Title: Practical Points on Simultaneously Leveraging and Migrating Image Applications

Presentation: 037

- *Authors:* Matt Street & Donna Faudree
- *Company:* Orion Group Software Engineers 5770 Nimtz Parkway South Bend, IN 46628
- Phone: (574) 233-3401
- *E-mail:* mstreet@ogse.com dfaudree@ogse.com

What We'll Cover Today

- Introduction
- EasyStep Approach
- N-Tier Architecture Design
- Data Access Approach
- Transactionalizing Entity Data
- Case Study
- Questions

Migration vs. Re-engineering

- Migration the translation and rehosting of source code and data to run on Unix or other platforms
- Re-engineering "modernizing" of applications using current technology, including the client-server model, graphical user interface (GUI), webbased, and relational databases

Migration vs. Re-engineering

Migration:

- COBOL reports and batch processes
- Image data

Re-engineering:

VPLUS screens/applications

EasyStep Approach – Step 1 Current Environment

May Consists of:

- □ Interactive programs
- □ Background processes
- □ Report programs
- □ Image databases
- □ KSAM files
- □ VPLUS screens
- □ COBOL programs.

EasyStep Approach – Step 2 Develop Relational Model

Current HPe3000 Server Image / KSAM Ad Hoc Reporting Data **FIO Routines - DB Access Library** Interactive Processing Report Programs Programs Programs (batch) (online) (batch) **VPlus**

Relational Model (Schema)

This phase involves mapping the data structures on the HPe3000 into a relational database model. For the most part. this should be straight forward for well designed Image databases. Care should be taken to determine unique table keys, proper usage of data types, and to construct efficient relationships between tables. All data which the application uses should be modeled at this time. It is not necessary to convert the data at this time. or choose the relational database / server platform the data will reside in.

Terminal or Reflection on PC

EasyStep Approach – Step 3 Transactionalize HPe3000 Data

Relational Model (Schema)

This phase involves creation of Transactions to access data on the HPe3000. These transactions will map to the entities (tables) defined in the relational model. Future GUI development and data migration (conversion) programs will utilize the data provided by these transactions.

EasyStep Approach – Step 4 GUI Development

HP

Conference & Expo

EasyStep Approach – Step 5

Conference & Expo

This phase involves the movement of data from the data structures on the HPe3000 to the relational database. This migration can occur for specific entities multiple times during the testing process and form the basis of the final conversion of data to the new database.

EasyStep Approach – Step 7 Final Solution

Benefits and Advantages with EasyStep Approach

- Gradual approach is possible
- New GUI screens can be used with current HP e3000 data
- Same screens can access Image data on HP e3000 and new platform (e.g., Oracle data on HP 9000)
- Parallel testing can take place

N-tier Architecture Design

- "n" represents any number of physical or logical layers
- Each layer is made up of software components that interact with other components within and across layers
- Consists of at least three layers: presentation, business, and data

N-tier Architecture Design (Cont.)

- Presentation Layer: provides software interface that end user sees
- <u>Business Layer:</u> provides the foundation for components that provide the processing, business rules, validation, data manipulation, data retrieval, error handling, and other core logic that makes the system "smart"
- <u>Data Layer</u>: Provide the storage platform

Benefits and Advantages with N-tier Architecture

- Scalability Each component can reside on a separate machine to increase performance
- Flexibility Components are interchangeable

Data Access Approach

Types of Data Processing

Online Transaction Processing (OLTP)

- High transaction throughput
- Add/change/delete data
- Predefined transactions
- Response times critical

Types of Data Processing (Cont.)

Information on Demand - Ad Hoc Reporting

- Inquire and Report data only
- Undefined transactions different each time
- Response times not as critical

ODBC Defined

- Open Database Connectivity (ODBC)
- Used for standard access to multiple types of databases (Image, Oracle, etc)
- Allows PC access from applications like Excel to HP e3000 Turbolmage data
- Converts SQL/ODBC calls to Turbolmage calls
- Good for Ad Hoc Reporting and extracting data to other applications

Sockets Defined

- Sockets are a method of establishing a connection between different machines and/or operating systems
- Socket ports are similar to phone numbers for a machine
- Uses low level Turbolmage native database access routines that are already developed
- Good for high volume OnLine Transaction Processing (OLTP) performance

ODBC Benchmarks

- Higher HP e3000 CPU usage
- Low concurrency of users, slower response times under load
- Database locking problems with other applications, not controlled by the application

Socket Technology Benchmarks

- Low HP e3000 CPU usage (similar to current native HP e3000 applications)
- High concurrency of users
- Database locking controlled by the server program on the HP e3000

Socket Technology Application Goals

- Fastest response on HP3000-based data
- Read and Update ability from the PC application to the HP e3000
- No performance hit to the production HP e3000 environment

Transactionalize HP e3000 Data

Socket Communications

- Socket communications are a way to connect different machines without understanding the different network protocols
- All connectivity between machines uses sockets at the low level
- Berkley Software Distribution Interprocess Communications (BSD IPC) is a standard available on almost all machines

Socket Communications (Cont.)

- Network Interprocess Communications (NetIPC) is similar and compatible to BSD IPC, but has additional functionality on the HP e3000
- Perform system calls to establish connections and transfer data between machines

Socket Communications (Cont.)

Processes required for socket connections:

- Listener Process (Waits for new connection requests)
- Server Process (Handles requests once connected)
- Client Process (Asks for connection, sends requests, accepts returned data)

Listener Process

- A background job on the HP e3000 waits for "calls" on a specified port from clients
- Define the port in the services.net.sys file with a port over 20,000
- Once a request is received, create a separate socket connection for the client to use when sending and receiving information across the socket and start an individual server process

Listener Process Example

MAIN.

PERFORM OPEN-LISTENER.

PERFORM LISTEN-FOR-CONNECTION UNTIL DONE.

OPEN-LISTENER.

CALL INTRINSIC "IPCCREATE" USING SOCKETKIND, PROTOCOL, FLAGS, OPT, CALLDESC, RESULT.

LISTEN-FOR-CONNECTION.

CALL INTRINSIC "IPCRECVCN" USING CALLDESC,

VCDESC, FLAGS, $\backslash \backslash$, RESULT.

<<Create and Activate Server Process>>

CALL INTRINSIC "IPCGIVE" USING VCDESC,

SOCKETNAME, NLEN, FLAGS, RESULT.

HP/WO

Conference & Expo

Server Process – HP e3000 Data Layer

- A unique child process is started for each client connection
- All socket communications are handled by the server process
- The server process handles transaction requests and enforces business rules
- Calls sub-routines to handle individual transaction requests

Server Process Example

MAIN.

- CALL INTRINSIC "IPCRECV" USING IPC-VCDESC, WS-SOCKET-IN, IPC-DLEN, IPC-FLAGS, \\, IPC-RESULT.
- IF TRAN-IN OF WS-SOCKET-IN = "CUSTI"
 CALL "CUSTOMER".

CALL INTRINSIC "IPCSEND" USING IPC-VCDESC, WS-SOCKET-OUT, IPC-DLEN, IPC-FLAGS, \\, IPC-RESULT.

Customer Transaction Example

CUSTOMER.

MOVE CUST-KEY-IN OF WS-SOCKET-IN TO SEARCH-KEY.

PERFORM READ-CUSTOMER.

IF NOT CUSTOMER-FOUND

PERFORM SET-READ-ERROR

ELSE

PERFORM LOAD-WS-SOCKET-OUT.

Presentation Layer

- Microsoft Excel & Visual Basic
- Microsoft Visual FoxPro
- Web Access

Client Process

- Use BSD IPC to connect to the HP e3000 on the predefined socket port
- Client initiates connection, then is moved to a separate unique socket connection for further transactions
- Each window on a client can have a unique socket connection or share one for the machine

Microsoft Visual FoxPro

- True Object Oriented Programming
- Using F1 Technologies' Visual Fox Express framework
- Uses C++ DLL for low level socket control

Visual FoxPro Example

🚹 OG Socket Cursor Class 🛛 🕅			
Step 4 - Define Cur	sor Behavior		-
Default Alias	Customer		
Buffer Mode Override	3 - Optimist	ic Row Buffering	-
Trans Code Length	8	Update Trans. Code	CUSTU
Add Trans. Code	CUSTA	List Trans. Code	CUSTL
Delete Trans. Code	CUSTD	List Next Trans. Code	CUSTN
Inquire Trans. Code	CUSTI	Previous Trans. Code	CUSTP
		Finish	Cancel

Visual FoxPro Example (Cont.)

🐺 Customer Ma	intenance		
Customer No.	100 🖻		
Name	Sunnyside Furniture		
Address1	10736 Solar Blvd.		
Address2	po box 123	_	
City	Los Angeles State AZ	🖻 🛛 Zip Code	99999-9999
Country	U.S.A.		
<u>C</u> ontrol Informa	tion Con <u>t</u> act Information <u>F</u> inancial	Summary	
Bal Method	Open Item Accounting	Credit Limit	10,000
Stmt Freq	Quarterly	Credit Rate	BBB
Location	AT 🛃 Atlanta, GA	Terms Code	N 🖻 Cash with orde
Territory	XX	Ship Via	F 🛃 Federal Express
Frt Pmt Cd	Prepaid 🔹	Tax Code	NY 🖻 NEW YORK STATE SALES TAX
Partial Ship?		Sales Rep No	500 🗟 Norm Z. Goldstein
Finance Chg?		A/R Account	FURNITUR-00100060-01000000
Discount %	0.00		Accounts Receivable - West
Credit Status	Good Credit	Comment	GOOD CUSTOMER

Visual FoxPro Example (Cont.)

HP WORLD 2002 Conference & Expo

Web Access

- The transactions created on the HP e3000 can also be used to create web applications
- Works with HTML, Active Server Pages, Web Objects, etc.
- Orion Group has created socket frameworks in Java and C++ to aide in application development

Web Access Example

Case Study

Proof-Of-Concept Project

Scope:

- Migrate a subset of Image datasets to Oracle tables
- Migrate one COBOL batch program
- Re-engineer one screen [create a GUI and a Web application]

Proof-Of-Concept Project

Purpose:

- Determine technical issues related to migration of data and COBOL programs
- Help client determine online development tool (Visual FoxPro or WebObjects)
- Develop "framework" for migration projects to increase efficiency and productivity while decreasing cost

EasyStep Approach – Step 1 Current Environment

May Consists of:

- □ Interactive programs
- □ Background processes
- □ Report programs
- Image databases
- □ KSAM files
- VPLUS screens
- □ COBOL programs.

Conference & Expo

EasyStep Approach – Step 1 Current Environment

- Interactive programs developed in Pascal and COBOL
- Background processes developed in COBOL
- Report programs developed in COBOL
- FIO routines developed in Pascal
- Multiple Image Databases
- Vplus User Interface

EasyStep Approach – Step 2 Develop Relational Model

Relational Model (Schema)

This phase involves mapping the data structures on the HPe3000 into a relational database model. For the most part, this should be straight forward for well designed Image databases. Care should be taken to determine unique table keys, proper usage of data types, and to construct efficient relationships between tables. All data which the application uses should be modeled at this time. It is not necessary to convert the data at this time, or choose the relational database / server platform the data will reside in.

Terminal or Reflection on PC

Data Mapping Issues:

- Data buffer should be all ascii data
- Where appropriate, format data in data buffer (e.g., 23.99, 01/05/2002, (574)233-3401, etc.)
- Where possible, keep HP e3000 socket data buffers and relational database tables consistent
- Where necessary, include unique key [to make relational database tables more efficient]

EasyStep Approach – Step 2 Develop Relational Model

Image (Patient, Manual Master) Oracle (Patient table)

PATIENT-ID. 12 PATIENT-NO, X10 DOCTOR-ID, I2 **GUARANTOR-ID. I2** HICDA-ID, I2 BED, X2 BIRTHD, I2 CLRKID, X8 COMENT, X60 DOCTR2.I2 DOCTR3, I2 DOCTR4, I2 LMPDATE, J2 ENTER-DATE, J2 FLAGS, X10 HICDA1-ID, I2 AUTHORIZATION-NO, X10 DATE-LAST-ACTIVE, J2 DATE-LAST-MERGED, J2 NAME1, X30 PDOA, J2 PDOD, J2 ROOM, X4 SERIES, I1 SOFDATE, J2 HNA-LOCTN, X4 ADRES1, X34 ADRES2, X34 CTYST, X34 PHONE, P12 ZIP, X10 **INS-MEMBER-NO, X6** HICDA2-ID, I2 HICDA3-ID, I2

PATIENTID, Number (9) PATIENTNO, Char (10) DOCTORID, Number (9) GUARANTORID, Number (9) HICDAID, Number (9) BED, Char (2) BIRTHD. Date CLRKID, Char (8) COMENT, Char (60) DOCTR2, Number (9) DOCTR3, Number (9) DOCTR4, Number (9) LMPDATE, Date ENTERDATE, Date EMPLSTATUS, ISOLATION, MARITALSTATUS, PSEX, PTYPE, RACE, REL, SOFCR, STUDENTSTATUS, FREE Char (1) each HICDA1ID, Number (9) AUTHORIZATIONNO, Char (10) DATELASTACTIVE, Date DATELASTMERGED, Date NAME1, Char (30) PDOA, Date PDOD, Date ROOM, Char (4) SERIES, Number (4) SOFDATE, Date HNALOCTN, Char (4) ADRES1. Char (34) ADRES2, Char (34) CTYST, Char (34) PHONE, Char (13) ZIP, Char (10) **INSMEMBERNO**, Char (6) HICDA2ID, Number (9) HICDA3ID, Number (9)

Patient Data Buffer:

PATIENTID	X9
PATIENTNO	X10
DOCTORID	X9
GUARANTORID	X9
HICDAID	X9
BED	X2
BIRTHD	XX/XX/XXXX
CLRKID	X8
COMENT	X60
DOCTR2	X9
DOCTR3	X9
DOCTR4	X9
LMPDATE	XX/XX/XXXX
ENTERDATE	XX/XX/XXXX
EMPLSTATUS	X1
ISOLATION	X1
MARITALSTATU	JS X1
PSEX	X1
PTYPE	X1
RACE	X1
REL	X1
SOFCR	X1
STUDENTSTATU	JS X1
FREE	X1
HICDA1ID	X9
AUTHORIZATIO	NNO X10
DATELASTACTI	VE XX/XX/XXXX
DATELASTMER	GED XX/XX/XXXX
NAME1	X30
PDOA	XX/XX/XXXX
PDOD	XX/XX/XXXX
ROOM	X4
SERIES	X4
SOFDATE	XX/XX/XXXX
HNALOCTN	X4
ADRES1	X34
ADRES2	X34
CTYST	X34
PHONE	(XXX)XXX-XXXX
ZIP	X10

INSMEMBERNO	X6
HICDA2ID	X9
HICDA3ID	X9

EasyStep Approach – Step 3 Transactionalize HPe3000 Data

Relational Model (Schema)

This phase involves creation of Transactions to access data on the HPe3000. These transactions will map to the entities (tables) defined in the relational model. Future GUI development and data migration (conversion) programs will utilize the data provided by these transactions.

EasyStep Approach – Step 3 Transactionalize HPe3000 Data – Patient Transaction PATIENT.

MOVE PA-KEY-IN OF WS-SOCKET-IN TO SEARCH-KEY.

PERFORM READ-PATIENT.

IF NOT PATIENT-FOUND

PERFORM SET-READ-ERROR

ELSE

PERFORM LOAD-WS-SOCKET-OUT.

*WS-SOCKET-OUT matches Patient Data Buffer

EasyStep Approach – Step 4 GUI Development

EasyStep Approach – Step 4 GUI Development – Visual FoxPro

1 0G Socket Cursor	Class		X
Step 4 - Define	Cursor Behavior		•
Default A	ias: Patient		_
Buffer Mode Over	ride: 3 - Optimistic	Row Buffering	-
Trans Code Lei Add Trans. C Delete Trans. C Inquire Trans. C	ngth 8 ode PATIENTA ode PATIENTD ode PATIENTI	Update Trans. Code List Trans. Code List Next Trans. Code Previous Trans. Code	PATIENTU PATIENTL PATIENTN PATIENTP
		Finish	Cancel

EasyStep Approach – Step 4 GUI Development – Visual FoxPro (Continued)

👺 Patient P	rofile
Patient#	A555555551 🗟 OTHER/UNK
Name	TAYLOR, TOM Sex M 🔽 Race X 🖾 DOB 12/02/1950 Age 51
Authorz#	Status: Marital S 💌 Student N 💌 Employment F 💌 Entered 05/16/2001
Address	4784 NORTH Rm-Bd - Active 05/16/2001
City, St	SOUTH BEND, IN S Mod By MGR
Zip	46614- Phone () - T Merged //
Inpatient Se	ervices: Admission Date 11 Discharge 11
Guarantor#	A555555551 PA's Relationship to GU
Name	TAYLOR, TOM PA SOF? Y 05/16/2001 GU SOF? Y 05/16/2001
Attn	Mbr# Insur: GU
Additional I	nfo Authe Auth# Optional

EasyStep Approach – Step 4 GUI Development – Visual FoxPro (Continued)

Image data access:

- Uses VFP tables to parse data buffers
- Application, cursor, business, presentation, and form classes based on custom "iSocket" classes

Oracle data access:

- Uses remote SQL views
- Application, cursor, business, presentation, and form classes based on standard Visual FoxPro classes

EasyStep Approach – Step 4 GUI Development – WebObjects

WebObjects Demo

EasyStep Approach – Step 4 GUI Development – WebObjects

EasyStep Approach – Step 4 GUI Development – WebObjects

EasyStep Approach – Step 5

Batch Program Development

EasyStep Approach – Step 5 Batch Program Development - Options

- Third-party conversion/translator tools
- Migrate using compiler on target platform

EasyStep Approach – Step 5 Batch Program Development – Using RMCOBOL & ODBC access to Oracle

Replace FIO routines calls with calls to COBOL subroutines containing SQL calls to access Oracle data on HP9000

EasyStep Approach – Step 5 Batch Program Development – FIO high level

[At high level keep same parameter list to minimize changes]

Image:

CALL "PATIENT_READ" USING ARDB-LINK, @SEARCH-KEY-FIELD, @SEARCH-STRING, @READ-METHOD, @LOCK-METHOD, @RECORD-BUF GIVING FIO-STATUS.

SQL:

CALL "PATIENTR" USING ARDB-LINK, SEARCH-KEY-FIELD, SEARCH-STRING, READ-METHOD, LOCK-METHOD, RECORD-BUF GIVING FIO-STATUS.

EasyStep Approach – Step 5 Batch Program Development – FIO low level

Image:

DBGET (base, dataset, mode, status, list, databuffer, argument)

SQL:

SQL PREPARE QUERY sql-QueryHandle,

sql-ConnectionHandle, sql-QrySQL

SQL START QUERY sql-QueryHandle

SQL FETCH ROW sql-QueryHandle

SQL GET DATA sql-QueryHandle, <<field parm list>>

* sql-QrySQL contains select command (e.g., select * from PATIENT where PATIENTNO = search-string)

EasyStep Approach – Step 5 Batch Program Development – Using ProCOBOL & native Oracle access

ORACLE's precompiler for COBOL –

- Accepts source program as input
- Translates the embedded SQL statements into standard Oracle runtime library calls
- Generates a modified source program that can be compiled, linked, and executed in the usual way.

HPW

Conference & Expo

This phase involves the movement of data from the data structures on the HPe3000 to the relational database. This migration can occur for specific entities multiple times during the testing process and form the basis of the final conversion of data to the new database.

- Use RDBMS tool(s) to create relational database
- Use data access transactions developed in steps 3 and 4 to transfer data from Image to relational database

- WebObjects EOModeler (Enterprise Object Modeler) to create Oracle table structures based on the relational data model
- Visual FoxPro to transfer data to Oracle ["loop" to read Image data on HP e3000 and write to Oracle database on HP9000 until all entries are read]

EasyStep Approach – Step 7 Final Solution

EasyStep Approach – Step 7 Final Solution

- Interactive programs developed in Visual FoxPro and/or WebObjects
- Batch processes developed in COBOL
- Multiple Oracle Tables
- GUI User Interface

Questions?

Title: Practical Points on Simultaneously Leveraging and Migrating Image Applications

Presentation: 037

- *Authors:* Matt Street & Donna Faudree
- *Company:* Orion Group Software Engineers 5770 Nimtz Parkway South Bend, IN 46628
- Phone: (574) 233-3401
- *E-mail:* mstreet@ogse.com dfaudree@ogse.com

