
Superdome performance

Partitions
Dynamic CPU Allocation

Other Techniques

Tom Anderson
HP

Contents
• Hard partitions and virtual partitions
• Tuning advantages of partitions
• Software performance optimizations
• Mixing processors in a Superdome
• Instant capacity on demand (iCOD)
• Dynamic CPU allocation options
• Variable usage (pay for use)
• HP-UX & Windows & Linux all in the same Itanium Superdome

(future)
• Summary

Hard partitions and soft
partitions

• Hard partitions (nPartitions)
– “separate” servers but without separate “skins”
– Electrical isolation
– Up to 16 per Superdome
– Independent instance of HP-UX

• Virtual partitions
– S/W isolation
– Dynamic cpu allocation
– Up to 64 per Superdome
– Independent instance of HP-UX

nPartitions
for superdome

Increased system utilization
–partitioning Superdome into

physical entities: up to16
nPartitions

Increased Flexibility:
Multi OS
–Multi OS support: HP-UX,

Linux (*), Windows (*)
–Multi OS version support
–Multiple patch level support

Increased Uptime
–hardware and software isolation

across nPartitions
–MC/ServiceGuard support (within

Superdome or to another HP 9000
server)

16

1

1 4

Available in 2H2003

Partition 1

partition examples
isolation of production from test & development

Development

Test

Customer
Interaction
Production
Environment

Partition 2

Partition 3

32-way Superdome

partition examples
multi-tier applications

Oracle
Database

SAP R/3

Partition 1

Oracle
Database

Tier

Partition 2

32-way Superdome

SAP R/3
Application

Tier

virtual partitions
• A single nPartition may be

soft-partitioned into multiple
virtual servers

• Each virtual partition (vPar)
runs an independent
instance of HP-UX, providing
complete name-space
isolation

• vPars may run separate
release and patch levels of
HP-UX

• vPars may be individually
reconfigured and rebooted

• Dynamic reconfiguration of
CPUs

16 Superdome nPartitions
can be further partitioned
into 64 virtual partitions

1

64

Available on Superdome now

three virtual partitions on a
single cell superdome

npartition

P0
P1
P2
P3

Mem 0-8 Gbyte

Mem 8-12 Gbyte
Mem 12-16Gbyte

Cell
Controller I/O Controller

Slot 0
Slot 1
Slot 2
Slot 3

Slot 8
Slot 9

Slot 4

Slot 6

Slot 10

Slot 5

Slot 7

Slot 11
Blue Partition Uses two CPUs, 8 Gbyte memory, 6 PCI slots.
Red partition uses one CPU, 4 GByte memory, 3 PCI slots.

Yellow partition uses one CPU, 4 GByte memory, 3 PCI slots.

unbound CPUs
can dynamically
move between vPars
without reboot!

Example: CPU P1 (an unbound CPU in this case) can move from blue to red partition
when the red partition needs more processing power.

customer example--
vpartitions to isolate development environments

Partition 1

32-way Superdome

Partition 2

Partition 3

Partition 4

Partition 5

Oracle Database

Oracle Database

Content Mgmt

Content Mgmt

Development

Development
Project 1 (vPar 1)

Development
Project 2 (vPar 2)

Development
Project 3 (vPar 3)

Development
Project 4 (vPar 4)

Significant development
productivity
boost

Virtual or hard partitions—a partition
performance payoff

partition1

application 1 & HP-UX 1
are optimally tuned for
each other

HP-UX1

app1

HP-UX2

app2

tuned pair

Unix likes to be tuned for a single application

application 2 & HP-UX 2
are optimally tuned for
each other

tuned pair

Partition 2

Virtual partitions for increased performance—
dynamic CPU migration

vp1

4 cpus

vp2

4 cpus

40% util.

HP-UX1
app1

85% util.

HP-UX2
app2

vp1

3 cpus

vp2

5 cpus

50% util.

HP-UX1
app1

70% util.

HP-UX2
app2

Vpars can
Cross cell
boundaries

% utilization

response
time

85%70%

CPU moved

Before After

Performance optimization

application

Oracle

file
system

HP-UX
kernel

parameters patches

Oracle

file
system

HP-UX
kernel

parameters patches

Partition 1 Partition 2

applications

Tools:
IOzone
Glance Plus

-application tuning
-kernel tuning for most
common environment
-optimize the file system if I/O
intensive

multiple copies
of apps if they don’t
scale to larger no. of
cpus

- use partitions to allow HP-UX
to be ideally tuned to the application

-use patches
- PHCO_26466
- PHKL_26468

for POSIX
threads apps
for big payoff

Performance boost with faster processors while
protecting investment

partition 1
12 cpus

partition 2
8 cpus

partition 3
8 cpus

cell 1 cell 2 cell 3 cell 4 cell 5 cell 6 cell 7

pa-8600 pa-8600 pa-8600 pa-8700 pa-8700 pa-8700+ pa-8700+

partition 1: keep pa-8600s
for investment protection and
use this partition for non performance
sensitive applications

partition 2: use for medium
performance sensitive applications

partition 3: upgrade to
pa-8700+ for performance
demanding applications

can upgrade to pa-8700+ on-line, one partition at a time,
so applications running in other partitions can keep running.

iCOD (instant capacity on
demand)

• Two types of iCOD
– Permanent
– Temporary capacity

Active
CPU

Active
CPU

Active
CPU

iCOD
CPU

Cell board

iCOD standby CPU

activate when needed

new

iCOD temporary capacity
• provides a performance boost when needed

– End of month/quarter/year
– Unexpected peak in demand, activate by

command
– During development stress testing etc. etc.

• Extremely flexible—spread out the “30 CPU-
days”

• Moves closer to the “computing utility”
concept

add CPUs when needed for
performance—iCOD Temporary Capacity

No. of
CPUs

1

2

3

4

5

No. of Days

1 CPU for 5 days
(5 CPU-days)

3 CPUs for 7 days
(21 CPU-days)

5 CPUs for 2 days
(10 CPU-days)iCOD CPUs are

now available in
30 CPU-day
“chunks” 60 cpu-days

of processing power
to start
-5
-10
-21

24 left

Dynamic CPU Allocation
Capabilities

• Virtual partitions
– Dynamically move unbound CPUs between partitions w/o
reboot—by command or automatically via WLM

• iCOD (instant capacity on demand)
– Dynamically activate a CPU w/o reboot by

• Simple command . . . or . . .a script . . . or
• Automatically by goal based WLM when more resources are needed
such as to maintain a SLA of 2 second response times

– For load balancing, can activate CPU in one hard partition
without reboot and deactivate CPU in another hard partition
for no charge

Dynamic CPU Allocation
Capabilities

VP = virtual partition
iCPU = iCOD standby processor
aCPU = active processor

Partition 1 Partition 2 Partition 3 Partition 4

VP1

VP2

CPU

iCPU iCPU

aCPU

Active Active Active

Inactive Inactive Inactive

dynamically move
unbound CPUs
across
virtual partitions

(no reboot required)

“classic” iCOD example:

activate iCOD CPU by
1) command or
2) automatically by WLM

to meet response time
goal (goal based WLM)

(no reboot required)

load balancing example

-activate iCPU processor in one partition (3)
-deactivate aCPU processor in another partition (4)
-no charge

(no reboot required)

virtual partition
example:

Superdome

Dynamic CPU Allocation
Capabilities

• Utility pricing
– Can activate and deactivate CPUs w/o reboot to meet usage demands and
save money

• Deallocation of “misbehaving” CPUs
– automatically deactivate one or more “troubled” CPUs and keep the application
running w/o reboot. (CPU granularity of 1, not Sun’s 4)

• A: later replace CPU and reboot at a convenient time . . . or . . .
• B: with iCOD, automatically replace the deactivated CPU immediately with
out a charge & without a reboot

• Hard partitions
• Today: Can add CPUs by adding a new hard partition.
• Today: can remove cells from one partition and add cells to another partition
without rebooting any of the non affected partitions (dynamic Npars)
• Future: can add or delete cells (CPUs) on line (cell on line add & delete)

Dynamic CPU Allocation
Capabilities

VP = virtual partition
iCPU = iCOD standby processor
aCPU = active processor

Partition 1 Partition 2 Partition 3 Partition 5 (new)

aCPU aCPU

Active

Inactive

iCPU

end of month: iCPU
gets activated for
heavy processing
loads
middle of month:
aCPU gets
deactivated

CPU replacement example:

-aCPU2 “misbehaves” and is
automatically deallocated
-iCPU CPU is automatically
activated to replace it
-no charge

“dynamic” cell example:

-“dynamically “allocate cells between
partitions (Only requires reboot of
partitions involved. The rest of
Superdome continues to run.)

utility pricing
example:

aCPU1

iCPU

aCPU2

Partition 4

cells aCPU

iCPU iCPU

new partition
example:

“dynamically” add
CPUs by adding
a new partition
(requires initial boot
of only the new
partition)

Superdome

Active

Inactive

(no reboot required)(no reboot required)

Pay for use (utility concept)
• activate CPUs when needed for performance and

deactivate when not needed
• pay based on average no. of CPUs turned on per

month
• great for peak periods

– Tax time
– End of month/quarter/yr.
– Election time
– Holidays
– Noon/mid morning

helps smooth out IT headaches

metering server usage
Utility customer’s invoice is based on monthly average

Server usage

0
4
8

12
16
20
24
28
32

1 4 7 10 13 16 19 22 25 28 31

Day of the month

of

 a
ct

iv
e

CP
U

Daily peak # of active CPU Utility monthly average

A customer processing sample for SAP with an Oracle Database on HP-UX
Average usage of 21%, peak size 3-5x average

0
10
20
30
40
50
60
70
80
90

100
0:

00
1:

20
2:

40
4:

00
5:

20
6:

40
8:

00
9:

20
10

:4
0

12
:0

0
13

:2
0

14
:4

0
16

:0
0

17
:2

0
18

:4
0

20
:0

0
21

:2
0

22
:4

0

Time of day

%
CP

U
ut

ili
za

tio
n

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

A customer processing sample for a Oracle Database on HP-UX
Average usage of 14%, peak size 4-6x average

0

20

40

60

80

100

120
0:

00

1:
25

2:
50

4:
15

5:
40

7:
05

8:
30

9:
55

11
:2

0

12
:4

5
14

:1
0

15
:3

5

17
:0

0
18

:2
5

19
:5

0
21

:1
5

22
:4

0

Time of day

%
CP

U
ut

ili
za

tio
n

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Future Itanium based
Superdome (2003)

HP-UX
hard partition

Windows Data
Center hard partition

Linux hard
partition

application1

data base
e.g. Oracle

fibre
channel

driver1

application2

data base
e.g. SQL Server

fibre
channel

driver2

application3

data base
e.g. Oracle or MySQL

fibre
channel

driver3

LAN cardLAN cardLAN card

100BT or 1000BT
LAN

for performance optimization can pick the best application
and operating system combination

Future Itanium based
Superdome (2003)

HP-UX
hard partition

Windows Data
Center hard partition

Linux hard
partition

application1

data base
e.g. Oracle

fibre
channel

driver1

application2

data base
e.g. SQL Server

fibre
channel

driver2

application3

data base
e.g. Oracle or MySQL

fibre
channel

driver3

LAN cardLAN cardLAN card

100BT or 1000BT
LAN

The data base and data base performance most likely will be
different.

Summary

• Superdome has many opportunities for increased performance
– Normal tuning and optimization with only one partition
– Normal tuning and optimization within each partition
– Use of partitions in general
– iCOD addition of cpus
– Dynamic allocation of cpus
– Utility cpus on demand
– Addition of a faster cpu (PA8700+) partition

Attachment—detailed tuning
tips

• Goal: these tuning tips are intended to be a short, simplified (not
a whole chapter) list of some high payoff tunes.

• Three areas
– Application tuning
– Kernel tuning
– System tuning

Application tuning
o Higher compiler optimization levels are not always the optimum for

all applications. Profile (use prof, gprof and Caliper) and use
a balanced set of optimization flags for best performance.

o If aggressive optimizations break you applications, identify the
offending routine (by binary search) and compile them at lower
optimizations.

o Some key compiler and linker flags worth trying out are:
+O3, +Odataprefetch, +Onolimit, +Olibcalls, +FPD
(read more about by "man f90", "man cc", "man aCC" etc).

o Build your executable using archived libraries as much as possible.
That means link with "-Wl,-archive" or "-Wl,-archive_shared".

o Build and run your applications in 32bit address space unless you
have a need to go to 64 bit.

o Set initial data page size to the most appropriate page size using
"chatr" command. Read more about by "man chatr".

o For parallel applications, pay special attention to compiler and
linker environments to build the most efficient parallel code.

Kernel tuning
o Investigate and optimize the kernel tuning parameters which are

most optimum for most of the applications.

o For I/O intensive application, set large buffer cache by a static
buffer cache model (set nbuf and bufpagaes to non-zero values) than
dynamic model (set dbc_min_pct, dbc_max_pct as % of memory).

o If your runtime environment consists of large I/O intensive
processes, set maxfiles, maxfiles_lim and nfile to a large value.

o Make sure the swchunk and maxswapchunks are set large enough to
have sufficient swap space. If you cannot for some reason, set
swapmem_on=1 to turn on pseudo swap feature.

o For pthread based parallel applications, you may have to increase
nkthread parameter appropriately.

o For shared memory parallel applications, set appropriate (high)
values for shmmax, shmmni and shmseg.

System tuning
o Install, and periodically update all the OS patches to get the

best performance.

o Pay special attention to specific patches for your
environment.

For example, pthread based applications will show significant

boost in performance with patches, PHCO_26466 and PHKL_26468.

o Configure your system with enough swapspace. Swap should be

more than (or at least equal to) the physical memory. Also,

distribute the swap space evenly across drives and
controllers.

o For I/O intensive applications, build, test and optimize the

file systems with most suitable mount options. Test using

applications such as IOZONE or BONNIE.

o Investigate system wide, CPU, Memory and I/O bottlenecks using

HP tools such as GlancePlus, TUSC, SAR and VMSTTAT.

