the post-
installation issues with Oracle9i Release 2 (9.2) on HP-
UX. Special scenarios related to allocation of process
memory and dynamic loading of HP-UX shared libraries
by applications, will be discussed here.

4.1.2.1. Large Memory Allocations and
Oracle9i (9.2) tuning on HP-UX

One may see a significant increase in memory
allocation while running applications with an Oracle9i
Release 2 (9.2) executable, compared to memory
allocation with an Oracle8i executable on HP-UX. There
are two potential causes for this issue:

• The Oracle initialization parameter
CURSOR_SPACE_FOR_TIME is changed from the
default value FALSE to TRUE.

• Oracle9i Release 2 (9.2) changes the default setting
for virtual memory data pages from D (4KB) to L
(1GB) on HP-UX..

Persistent Private SQL Areas and Memory: When a
user submits a SQL statement to Oracle to be processed,
Oracle automatically performs the following memory
allocation steps:

1. Oracle checks the shared pool present in the Oracle
SGA (Shared Global Area) to see if a shared SQL
area already exists for an identical statement. If a
shared SQL area exists, then Oracle uses that area to
execute subsequent new instances of the statement. If
a shared SQL area does not exist, then Oracle
allocates a new shared SQL area in the shared pool
for the SQL statement.

2. Oracle also allocates a private SQL area on behalf of
the user session.

11

Private SQL areas contain data such as bind
information and runtime memory structures for processed
SQL statements. Private SQL areas are also where a
parsed statement and other information for statement
processing are kept. A cursor is a handle or name for a
private SQL area; the cursor indicates that the private
SQL area associated with the cursor remains in use.

Each user that submits the same SQL statement
has a cursor that uses a single shared SQL area. Thus
many private SQL areas can be associated with the same
shared SQL area. If a user session is connected through a
dedicated server, then private SQL areas are located in
the server process PGA (Process Global Area). However,
if a session is connected through a shared server, part of
the private SQL area is kept in the SGA.

The Oracle initialization parameter
CURSOR_SPACE_FOR_TIME specifies whether a SQL
cursor can be deallocated from the library cache to make
room for a new SQL statement. When this parameter is
set to TRUE, then Oracle9i Release 2 (9.2) can only
deallocate a shared SQL area from an Oracle library
cache when all application cursors associated with the
SQL statement are closed. Setting the parameter to TRUE
also prevents the deallocation of private SQL areas
associated with open cursors, thus making the user's
private SQL area persistent. For more details, see [20].

Setting the CURSOR_SPACE_FOR_TIME
initialization parameter to TRUE, accelerates SQL
execution calls and improves performance, but leads to
larger memory allocations for Oracle9i shadow processes
due to an increase in cursor memory. On the other hand,
setting CURSOR_SPACE_FOR_TIME parameter to
FALSE degrades overall SQL execution and
performance. See performance implications in Section
7.1.7.

Default Large Virtual Memory Page Size: By default,
Oracle9i Release 2 (9.2) executable uses the largest
virtual memory page size setting allowable by HP-UX,
for allocating process-private memory. It is designated by
the value “L” (largest) and is currently 1 Gigabyte on
HP-UX 11i. This value is set as one of the
LARGE_PAGE_FLAGS options, while linking an oracle
executable. With the setting as L, the HP-UX operating
system allocates the available process-private memory to
pages of 1M, 4M, 16M, 32MB, 64MB and so on, until it
reaches the 1 GB limit or it reaches the total amount of
memory available for allocation. If one allocates enough
memory to the Oracle PGA for the OS to be able to
allocate memory in larger data page size units, then the
OS allocates the maximum size at once. For example, if

one allocates 48MB for the Oracle PGA, or a series of
pages in unit sizes with the smaller multiples -- 4 (1MB)
pages, 3 (4MB) pages and 2 (16MB) pages. If one
allocates 64MB to the PGA, then the OS will allocate one
page of 64MB, as the data page unit size multiple
matches the available memory.

Large pages yield better performance, but if
applications are constrained in memory and tend to run a
very large number of processes, then this drastic page
size increase may lead processes to indicate large
memory allocations, followed by an “out of memory”
error. In those cases, one must lower the page size to a
value between the “D” (default) size of 4KB and the “L”
(largest) size of 1GB. For example, an application may
show reasonable performance with a 4MB virtual
memory page size setting. See performance implications
in Section 7.1.7.

Tuning Recommendations: The following steps are
recommended to address tuning for the increased
memory allocation required for Persistent Private SQL
Areas and Large Virtual Memory Page Sizes:

• Keep the value for CURSOR_SPACE_FOR_TIME
to TRUE, unless the system indicates library cache
misses while running the application. In that case,
the shared pool may be small enough to hold the
SQL areas for all concurrent open cursors.

• Decrease the virtual memory data page size for the
Oracle9i Release 2 (9.2) executable. The page size
setting can be altered by using the following
command:

/usr/bin/chatr +pd <new size>
$ORACLE_HOME/bin/oracle

where the variable newsize represents the new value of
the virtual memory page size. One can display the new
setting using the chatr command as follows:

/usr/bin/chatr $ORACLE_HOME/bin/oracle

4.1.2.2. Using HP LD_PRELOAD
environment variable for loading shared
libraries

Because shared libraries require less memory,
many programs use shared libraries. In most cases, the
dld.sl 64-bit HP-UX dynamic loader is invoked
automatically when applications using shared libraries
start. At run time, the dynamic loader implicitly attaches
to the process, all the shared libraries linked with the
program. This includes the HP-UX thread-local storage

12

(TLS) libraries. Programs can also use the shl_load()
HP-UX function to:

• Explicitly access the 64-bit HP-UX dynamic loader;

• Attach a shared library to a process at run time;

• Calculate the addresses of symbols defined within
shared libraries;

• Detach the library when finished.

Laboratory tests indicate that an error occurs
when an application uses the shl_load() function to
attach a shared library that directly or indirectly contains
HP-UX TLS libraries. This error includes Oracle shared
libraries, for example, libclntsh.sl which is currently
linked with the libpthread.sl and libcl.sl HP-UX TLS
libraries.

In the following example, the prog.c program
calls the shl_load() function to load the libclntsh.sl
library:

shl_load(“<full path for
$ORACLE_HOME>/rdbms/lib/libclntsh.sl",
BIND_IMMMEDITE | BIND_VERBOSE |
DYNAMIC_PATH | 0L);

When the prog.out file is executed, it generates
the following errors:

usr/lib/pa20_64/dld.sl: Cannot dlopen load
module '/usr/lib/pa20_64/libpthread.1' because
it contains thread specific data.

/usr/lib/pa20_64/dld.sl: Cannot dlopen load
module '/usr/lib/pa20_64/libcl.2' because it
contains thread specific data.

The new HP LD_PRELOAD environment
variable resolves this problem. One can set the value of
this variable to a colon-separated or whitespace-separated
list of the TLS libraries that the dynamic loader can
interpret. The dynamic loader treats the libraries
specified by the LD_PRELOAD variable as the first ones
in the link line and pre-loads these libraries implicitly at
application startup. Therefore, calls to the shl_load()
function do not return errors. For the example above, one
should perform the following steps:

• Set the value of the LD_PRELOAD variable to
include the paths of the TLS libraries that the
program uses, for example:

 export
LD_PRELOAD=/usr/lib/pa20_64/libpthread.1:
/usr/lib/pa20_64/libcl.2

• Enter the following command to execute the
program, where prog is the name of the program:

 prog.out

 No errors should appear.

• Unset the LD_PRELOAD variable to prevent
unnecessary memory overhead by the loader:

 unset LD_PRELOAD

 For more information on the LD_PRELOAD
environment variable, refer to HP documentation [5].

 4.2. Optimizing the builds of Oracle
products on HP-UX

 The HP C optimizer can transform programs so
that machine resources are used more efficiently, thus
dramatically improving application run-time speed. HP C
performs only minimal optimizations unless specified
otherwise. One needs to use the desired level of
optimization (1 through 4) and has to be aware of the
trade-offs between the application code performance and
the compile-time memory and CPU penalties. One may
also want to activate optimization of one's own choice
using HP C command line options. One such desired type
of optimization on HP-UX is the Profile Based
Optimization (PBO) which is a set of performance
improving code transformations based on the run-time
characteristics of the application. The steps of PBO-ing
an application and its advantages specific to Oracle
products have been described in [31]. For more details on
the method of PBO-ing, please refer to [5]. There is a
method for dynamic instrumentation of an application
using HP Caliper which is mainly used for optimizing
executables on HP-UX Itanium Processor Family (see
Section 6.2.1.2).

 Choosing the right HP C compiler and linker
flags and HP/Oracle options is a procedure followed for
building 64-bit optimized Oracle products on HP-UX
11.0/11i. The HP-UX system libraries also play an
important role while linking a 64-bit optimized oracle
binary on HP-UX 11.0/11i. For details regarding the use
of the different flags/options and system libraries, please
refer to the HP-UX reference manuals in [5].

13

 5. A RECAP OF THE EXISTING HP-
SPECIFIC FEATURES IN ORACLE9i

 This section gives an overview of the various
performance features, existing since Oracle9i Release
version 9.0.1 on HP-UX. These enhancements include
the HP-specific implementations of asynchronous flag in
Oracle shared global area, the lightweight timer and the
SCHED_NOAGE process scheduling policy. The last
two have been further enhanced in Oracle9i Release 2
and will be detailed in Section 6.

 5.1. Asynchronous Flag in Shared
Global area

 Oracle9i on HP uses a non-blocking polling
facility provided by the HP asynchronous driver to check
the status of I/O operations. This polling is performed by
checking a flag that is updated by the asynchronous
driver based on the status of the I/O operations submitted
to it. HP requires that this flag be in shared memory.

 Oracle9i configures an asynchronous flag in the
SGA for each oracle process. Due to the polling facility
provided by the implemented flag, Oracle9i on HP
performs true asynchronous I/O where I/O requests can
be issued immediately after the flag advertises that a
bunch of I/Os have been completed. That is, Oracle9i can
new I/O requests to the HP asynchronous driver, even
though some of the previously submitted I/O operations
are not complete. Please refer to Section 7.1.1 for
performance implications.

 5.2. HP Lightweight Timer for 64-bit
Oracle 9i

 Prior to Oracle9i release version 9.0.1 on HP-
UX, Oracle called the heavyweight HP-UX
gettimeofday() system call to get the wall clock time and
calculate elapsed time. This had a significant impact on
Oracle performance, especially when the Oracle
TIMED_STATISTICS initialization parameter was set
to TRUE in order to collect timing information for
tuning purposes. Oracle 9i on HP-UX uses a new library
call function gethrtime() from HP to calculate elapsed
time, thus reducing the negative impact on RDBMS
performance when the TIMED_STATISTICS is set to
TRUE. Further modifications on this topic for Oracle9i

 Release 2 has been discussed in Section 6.4. Also see
Section 7.1.6 for comments on performance.

 5.3. Using HP SCHED_NOAGE
Process Scheduling Policy

 By default, most processes run under the
SCHED_TIMESHARE scheduling policy on HP-UX
11i. Here, each process has a priority and is given access
to a CPU based on that priority. The priority degrades
and the process is preempted by another process having a
higher priority. In some cases, this standard schedule
method may cause sub-optimal performance. If a running
process has a lock on a resource and is preempted, a
process that needs that resource may start running, after
which it realizes that it can’t acquire the resource and
goes right back to sleep again. In that case, it would have
been better for the process with the lock on the resource
to finish its work and relinquish the lock, instead of
being preempted. This situation may often arise with
Oracle processes on a multiprocessor system.

 Oracle9i uses a modified scheduling policy from
HP, referred to as SCHED_NOAGE, that specifically
addresses this issue. Unlike the normal time sharing
policy, a process scheduled using SCHED_NOAGE does
not increase or decrease in priority, nor is it preempted.
This feature is suitable mainly for online transaction
processing (OLTP) environments because OLTP
environments can cause competition for critical
resources. Because each application and server
environment is different, it is recommended to test and
verify whether one’s environment benefits from the
SCHED_NOAGE policy.

 To allow Oracle9i to use the SCHED_NOAGE
scheduling policy, the group that the Oracle software
owner belongs to (DBA), must have the RTSCHED and
RTPRIO privileges to change the scheduling policy and
set the priority level for Oracle processes.

 Further modifications on this topic for Oracle9i
Release 2 has been discussed in Section 6.3. For more
information on priority policies and priority ranges, one
should also refer to the rtsched (1) and rtsched (2) man
pages and the HP documentation site [5]. Also see
Section 7.1.5 for comments on performance.

14

 6. HP-SPECIFIC ENHANCEMENTS
IN ORACLE9i RELEASE 2

 This section describes all the HP-specific
features and enhancements included in Oracle9i Release
2 on HP-UX. These are a) implementation of HP Hyper
Messaging Protocol for Oracle9i Release 2 Real
Application Clusters; b) implementation of Oracle9i
Release 2 on IA-64 platform HP-UX; c) modifications to
the implementation of HP SCHED_NOAGE scheduling
policy; and d) extensions to the use of HP Lightweight
timer. They have been discussed in sequence in the
following sub-sections.

 6.1. HP Hyper Messaging Protocol
(HMP) for Oracle9i Real Application
Clusters

 For server clusters to be effective, they must
provide large scalability and high availability. A shared
disk cluster database architecture provides high
availability but the efficiency of this approach depends on
the inter-node communication mechanism involving
direct memory access. Application programs, generally
use the standard Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP) to transport
messages to other programs across a network of computer
systems. These protocols form the lightweight layer
above the base Internet Protocol (IP) in the network
layer. However, in a cluster configuration where several
servers share the same disk, concurrent I/O operations
can create contention and limit the cluster scalability.

 HP and Oracle have collaborated over the past
few years to provide a cluster solution that delivers high
availability and scalability. HP has created the
HyperFabric high-speed cluster interconnect network
protocol for node to node communications and Oracle
has developed the Cache Fusion technology in Oracle9i
Real Application Clusters (RAC).

 6.1.1. Advantages of the HP
HyperFabric, HMP, MC/ServiceGuard
and Logical Volume Manager

 HyperFabric II (HyperFabric Release 2) is a
high-speed cluster interconnect fabric, designed by HP, to
meet the needs of enterprise-class parallel database
applications. It provides higher speed (a link rate of 4

 GB/s over fiber over a distance of 200 meters), lower
network latency, excellent scalability (up to 16 nodes via
point-to-point connectivity and up to 64 nodes via fabric
switches by transparent load balancing of connection
traffic over multiple network interface cards (NIC)),
greater reliability (by transparent failover of traffic from
one card to another) and lower host CPU utilization
compared to other industry standard protocols such as
Fibre Channel. HyperFabric II supports both the industry
standard Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) over Internet Protocols (IP)
and the HP proprietary Hyper Messaging Protocol
(HMP).

Oracle9i RAC
Instance A

HP MC/Service Guard
OPS edidition

Shared Logical Volume
Manager

Oracle9i RAC
Instance B

HP MC/Service Guard
OPS edidition

Shared Logical Volume
Manager

Shared XP Storage
System

High-Speed
Cluster

Interconnect
via HMP

 Figure 8: HP Hyper Messaging Protocol integration with
Oracle9i RAC.

 HMP expands the existing feature set of TCP
and UDP by providing a true Reliable Datagram model
for both remote direct memory access (RDMA) and
traditional message semantics. HMP enables servers to
directly access the memories and caches of other servers
in the cluster and provides faster data transfer than UDP
or TCP. With the operating system bypass capability and
the hardware support for protocol off load provided by
HyperFabric II, HMP provides high bandwidth, low
latency and extremely low CPU utilization with an
interface and feature set, optimized for business critical
parallel applications.

 As described in Section 2.3, a major component
of a cluster architecture is the port-specific Cluster
Manager (CM) which monitors the heath of all nodes in
the cluster and responds to failures in a way that enables
outstanding level of availability for the applications. The
Cluster Manager from HP, called the Multi-
computer/ServiceGuard (MC/ServiceGuard) OPS
edition, is a special edition supporting Oracle9i RAC on

15

HP 9000 servers. Its major components are: a) the cluster
manager which establishes and monitors various
components of each node in the cluster; b) the distributed
lock manager which enables reliable sharing of data
between the nodes by enhanced lock management
mechanism for coordinating and synchronizing the
concurrent reads and writes to a database; c) the package
manager which monitors and controls packages
containing high available applications; d) the network
manager which detects and recovers from card and cable
failures. The M/C ServiceGuard (shown in Figure 8) has
the ease of implementation and usage, benefits of
automatic application package failover and also the
benefits of data integrity by coordination with the
underlying database cluster components. For further
details, see [5].

 NOTE: HP's High Availability Product, formerly known
as ServiceGuard OPS Edition, which is part of the
product stack of Oracle9i Real Application Clusters
(RAC) on HP, has recently gone through a product name
change. From version A.11.14.01 onwards it will be
called "ServiceGuard Extension for RAC" or in short,
SGeRAC.

 The shaped Logical Volume Manager (LVM)
(shown in Figure 8) which ships with HP-UX, provides
the basic functionality needed by the cluster nodes to
share the physical disks and buses between themselves.

 6.1.2. Advantages of Oracle9i (9.2) RAC

 As described in Section 2.3.1.1, Oracle9i RAC
Cache Fusion provides a single view of a database that is
stored on many separate servers belonging to the same
cluster. Data is stored on a shared disk and each server
has access to a shared memory cache which is spread
across all the servers in the cluster. Oracle9i Cache
Fusion thus provides an expanded database cache for
queries and updates with reduced disk I/O
synchronization which overall speeds up database
operations.

 Additionally, the components of Oracle9i RAC
such as RAC Guard I and RAC Guard II provide an
efficient high availability solution. The enhanced
coordination by the Global Cache Service (GCS) with
the HP Cluster Manager (CM) called the M/C Service
Guard OPS Edition leads to advantages like resource
affinity, data integrity, application transparency and
fault tolerance, as already described in Section 2.3. The
dynamic management of the nodes showing frequent
access pattern for data blocks helps reducing

communication latency by increasing the likelihood of
local cache access. Overall, the Oracle9i (9.2) RAC with
the use of minimal CPU resources and low
communication latency is able to bring forth high
availability and scalability without bandwidth
constraints.

 6.1.3. The Combined Advantages

 Technologies like Cache Fusion, RAC Guard I,
RAC Guard II and other enhanced recovery and high
availability features of Oracle9i (9.2) RAC tightly
integrate with HP HyperFabric technology to provide a)
a robust cluster framework having large scalability
without the need for data and workload partitioning and
b) a configuration that leverages the best high-
availability technology. Please refer to Section 2.3 and
[5] for further details. The relevant performance data that
proves the advantage of the combination is mentioned in
Sections 7.1.2 and 7.2.3. Further work, combining RAC
Guard II and HP HMP is currently being done, towards a
more enhanced high availability solution foreseeable in
future Oracle releases.

 For more information about Oracle Real
Application Clusters using HP Hyper Messaging Protocol
(HMP), refer to [17] and [25].

 6.2. Oracle9i Release 2 on the IA-64
(McKinley) platform, HP-UX 11.22

 In general, the Reduced Instruction Set
Computing (RISC) architecture provides a simpler
instruction set and fewer components than the Complex
Instruction Set Computing (CISC) architecture. As a
result, RISC processors are smaller and run at higher
clock speeds. However, the first RISC processors were
unable to take advantage of the advancements in
integrated circuit technologies due to an increased
density of integrated circuits. To rectify this problem, the
next generation of RISC processors were designed with
multiple functional units that enabled simultaneous
execution of multiple instructions in parallel. The task of
the RISC processors to find valid parallel processing
opportunities in a stream of instructions became more
challenging with applications based on object-oriented
programming languages with a hierarchical nature, for
example, C++ and Java. The wide range of branching
possibilities of these applications outran the ability of the
RISC processor family to find parallel processing

16

opportunities and as a result they ran into a performance
wall.

 HP developed a concept of Explicitly Parallel
Instruction Computing (EPIC), a cost-effective way to
perform parallel processing where multiple possible
branches of an application are executed simultaneously in
parallel with the possibility of one branch being
ultimately useful. The EPIC concept required:

• A new family of processors; and

• Compilers to generate efficient code for the
new processors.

HP and Intel collaborated to create an
architecture based on the EPIC architecture. The result
has been the Itanium Processor Family (IPF)
architecture - the Intel Corporation 64-bit microprocessor
architecture or IA-64. Additionally, the IA-64 compilers
from HP have been designed to generate efficient code
for identifying parallel processing opportunities at
compile time along with the ability of positioning
retrievals of data from memory in advance of data
requests by the application. The ultimate result has been
a new model of HP-UX 11i (version 1.5 and beyond).
With a very powerful processor underneath, it is capable
of executing multiple tasks simultaneously and is able to
achieve unprecedented levels of computational
performance with large memory capabilities and vast
amount of room to store, deliver and mine data [1].

6.2.1. The Combined Advantages

Just as the IPF based HP-UX 11i defines the
standard for an industrial-strength enterprise operating
system, designed and engineered to meet the high
demands in computing power, Oracle9i Release 2 with
features such as Cache Fusion, 64-bit large-memory
addressing, fault tolerance and the capacity to manage
very large workloads brings forth high performance, high
availability and scalability to the Internet database arena
for doing e-Business. The first Oracle9i release version
9.0.1.0 for the IA-64 platform HP-UX 11.20 (HP-UX 11i
version 1.5) has been based on the Itanium chip. The
goal for Oracle9i Release 2 on the IA-64 HP platform is
to take advantage of the enhanced Itanium 2 (McKinley)
based HP-UX 11.22 operating system. The primary areas
around which Oracle9i Release 2 running on HP-UX 11i
for IA-64 (McKinley) benefit most are described in the
following subsections.

NOTE: As of the date of the presentation of this paper,
Oracle9i Release 2 may not be available on the Itanium 2

based HP-UX 11.22 as scheduled. In that case, please
look out for the availability of the release documentation
[16]. It will provide additional information on installing
and configuring Oracle9i Release 2 on Itanium 2.

6.2.1.1. Improved Compiler Optimization
support on IPF

The HP compiler optimizer designed for IPF,
employs a suite of transformations that take advantage of
the key Itanium architectural features to improve
instruction-level parallelism of Oracle applications. For
example, the scheduler performs special techniques such
as predication, control and data speculation. Predication
allows control flow to be converted into conditionally-
executed instructions that eliminates branch instructions
and allows multiple execution paths to be executed
simultaneously. It also enables software pipelining of
loops in the program code by utilizing special branches
for efficient scheduling. Lastly, speculation allows code
to be executed earlier than it would be under the order
specified by user. This helps loop-intensive numeric
applications to achieve greater speedups on IA-64.
Additionally, compiler optimizations at levels 3 (+O3)
and above enable inlining of a larger set of math library
routines into user code. The overall advantages are a)
faster numerical codes which benefit more from the loop
transformations; b) faster code for those which often call
math library functions (sin, cos, sqrt, memcpy, memcmp,
etc) because of their benefit from inlining. For more
details, please refer to [1, 7, 33].

6.2.1.2. Improved Profile-based optimization
support on IPF

Caliper-integrated dynamic instrumentation: As cited in
Section 4.2, the Profile-based optimization (PBO)
method is based on the static analysis of an application
that is fed to the compiler. It requires recompilation with
special flags, firstly, for inserting data collection code
into the object program and secondly, for generating the
final optimized code. HP Caliper, an architecture for
software developer tools dealing with binary programs
uses the technology of dynamic instrumentation,
allowing program instructions to be changed on-the-fly
with instrumentation probes. As opposed to static
instrumentation, a) it is performed at run time of a
program; b) it instruments only those parts of the
program that are actually executed; c) it eliminates the
overhead imposed by a separate instrumentation process
involving recompiling; and also d) captures true run-time
interactions with the processor and operating system,

17

e.g., a program’s cache behavior and paging behavior. It
integrates the Intel Itanium Performance Measurement
Unit (PMU) support for enhanced sampling of over 150
event types allowing a wide range of system analysis
tasks, e.g., analysis of cache misses, translation look-side
buffer (TLB) or instruction cycles along with fast
dynamic instrumentation.

Figure 9 shows the different components of the
HP Caliper architecture: 1) The Developer Tool Process
physically spilt into two parts - the a) user interface,
which can be standalone scripts or integrated
development environments and the b) HP Caliper shared
object, which contains support code, collectors, Caliper
API and memory management routines; 2) The
Application Process which consists of the a) Application
program and the b) HP Caliper Injected Object. HP
Caliper allows to inject an optional run-time library into
the application process to record information, react on
application events and communicate with the developer
tool via the HP-UX debug interface (ttrace).

It is important to note that instrumentation with
HP Caliper is supported only in combination with +O1
optimization level of McKinley-based HP-UX compiler,
unlike the one based on PA-RISC. For more details on
HP Caliper, please refer to [2, 29].

Use of 64-bit profile counters: Static instrumentation
with PA-RISC uses profile counters which are 32-bits in
size. If the training run with instrumented executables is
too lengthy, this may sometimes lead to counter
saturation yielding wrong predictions. On McKinley,
profile counters are 64 bits in size, thus allowing more
lengthy training runs without concerns about counter
saturation [7].

6.2.1.3. Desirable code scheduling support on
IPF

Different Itanium-based implementations can
have vastly different resource constraints, latencies and
other scheduling criteria. The HP compiler optimizing
scheduler for IPF, can currently schedule an application
code for the first two Itanium Family implementations:
Itanium and McKinley. The user can schedule code to
run best on each of these implementations by using the
options +DSitanium and +DSmckinley, respectively.
Users might also want to optimize code once and have it
run reasonably well on both implementations by using
the option +DSblended. One can also use the option
+DSnative to schedule one's code to run fast for the
implementation on which the code is compiled, whether
it is Itanium or McKinley. See more details in [7]. The

HP compiler support for Itanium-specific, McKinley-
specific and blended scheduling models allows Oracle
code to be scheduled at compile time in order to achieve
the best performance on a particular implementation.

Developer
Tool

User
Interface

Main

Python Interpreter

Caliper API

Support

C
O
L
L
E
C
T
O
R

Local
Memory

Shared
memory

C
O
L
L
E
C
T
O
R

Shared Object

Application Program

Injected Object

Local
Memory

C
O
L
L
E
C
T
O
R

C
O
L
L
E
C
T
O
R

Support

Shared
 MemoryProbe code

Developer Tool Process Application Process

Config Script

Control

Commands

Figure 9: The HP Caliper Architecture for dynamic
instrumentation.

6.2.1.4. Ease of compatibility and migration of
Oracle9i Applications from PA-RISC

The existing 32-bit and 64-bit Oracle
applications written for PA-RISC, as well as the 32-bit
applications for Windows and Linux (if 64-bit clear) can
run immediately on Itanium in compatibility mode
without recompiling or recoding. This flexibility is a
major advantage, especially for corporate developers who
are responsible for large inventories of existing
applications. While one gets effective performance in
compatibility mode, one won’t achieve the full power of
IPF architecture without running one’s applications in
native mode. This may not be an important consideration
for non-performance critical applications, but it is
strongly recommended that one ports other applications
from compatibility mode to native mode at some point to
take full advantage of the leading Itanium-edge
capabilities [7]. This will require recompiling and may
also require some recoding.

6.2.1.5. Enhanced compile-time performance
tuning on IPF in native mode

The enhanced McKinley-based compiler
provides up to two times better compile-time

18

performance tuning of C and C++ programs in native
scheduled mode, compared to the Itanium-based
compiler.

6.2.1.6. Combined responsiveness of IPF and
Oracle9i Release2

The Itanium family architecture is designed to
process massively parallel applications, has support for
very large cache size (32KB L1, 256KB L2, 3MB L3
cache for McKinley), 64-bit memory addressibility and
also ensures multiprocessor scalability. The McKinley
chip, in particular, has a better support for branch
instructions and concurrent load and store operations.
Finally, the central core of McKinley runs at 1GHz, an
advancement on the 800MHz core of Itanium (Figure
10). See more details on McKinley in [1, 3, 4, 8, 30].

Oracle9i Release 2 provides a significant new
functionality in Online Analytical Processing (OLAP)
and Data Mining by integrating the OLAP engine within
the database server. The convergence of relational and
multidimensional technology provides analytical
capability with reduced information cycle time within the
context of the Oracle database [19].

The above advantages enable customers running
Oracle9i-based Web applications on IPF to perform
queries at high speed and execute real-time data mining
and smooth online transaction processing (OLTP) during
peak periods.

6.2.1.7. Combined customization capabilities
of IPF and Oracle9i Release 2

As businesses continue to integrate core
applications into their e-Business environments, business
data is also growing exponentially. The requirement of
accelerated computations for data access, analysis and
visualization leading to customization is becoming
increasingly vital to the e-business arena.

The Itanium processor family (IPF) architecture
provides computational and analytical efficiency due to
its enhanced floating-point performance. It offers a) high
precision basic Data type; b) Fused Multiply Add
operation (FMA) unit; c) additional software for
divide/Square-root operations; and d) a large number of
floating point registers. For a), Itanium’s basic unified
floating point format is 82-bit double extended which is
an accurate and powerful format. The FMA unit referred
in b), rounds up the multiply-add operations only once,
can effectively double the floating point execution rate,
can minimize or eliminate errors in misrounding and

also can carry out integer multiplication using fixed-
point multiply-add (XMA) instructions. For c), the
traditional compute-intensive reciprocal and square root
operations have been, respectively, replaced by fast
instructions like FRCPA and FRSQRTA, thus allowing
these operations to be carried out at once with better
throughput for iterative loops. For d), the large set of 128
floating point registers makes it possible to pipeline
significant floating point computations (Figure 10). It has
instructions to move data between the floating point and
general purpose registers without using memory for
intermediate storage. Additionally, use of memory
hierarchy is enhanced by allowing various forms of
speculative executions thus reducing floating point
latencies. These combine the HP compiler’s in-line
assembly capabilities to allow most of the detailed
floating point architectural features in IPF to be directly
accessed from C [1].

4MB L3, 96K L2, 32K L1

Pipeline stages

Issue ports

 1 2 3 4 5 6 7 8 9

10

328 registers: 128 Integer,
128 FP, 8 branch plus others

4 integer,
 3 branch

2 FP,
2 SIMD

2load
or

2 store

800 MHz

6 instructions/cycle

ITANIUM processor
2.1 GB/s, 64 bits
wide, 266 MHz

System Bus

McKinley processor
6.4 GB/s, 128 bits

wide, 400 MHz
System Bus

3MB L3, 256K L2, 32K L1

Pipeline stages

Issue Ports

 1 2 3 4 5 6 7 8 9 10 11

328 registers: 128 Integer;
128 FP, 8 Branch plus others

1 GHz

6 instructions/cycle

8

6 integer,
3 branch

2 FP,
1 SIMD

2 load,
2 store

3x increase
System bus
bandwidth

Large cache,
Reduced
latency

Additional Issue
Ports

Additional
execution units

Increased core
frequency

Figure 10: Itanium and McKinley IA-64 chip architecture.

All of the above further combine with the rich
data type support in Oracle9i Release 2. Oracle9i
Release 2 provides native support for XMLType data type
within the database by providing a native, integrated
XML database within the Oracle9i RDBMS. This a)
enables better manageability of structured and
unstructured data by users running their applications
with different kinds of data, and b) provides enhanced
access methods for navigating and querying XML [28].
Secondly, the Large Object (LOB) support in Oracle9i
allows multiple users running multimedia applications to

19

simultaneously store, retrieve and manipulate different
kinds of multimedia data [19]. Also, Oracle9i Streams in
Release 2 enables propagation of heterogeneous data for
efficient information sharing (Section 2.2).

The combined advantage of Oracle9i Release 2
and IPF is towards customizing the wide range of users
with varying content needs. This includes high-
performing data analysis, faster execution of complex
simulations, and personalized web information service
to e-business customers with varying user profiles.

6.2.1.8. Ensuring High availability

System error detection, containment, and
recovery are critical elements of a highly reliable and
fault tolerant computing environment. The degree to
which this error handling is effective in maintaining
system integrity depends upon coordination and
cooperation between the system CPUs, platform
hardware fabric and the system software. The machine
check architecture model of IPF provides error
containment as the highest priority, followed by error
correction without program interruption, further
followed by recording of error information. System
errors in IPF, may be handled by any of the following
components: a) Processor hardware; b) Platform
hardware; c) Processor firmware (Processor Abstract
Layer or PAL); d) System Firmware (System
Abstraction Layer or SAL) and e) Operating system
(OS) (Figure 11). For hardware errors in (a) and (b),
when the processor or the platform hardware corrects an
error (e.g., in processor cache or system bus, etc), a
notification of the corrected event is signaled to the OS
through a Corrected Machine Check Interrupt (CMCI)
for processor-corrected errors and through a Corrected
Platform Error Interrupt (CPEI) for platform-corrected
errors. When a processor or hardware detects an error
that is not directly correctable by hardware (e.g.,
unmodified data in cache data structure, etc), a high
priority Machine Check Abort (MCA) event is triggered
and control is passed to the firmware, (c) and (d). The
PAL and SAL firmware correct any error per their
capability and control is returned back to the interrupted
context. When an error cannot be corrected by the
hardware or firmware layers, the control is transferred to
the OS, (e). The OS corrects the error if possible and
returns to the interrupted context or switches to a new
context. This type of error handling model and possible
self-correction and self-recovery mechanism ensure non-
disruption of the running application, thus leading to
high availability. See more details in [4, 6]. The above
advantages combine with those of the Data Guard

(covered in Section 2.1) and RAC (Section 2.3)
components of Oracle9i Release 2 for creating a highly
available, and efficient computing environment for
Oracle e-business customers.

Itanium Processor Operating System Software

System Abstraction Layer (SAL)

Processor Abstraction Layer
(PAL)

Processor (Hardware)

Platform (Hardware)

SAL MCA
Procedure Call MCA Handoff

PAL MCA
Procedure Call

MCA Handoff

MCA Hardware
Events

Figure 11: Itanium Processor Family (IPF) Error Handling
Model.

6.2.1.9. Ensuring Security

Appropriate security is central to Oracle e-
Business customers, both for external company Web sites
and for internal company networks. Encryption
algorithms like the private key and public key
algorithms with proper scrambling of exchanged
information lie at the heart of such security systems.

The IPF architecture has high-performing
encryption/decryption capabilities due to a) its support
for fully pipelined, 64-bit Integer Multiply-Add
instructions for RSA (public key operations)
computations; b) the 128-bit register width; c) large
number of registers - 128 integer registers, 128 floating
point registers and 8 branch and predicate registers for
both Itanium and McKinley (Figure 10) and d) fast
floating point performance. Thus, the data commonly
referenced by the encryption algorithms can be stored in
the registers with a smaller amount of data to be accessed
from memory. Also the large number of register sets
allows the processor to hold inside the registers, all the
partial products generated in a RSA thus contributing to
the Secure Sockets Layer (SSL) communication speed up
[3, 4].

 RSA stands for RSA Security, Inc.

20

Oracle9i Release 2 also provides a secure
application development and deployment platform. It
allows a username/password on a CREATE DATABASE
statement and allows setting up a number of default
accounts which are locked and expired upon installation,
thus providing additional security. The database
administrator can also grant or revoke object privileges
on another user’s objects. Additionally, there are two
enhanced security options - a) Oracle Label Security,
which secures data releasibility by providing
sophisticated methods of dissemination of data, for
example, by using data labels like CONFIDENTIAL,
SECRET or TOP SECRET and by using data security
compartments like NATO and CRYPTO; b) Oracle
Advanced Security, which now supports the Advanced
Encryption Standard (AES), accepts authorization from
an industry-standard Remote Authentication Dial-In
User Service (RADIUS) server and provides a User
Migration Utility to migrate password-authenticated
database users to Oracle Internal Directory for
centralized management [26]. All these combine with the
Oracle9i Release 2 database support for both public and
private keys to deliver an added level of application and
data security to the e-business customers.

To summarize, Oracle9i Release 2 on the IA-64
HP-UX platform provides customers with the scalability,
availability, security and customization needed for e-
business tomorrow. For comments on internal
performance testing with Oracle9i Release 2 on IPF
(McKinley), see Section 7.1.3.

6.3. Extensions to implementation
of the HP SCHED_NOAGE policy

The SCHED_NOAGE policy has been
implemented in Oracle9i Release version 9.0.1. Details of
the use of the HP SCHED_NOAGE policy over the
SCHED_TIMESHARE policy has been discussed in
Section 5.3. There has been some extensions to this
implementation in Oracle9i Release 2. To use the HP
SCHED_NOAGE policy, it is mandatory that one sets the
Oracle initialization parameter, HPUX_SCHED_NOAGE
for each instance. The integral value of this parameter
specifies process priority levels. On HP-UX 11.0, the
range of this parameter is 153 to 255 and on HP-UX 11i,
the range is 178 to 255. Prior to Oracle9i Release 2, if the
user unknowingly sets the parameter to a value which is
out of range for a specific OS version, Oracle9i processes
will ignore the SCHED_NOAGE policy and continue
with the default SCHED_TIMESHARE policy.

Modifications to the implementation allows Oracle9i
Release 2 to automatically set the parameter to a
permissible value and continue with the
SCHED_NOAGE policy using the newly set priority. It
also generates a message in the alert_sid.log file about
the new setting. However, it is strongly recommended to
set the parameter to a desired priority level in order to
schedule the Oracle processes with that priority.

6.4. Modifications to Lightweight
Timer Implementation

As discussed in Section 5.2, setting the Oracle
initialization parameter, TIMED_STATISTICS to
“TRUE” at the instance level, directs the Oracle server to
record the total elapsed time and wait time for significant
wait events. This data is useful for comparing the total
wait time for an event to the total elapsed time between
performance data collections. This helps to tune any
performance problems related to the wait events. In
Oracle9i Release 2, timed statistics are automatically
collected by the Oracle database if the dynamic
initialization parameter STATISTICS_LEVEL is set to
the default value, “TYPICAL” or it is set to “ALL”. This
is because, the default setting, “TYPICAL”, implicitly
turns on the TIMED_STATISTICS initialization
parameter to “TRUE”. If the user dynamically sets the
initialization parameter, STATISTICS_LEVEL system-
wide, to a value “BASIC” (using the “alter system”
command), then the TIMED_STATISTICS parameter also
sets itself dynamically to the value “FALSE”. With the
altered STATISTICS_LEVEL in place, one will have to
explicitly set TIMED_STATISTICS to “TRUE”, if one
desires to collect timed statistics later on. The
TIMED_STATISTICS parameter in Oracle9i Release 2 is
dynamic. So one can use the appropriate “alter”
statement to either turn it on or off, without shutting
down the Oracle instance.

Due to the above changes in the parameter
TIMED_STATISTICS, Oracle9i Release 2, unlike
Oracle9i Release version 9.0.1 on HP-UX systems, uses
the gethrtime() system library call by default to record
the elapsed time. This is true as long as one explicitly
does not change the STATISTICS_LEVEL parameter to
“BASIC”or alters the TIMED_STATISTICS parameter to
“FALSE”. The default settings enable one to collect run-
time statistics at all times while running an Oracle
instance.

For comments on performance implications,
please refer to Section 7.1.6. Also for more details on the

21

modifications made to the TIMED_STATISTICS
parameter, please refer to [20].

7. PERFORMANCE ANALYSIS

This section analyzes the various performance
enhancements in Oracle9i Release 2 on HP-UX 11.0/11i
that have been detailed in the earlier sections. Tests have
been done internally at Oracle and HP performance labs
and standard benchmarks have been carried out in order
to measure the above enhancements.

The analysis has been divided into two parts:-
Firstly, the results from laboratory testing will be
discussed, where each of the enhancements has been
measured separately on HP-UX 11i. Lastly, the published
benchmark data will be quoted. These serve as good
standards for measuring performance of different types of
applications using Oracle9i Release 2 (9.2) on HP-UX
11i.

7.1. Laboratory Analysis

In this section, all the enhancements in Oracle9i
Release 2 on HP-UX, will be analyzed in sequence. The
performance implications related to some of the pre-
installation and post-installation issues will also be
discussed here. The laboratory data is based on medium-
scale TPC-H and TPC-C (TPC stands for transaction
Processing Council) baseline runs on HP-UX 11.0 and
11i after installing the proper operating system patches,
patch bundles, compiler/linker and a few other patches
related to the enhancements.

7.1.1. Asynchronous I/O for Oracle9i

The asynchronous flag implementation for
Oracle9i Release version 9.0.1 and onwards, is described
in Section 5.1. This implementation provides true
asynchronous I/O functionality for Oracle9i. It helps to
enhance the overall RDBMS performance and ensures
good scalability of parallel I/O processes e.g., parallel
query slaves, for very large Oracle databases. Lab tests
show that this implementation provides up to 13%
improvement in DSS performance. Also see Section 7.2.2
for DSS benchmark results.

7.1.2. Oracle9i RAC and HMP

The objective of a series of laboratory testing
with Oracle9i RAC and HP HMP, has been to ensure
high quality of both products and prove the scalability,
high availability and resilience of large cluster
configurations of up to 16 nodes of Oracle9i RAC. The
test framework included a test driver which can be run
against any cluster configuration and has the ease to
setup, use, vary workload and carry out fault injection. A
combination of the products like Oracle9i RAC, HP
Service Guard OPS edition and HP HMP were installed
and configured on a wide range of HP servers (A, L and
N-classes). They had to undergo the following tests: a)
Stress tests, which involved a number of orderly and
random start-ups of one or more Oracle database
instances, addition and removal of workload and instance
shutdowns. The workload has been an Online
Transaction Processing (OLTP) workload executing
statements like, SELECT, INSERT, UPDATE, DELETE
and VERIFY; b) Recovery tests, which involved testing
block recovery, caused by the death of database instances,
lost blocks and cancellation by CTRL-C; and c)
Destructive tests, which involved forced failures by
Oracle software (with one or more background processes
killed manually); by OS software (with one or more
cluster daemons killed manually, or the system being
forced to reboot); and by hardware (with network or disk
connectivity or power supply manually removed).

The above tests showed successful results from
stress tests as well as successful cluster reconfigurations
during destructive test phase. Laboratory results with
Oracle9i RAC using HMP cluster interconnect, indicate a
1.78 scalability factor moving from a one-node to a two-
node HP N4000 cluster and a 1.9 scalability moving from
a two-node to a four-node HP N4000 cluster. Laboratory
tests with a 16-node HP cluster configuration, also show
a 20% improvement in Oracle9i RAC OLTP throughput
and response time using HMP over UDP.

7.1.3. Oracle9i Release 2 on HP-UX 11.22
for IA-64 (McKinley)

In general, McKinley performance has around
1.5x to 2x times better performance over Itanium [8] due
to all the qualities described in Section 6.2 (Figure 12).
As of the date of writing this paper, Oracle9i version
9.0.1 is readily available on HP-UX 11.20 for Itanium
[15]. But, Oracle9i Release 2 is available only on PA-
RISC and is scheduled to be available on IPF (Itanium 2

22

or McKinley), very shortly. So all data in this section are
laboratory based and are subject to change as the release
work goes on. Please refer to up-to-date information in
the documentation [16], once it is made available.

Itanium

PA8000

PA8200

PA8500

PA8600

PA8700

McKinley

‘96 ‘98 ‘00 ‘02 Future

P
e
r
f
o
r
m
a
n
c
e

Figure 12: Performance of PA-RISC Processor family
versus Itanium Processor Family.

Pre-release laboratory testing on a 4-way
Itanium 2 (McKinley) based HP server running HP-UX
11.22 (McKinley-based OS version) indicate a 100%
increase in Oracle9i Release 2 OLTP performance
compared to that on HP-UX 11.20 (Itanium-based OS
version).

7.1.4. HP-UX Kernel parameter SHMMAX
and Oracle9i Release 2

As described in Section 4.1.1, it is strongly
recommended to set the HP-UX kernel parameter
SHMMAX to the available physical memory for 64-bit
applications with Oracle. As Oracle9i is only 64-bit, the
importance of this parameter is critical. In laboratory
tests, performance degradation occurs when the 64-bit
Oracle9i instance creates more than six shared memory
segments. This is because, there are six protection keys
available for shared memory segments on the PA-RISC
processor, with a unique protection key for each shared
memory segment. So, if one’s system has more than six
shared memory segments, the HP-UX operating system
displays protection key faults and hence degrades
performance. The recommendation is well documented
for Oracle9i Release 2 [10].

7.1.5. HP SCHED_NOAGE Process
Scheduling policy for Oracle9i Release 2

The implementation of HP process scheduling
policy SCHED_NOAGE and its modifications have been
discussed respectively in Sections 5.3 and 6.3. Laboratory
tests show that Oracle9i OLTP performance increases by
up to 10 percent using the HP SCHED_NOAGE policy.
The SCHED_NOAGE policy creates little or no gains in
decision support (DSS) environments because there is
little resource competition in these environments.
However, it is recommended to test and verify prior to
use, whether the SCHED_NOAGE policy is of benefit to
one’s application environment.

Oracle9i Release 2 extends the implementation
by generating alert messages in case the Oracle9i
initialization parameter, HPUX_SCHED_NOAGE is out
of range for a particular OS version. This is a very
important and an useful addendum in the new release but
does not incur an additional performance improvement.

7.1.6. HP Lightweight Timer for Oracle9i
Release 2

Laboratory tests with Oracle9i Release version
9.0.1 (discussed in Section 5.2) show that with the
initialization parameter TIMED_STATISTICS set to
“TRUE”, the HP library call gethrtime() provides up to
10% performance improvement over the previous
implementation.

The modifications to the implementation of HP
Lightweight timer for Oracle9i Release 2 (described in
Section 6.4), allows one to collect run-time statistics at
all times, because the initialization parameter
TIMED_STATISTICS is “TRUE”, by default. Laboratory
tests show that the new implementation using the
gethrtime() system library call by default, at all times,
yields no negative impact on Oracle9i Release 2 OLTP
performance, when compared to the implementation
using gethrtime() system library call only when the
TIMED_STATISTICS initialization parameter is set to
“TRUE”.

7.1.7. Large Memory Allocations and
Oracle9i Release 2

The possibility of seeing large memory
allocations with Oracle9i Release 2 on HP-UX and
corresponding tuning recommendations have been

23

described in Section 4.1.2.1. One reason is the Oracle
initialization parameter, CURSOR_SPACE_FOR_TIME
when set to the value TRUE and the other reason is the
HP port-specific large virtual memory page size setting
for the Oracle9i Release 2 executable.

The Oracle Initialization Parameter
CURSOR_SPACE_FOR_TIME: Lab tests with Oracle
Applications, show that setting the
CURSOR_SPACE_FOR_TIME initialization parameter
to TRUE, offers the following advantages:

• It accelerates SQL execution calls, because each
active cursor's SQL area is present in memory and
never aged out.

• It improves application performance, as Oracle9i
Release 2 (9.2) is allowed to bypass the procedure to
verify if a shared SQL area is in the library cache. By
retaining private SQL areas between SQL statement
executions, it also helps to save cursor allocation and
initialization time.

Lab tests with Oracle Applications also show
that setting the Oracle initialization parameter
CURSOR_SPACE_FOR_TIME to TRUE in Oracle9i
Release 2 (9.2) causes the following disadvantages:

• It increases the memory requirements of user
processes due to an increased memory allocation for
the persistent private SQL areas, in comparison to
Oracle8i.

• It significantly increases cursor memory in
comparison with Oracle8i, leading to larger memory
allocations for Oracle9i shadow processes.

In lab tests, keeping or changing the value of
CURSOR_SPACE_FOR_TIME parameter to FALSE,
results in degraded overall SQL execution and
performance because it results in rapid deallocation of
shared SQL areas from the library cache. See tuning
recommendations in Section 4.1.2.1.

Large Virtual Memory Pages: In general, large memory
pages yield better application performance by reducing
the number of virtual memory translation faults that need
to be handled by the operating system. This makes
available, more CPU resources for the application. Large
pages help in reducing the total number of data pages
needed to allocate the process-private memory, thus
leading to a lower likelihood of Translation Lookaside
buffer (TLB) misses at the processor level. However, for
applications which are constrained in memory, the
increased page size may result in paging and swapping
and even "out of memory" error. The tradeoff for

reducing the page size is a greater probability of TLB
misses, higher CPU utilization and a performance
overhead.

Lab tests show that with the lowest page size
(4KB) setting, CPU utilization is as high as 20%. With
the highest setting of “L”, the memory consumption is
50% higher than that with a “4MB” setting. So, in cases
where the system shows memory constraints, it is
recommended that one sets the page size appropriately
for a particular type of application, within the constraints
of available memory resources. See tuning
recommendations in Section 4.1.2.1.

The Combined effect: Tests with Oracle Applications
using Oracle9i RAC on HP-UX 11i show a reasonable
performance and good scalability with a 4MB virtual
memory page size setting and with the Oracle
initialization parameter CURSOR_SPACE_FOR_TIME
set to the value TRUE.

7.2. Published benchmarks with
Oracle9i on HP-UX 11i

The recently published benchmarks using
Oracle9i on HP-UX 11i, are enlisted in this section. The
cumulative advantages of Oracle9i and the HP-UX
operating system as described throughout this paper,
correlate to the benchmark results using very large
configurations and also act as valid data points of their
combined performance.

7.2.1. HP/Oracle Online Transaction
Processing (OLTP) benchmark

Table 2 shows the system, hardware and
software specifics for the published HP/Oracle TPC-C
benchmark using Oracle9i Release 2 (9.2) on HP-UX 11i.
For more details on this benchmark, please refer to [32].

7.2.2. HP/Oracle Decision Support
Systems (DSS) benchmark

Table 3 shows the system, hardware and
software specifics for the recently published HP/Oracle
TPC-H benchmark using Oracle9i Release 2 (9.2) on
HP-UX 11i. For more details on this benchmark as well
as other benchmarks with Oracle9i on HP-UX 11i, please
refer to [32].

24

TABLE 2: Oracle/HP TPC-C benchmark

TPC-C Benchmark

64-way PA-8700 (750 MHz)
Superdome (HP-UX 11i)

Oracle9i Database, Release
2 (9.2)

308,000 users

Configuration Specifics 256 GB of memory

25 PCI Fibre Channel
adapters

74 SureStore Virtual Array
VA7100 with 420 × 18GB

and 690 × 36GB, 15K RPM
drives

Total storage of 14607 GB

Performance 389,434 transactions per
minute (tpmC)

Price/Performance of
$16.41 per transaction.

7.2.3. Oracle Applications 11i Standard
Benchmark with Oracle9i RAC on HP-UX
11i

Table 4 shows the configuration details of the
Application Tier and the Database Tier as well as the
storage used for the publication of the HP/Oracle Oracle

Applications Standard benchmark 11.5.3 using Oracle9i
Real Application Clusters. The table shows two
benchmark configurations and the achieved performance
and scalability results in a cluster configuration. These
benchmarks have been run using Oracle9i RAC version
9.0.1 on HP-UX 11i. For more details on these
benchmarks, please refer to [9].

TABLE 3: Oracle/HP TPC-H benchmark

TPC-H Benchmark

64-way PA-8700 (875 MHz)
Superdome (HP-UX 11i)

Oracle9i Database, Release 2 (9.2)

1000 GB database size

Configuration
Specifics

128 GB of memory

25 PCI Fibre Channel adapters

1 HP SureStore disk system 2100
with 3 × 18GB Ultra 3 SCSI

drives;

84 SureStore Virtual Array
VA7100 with 1260 × 18GB, 15K

RPM drives

Total storage of 22734 GB

Performance 25,805.4 queries per hour
(QphH@1000 GB)

Price/ Performance of $213.00 per
QphH@1000GB

25

TABLE 4: HP/Oracle Oracle Applications Standard Benchmark 11.5.3

Oracle Applications Standard Benchmark Version 11.5.3

8-way PA8600 (550
MHz) per cluster

node

32GB memory per
cluster node

Applications
Tier

HP-UX 11i

Oracle 9i Application
Server

TCP over
HyperFabric I
interconnect to
Database Tier

2 × 18GB HP internal
database disks

4-node
cluster
of HP
rp7400
servers

User
Count
2296

8-node
cluster
of HP
rp7400
servers

User
Count
4368

Scalability factor
moving from a 2-
node cluster to a
to 4-node cluster

is 1.95

4-way PA8600 (550
MHz) per cluster

node

2-node
cluster
of HP
rp5470
servers

Average
Response

Time
1.16 secs

4-node
cluster
of HP
rp5470
servers

Average
Response
Time 1.25

secs

Database
Tier

16GB memory per
cluster node

HP-UX 11i

HMP over
HyperFabric II
interconnect for
Oracle9i RAC

Oracle9i RDBMS
Server

2 × 36GB HP internal
disks

Database
Storage

SureStore E: Disk
array FC60, 5.36 TB
disk storage shared
among the two tiers

26

8. CONCLUSIONS

This paper covers the technical details of some
of the major achievements of Oracle9i RDBMS on HP-
UX. The focus has been mainly on the recent
developments for Oracle9i Release 2 (9.2) on HP-UX and
how the combined best features of both yield an optimal
performance. As all in-depth technical details cannot be
covered in this paper, it is strongly recommended to refer
to the citations for more information. The immediate
future direction is to work on several enhancements for
the upcoming Oracle10i release on HP-UX 11i. One
major area will be to combine Oracle 10i RAC with the
most recent high availability products from HP as well as
with the newer InfiniBand architecture models.
Directions of further work will be towards implementing
the Oracle10i Storage Manager technology on HP-UX
and also in implementing the best features of the current
and upcoming versions of HP-UX 11i into Oracle10i and
beyond. As the technology of 64-bit Itanium Processor
Family Architecture advances with the advent of Intel
microprocessors like Madison, Deerfield, etc, and is
simultaneously implemented and coerced with the HP-
UX 11i architecture, it will be a task on its own for the
future releases of Oracle RDBMS on HP-UX 11i, to get
the best out of the advanced technology, especially in
areas like compilers, operating system software and
application optimizations - both static and dynamic.

9. REFERENCES

1. Developer and Solution Partner Portal - Itanium Processor
Family: Hewlett Packard.

2. Hundt, R. HP Caliper - An Architecture for Performance Analysis
Tools. Paper published, October 2000.

3. Intel Developer Services: Intel Corporation.

4. Intel Itanium Architecture Software Developer’s Manual, Volumes
1, 2 and 3: Intel Corporation.

5. IT Resource Center: Hewlett Packard.

6. Itanium Processor Family Error Handling Guide: Intel
Corporation.

7. Johnson, T and McIntosh. Optimizing Itanium-based Applications.
Paper published April 16, 2002.

8. Naffziger, S and Hammond. The Implementation of the Next
Generation of 64b Itanium Microprocessor. Paper published for
IEEE/ISSCC 2002, San Francisco, California.

9. Oracle Applications Standard Benchmark:
www.oracle.com/apps_benchmark.

10. Oracle9i Administrator's Reference, Release 2 (9.2.0.1.0) for UNIX
Systems: Oracle Corporation.

11. Oracle9i Concepts, Release 2 (9.2): Oracle Corporation.

12. Oracle9i Database Administrator’s Guide, Release 2 (9.2): Oracle
Corporation.

13. Oracle9i Data Guard Concepts and Administration, Release 2
(9.2): Oracle Corporation.

14. Oracle9i Data Warehousing Guide, Release 2 (9.2): Oracle
Corporation.

15. Oracle9i Developer's Release Installation Guide, Release 9.0.1.0.1
for HP-UX 11i version 1.5 and Linux Intel on Itanium.

16. Oracle9i Release 2 (9.2.0.1.0) for HP-UX 11i version 1.6 on
Itanium 2.

17. Oracle9i Installation Guide, Release 2 (9.2.0.1.0) for UNIX
Systems: Oracle Corporation.

18. Oracle9i New Features, Release 2 (9.2): Oracle Corporation.

19. Oracle9i OLAP User’s Guide, Release 2 (9.2): Oracle
Corporation.

20. Oracle9i Performance Tuning Guide and Reference, Release 2
(9.2): Oracle Corporation.

21. Oracle9i Real Application Clusters Concepts, Release 2 (9.2):
Oracle Corporation.

22. Oracle9i Real Application Clusters - Real Application Clusters
Guard I - Concepts and Administration, Release 2 (9.2): Oracle
Corporation.

23. Oracle9i Real Application Clusters High Availability Extension.
(RAC Guard II). Software CD: Oracle Corporation.

24. Oracle9i Recovery Manager Reference, Release 2 (9.2): Oracle
Corporation.

25. Oracle9i Release Notes, Release 2 (9.2.0.1.0) for HP Series 9000
HP-UX (64-bit).

26. Oracle9i Security Overview, Release 2 (9.2): Oracle Corporation.

27. Oracle9i Streams, Release 2 (9.2): Oracle Corporation.

28. Oracle9i XML Database Developer's Guide - Oracle XML DB
Release 2 (9.2): Oracle Corporation.

29. Ramasamy, V and Hundt. Dynamic Binary Instrumentation for
Intel® Itanium™ Processor Family. Paper published for
ACM/MICRO34, December 2001, Austin, Texas.

30. Riedlinger, R and Grutkowski. The High Bandwidth, 256KB 2nd-
level cache on an Itanium Microprocessor. Paper published for
IEEE/ISSCC 2002, San Francisco, California.

31. Sarkar, S. Optimal Oracle9i on HP-UX 11i. Paper published for
HP World Conference, 2001, Chicago, Illinois.

32. Transaction Processing Council: www.tpc.org.

33. Zahir, R, Ross and Morris. OS and Compiler Considerations in the
Design of the IA-64 Architecture. Paper published for
ACM/ASPLOS-IX, November 2000, Cambridge, Massachusetts.

