
People, Process, and Tools: 
Keys to Successful Software 

Projects

Gary Pollice, Rational Software



Think About Any Significant 
Project

What do you need to 
complete the job?





People
• The most important asset on any project
• People can make or break a project
• Process and tools must support people
• People need:

– Knowledge
– Responsibilities
– Guidance
– Freedom
– Respect



Individual Productivity vs. Project Size

Project Size

P
ro

du
ct

iv
it

y

Normal
Optimal
Possible



Factors That Reduce Productivity 
As Project Size Increases

• Increased communication paths
– Project members
– Stakeholders

• Increased system complexity
• Novelty in the application and technology
• The whole system cannot be understood in 

detail by one person



Factors That Help Maintain 
Productivity As The Project Grows
• Effective process (right-sized for the 

project)
• Tools that support the team
• Effective training
• Good planning and project structuring
• Good people management



As project size increases, place 
more emphasis on team

productivity instead of individual
productivity.



A Tale Of Two Programmers
Gwen Harry

The Rest of 
Us



Team Makeup

• Staff the project with people that have 
complementary skills
– Technical skills
– People skills

• Staff the project with people that have 
different levels of experience and expertise
– Expert, Journeyman, Apprentice
– Domain expertise as well as technical expertise



Team Makeup

• Limit administrative hierarchy
– Too many managers spoil the project

• Make the team as all-encompassing as 
possible
– Customers
– Business managers
– Other stakeholders



Team Activation

• Provide a learning environment for everyone
– Does not have to be technical
– Make learning a goal for everyone

• Share responsibility
– Everyone should be responsible for something

• Allow disagreement
– Define consensus
– Have a well-defined resolution strategy



Team Activation

• Make requests, not demands
– If you can’t say no, it’s not a request
– Make well-formed requests (who, what, 

when, and maybe where)
– Do not use requests punitively



Team Activation

• Generate trust
– Don’t force trust to be earned from the beginning
– “I trust you”

• Conduct effective meetings
– Goal-oriented
– Creative and, yes, even fun
– Meet when necessary only



Other People Guidelines

• Pay attention to personalities
– Put people together who can work together
– Avoid the “partner from hell” pairings

• Recognize and reward
– Sincerely and often
– Reward should fit the achievement

• Be creative
– Provide for peer recognition



Other People Guidelines

• Encourage “creative, controlled, 
cowboys”
– Everyone needs to let their creative selves 

run sometime
– Too much creativity can kill the team

• Beware of the touchy-feely monsters
– Technical people are often not receptive to 

group hugs



Process

• Process can break people!
• Process must support the people and 

help them do their job more effectively
• Process must focus on the delivery of 

the product
• Process should not be static



Process Content And Structure

• Process should address issues at the right 
level
– May require different processes (program, 

product, project)
• Process should focus on delivering software

– Software is not just code
– Training, documentation, support



Process Content And Structure
• Process should be as minimal as 

possible, but no less
– There is no one-size-fits-all
– Do not confuse “formal” with “minimal”

• There is often a relationship, however
– Minimal artifacts, activities, and overhead

If I don’t do this activity, or produce this 
artifact, will anything bad happen? 

If not, don’t do it!



Process Content And Structure

• The process should provide guidance for all 
project members
– Responsibilities
– Interactions
– Technical details

• Make sure the process addresses risks
– If you’re not addressing a risk, what are you 

doing?



Process Enactment

• Make the process yours
– Configure for your context
– Apply reuse liberally
– Approach from an artifact-centric viewpoint
– Ease-of-use counts

• Start with a proven foundation
– Best practices
– Standard framework that can be adapted in a 

consistent manner



Process Enactment

• Adopt process incrementally
– Assess: identify the pain points and capacity for 

change
– Define: customize for your organization or project
– Deploy: “launch” your process

• Involve the entire team
– Ownership leads to commitment
– The team has some of the best ideas



Process Enactment

• Welcome change in the process
– Review and revise regularly
– Throw out what doesn’t work, add what is 

necessary
• Support the process with tools

– Effective automation eases the transition
– Look for tools for every role

• Don’t be too dogmatic
– Know when to say when



Tools
• Support the best practices in your 

process
• Support people to employ the best 

practices more effectively
• The more your tools work together, the 

more effective you are



Team vs. Individual Tools

• What tools do you care about?
– Tools that support the process
– Tools that support the team

• What about individual tools?
– Text editors
– Scripts and other aids

• Allow as much individual “comfort” as 
possible



Tool Selection

• Make sure the tools are worth the effort
– Identify cost vs. benefits early
– Measure

• Make sure the tools fit your project
– Just because you have a tool in your toolbox 

doesn’t mean you have to use it
• Use only the features you need

– Just because you use a tool doesn’t mean you 
have to use all the features



Tool Selection

• Standardize tools as high up in the 
organization as possible
– Best for the overall environment
– Allow exceptions when warranted

• Allow time for tool training
– Accommodate different learning styles
– Don’t make this type of learning something people 

do on their own time



Tool Selection

• Value tool integration
– Existing integrations are better than ones 

you need to do
– Building your own integration is better than 

none at all



What’s Missing?

Brains are required!Brains are required!Brains are required!
Apply common sense liberallyApply common sense liberally



Consider Your Project’s Context
• Size

– Small project – less than 10 people, few 
month duration

– Large project – 50 people, multi-year
• Formality

– Usually small is less formal
– Consider ultimate goal and exterior 

constraints



Consider Your Project’s Context

• Organizational
– Team members’ familiarity with each other
– Well-understood alignment with company 

goals
• Physical

– Team distribution
– Physical environment – offices, machines, 

and so on



The Healthy Project

• Focuses on delivery
• Provides learning opportunities for everyone
• Has just enough process, but no more
• Is supported by a healthy team

– Respect for each other
– Recognizes skills and abilities
– Compensates for weaknesses

• Continues to evolve
• Is one that people want to work on



What Can Go Wrong?

• Symptom: failure to deliver
– Over-focus on tools (Inspector Gadget strikes)
– Poor process

• Consider iterative, incremental development
• Ineffective communication and understanding of each 

team member’s responsibilities
• Failure to manage change

– Team not focusing on the important things
– Ego wars

• Don’t rule out sabotage



What Can Go Wrong?
• Symptom: Poor quality

– Tired team
• Too much to do, too little time

– Lack of commitment
• Demands, not requests
• No learning

– Ineffective communication
• Poorly-defined responsibilities
• Vague goals and vision

– Improper tool usage
• No tools
• Using the tools improperly
• Using the wrong tools



What Can Go Wrong?
• Symptom: Personnel turnover

– Lack of freedom
• Dogmatic application of process

– Lack of trust
• No opportunity for the team to get to know each other

– Little or no learning opportunity
– Too many stars

• Ego wars
– Poor tool support

• Wrong tools
• Complex tools
• Lack of tools

– Lack of sincere recognition of achievement



Other Things To Look For

• Inmates running the asylum
– Little or no process
– Ineffective communication

• Things “missing” (not getting done)
– Poorly-defined process, lack of goals
– Too many superstars

• Continual conflict
– Lack of trust
– Poorly-defined responsibilities
– No allowance for disagreements



Other Things To Look For

• Burnout
– Demands, not requests
– Too much process overhead
– Measuring the wrong things
– Lack of tools
– Too much to learn

• Too much rework
– Process is not based upon risk mitigation
– Lack of prioritization
– Poor interaction among all team members



Next Steps

• Make your own list of guidelines
– Use this list as a start
– Keep what works, get rid of what doesn’t

• Map the guidelines to your situation
– When are the guidelines appropriate?

• Continually review and revise
– Identify success and failure
– Communicate your results



Some Resources
• Rational Software Web Pages, 

www.rational.com
• The Rational Edge, 

www.therationaledge.com
• The Phoenix Agenda, John Whiteside, 1993
• Adaptive Software Development, James A. 

Highsmith III, 2000
• Becoming a Technical Leader, Gerald 

Weinberg, 1986
• Organizational and process patterns, 

http://i44pc48.info.uni-karlsruhe.de/cgi-
bin/OrgPatterns






