
Prospect: A New Performance
Tool for Linux

Internals, Operation, Usage

Alex Tsariounov

Hewlett-Packard Company

Linux Systems Division R&D
Fort Collins, Colorado

alex_tsariounov@hp.com

Talk Overview

• Historical Perspective: Where Prospect
Came From

• Overall Picture: Architecture of Prospect

• Design Elements: 3 Modules in Detail

• Usage: Simple and Advanced Cases

• Differences to HP-UX Prospect

• Simple Output Walkthrough

What is Prospect?

• Prospect is an instruction-pointer-sampling
flat profiler for obtaining code profiles in a
non-intrusive way

• One can obtain both symbol-level and
assembly-level profiles without undue
requirements on the target application

• In other words, there is no need to rebuild or
relink the application, and the only
requirement is that the applications not be
stripped

Historical Perspective

• In the beginning (1988)
– Prospect was created as a test tool for

HPUX Kernel Instrumentation package
• KI is a kernel tracing facility that still exists

today in modern HPUX systems

– Heavily dependent on the KI for data
generation and complex

– Became a useful and popular tool among
the internal HP HPUX community

Historical Perspective (2)

• In the middle (2001)
– Investigating Linux tracing facilities

• Roll your own

• Linux Trace Toolkit (LTT) was promising
– Small additions would have enabled prospect

– All impose a patch of the kernel
• That was not desirable since we wanted the

least modification to a system to enable
profiling analysis

Historical Perspective (3)

• Now (2002)
– Module-based solution was ideal

• Found oprofile in 2001
• Almost ready at the time (0.0.2 release)

• Did not require a kernel patch
• Fit all requirements including NMI sampling

– Currently prospect supports 0.0.9 through 0.2
versions of oprofile

• Prospect uses the module only, not the daemon nor
oprofile user-space tools

Prospect Requirements

• Low intrusion
• Minimal run-time overhead during sampling
• No special build or link requirements on applications
• No kernel patching required

• Simple to use
• Simple command will get you profiles
• No knowledge of oprofile details or performance counters

needed
• Advanced options can be learned as needed

• Interstitial
• View an interval of time on the system
• Analysis of applications in familiar /bin/time fashion

Architectural Elements

• Oprofile Sampling Module
– Provides three important pieces:

• NMI-based PC sampling
• Certain system call interception and trace
• mmapped file path hashmap

• Prospect System Model
– All processes on the system are modeled as

information structures with a Virtual Address
Space of mmapped regions

– Symbol information is read in after the run
– The /proc filesystem is used to harvest information

about processes already running

Architectural Elements (2)

• Data Storage and Retrieval
• Management of sparse PC data though use of Digital

Tree
• Also called "Trie" from the word "Retrieval"
• Part of the data is also the index

• Symbol Mapping with libelf
• Cross-platform way to get at symbol information in binary

files
• Stripped shared libraries get bracketed symbols

(bsearch->qsort)

• GDB for Disassembled Profiles
• Cross-platform disassembly "server"
• Configurable effective load

Architectural Summary

Sequence of Execution

• Load and initialize the oprofile sampling
module

• Search through /proc and set up structures
for all running processes

• Attach to and activate the oprofile module

• Set up periodic alarm signal to flush oprofile
buffer

• Exec the child process

Sequence of Execution (2)

• Enter blocking read loop on oprofile device
files

• If child has exited, stop profiling and empty
oprofile buffer

• Go through the structures of all processes
and extract PC hits

• Create the report

• Shutdown, but leave oprofile module loaded

Design Elements: Oprofile
Interface

• The oprofile loadable kernel module provides
the following capabilities
– NMI-based sampling on P6 and Athlon processors
– System call interception and trace of the following

system calls
• fork (and vfork, clone), exec, mmap, init_module, exit

– mmapped file path hash table for retrieving path
information of all mmapped files included in this
trace

– Code is in linux_module.c and linux_module.h
File rec_proc.c contains the sequencing for data
collection

Elements: Oprofile Interface (2)

• The interface to the module is in the form of
/proc control inputs and device file outputs
– /proc controls buffer sizes, sampling event and

frequency setup, buffer flush command, and other
information

– Three device files (in /var) are used in a blocking-
read loop to transfer data from kernel to user
space

• opdev: samples file
• opnotedev: system call trace file
• ophashmapdev: path hash table file to be memory

mapped

Elements: Oprofile Interface (3)

• Phases of use
– Initialization

• Prospect first finds the module and loads it if not loaded.
Then we open the hashmap device, if successful, we
own the device. We then set up a default configuration
using CPU_CLK_UNHALTED event with a default
frequency of 200 Hz. If the counters were active in the
module, prospect does not change them.

• Prospect next harvests information in /proc for all other
processes running on the system and builds the system
model.

Elements: Oprofile Interface (4)

– Periodic flush
• During the run, an alarm signal is used to periodically

flush the oprofile kernel buffer. This allows the read that
prospect is blocking on to succeed so data is transferred
to user space. Frequency is controlled with prospect's
-M command line parameter.

– Shutdown
• Every time a read succeeds, prospect checks for the exit

of the child with a waitpid. If true, the oprofile buffer is
emptied and the device files closed. (This stops
sampling.) The module is left in memory in anticipation
of further use.

Design Elements: The Dtree
Digital Tree Module

• The PC samples constitute sparse data and
prospect uses a Digital Tree to manage
storage and retrieval of the data (code is in
prospect/dtree)
– Also called "trie" from the word "Retrieval"
– Part of the data is also the index
– A quaternary trie is used which means

• there can be four items in each node
• the trie is 16 levels deep for a 32-bit entity
• five consecutive values will extend the trie to the

maximum level

Elements: Dtree (2)

• Traversing the trie to find/insert a value is
then done in the following fashion
– Take top two bits as index into a four element

array
– If the data is present, return it
– If not, traverse where pointed to then shift by two

bits and repeat

– If a node (the four element array) contains data it
is called a "flower"

• Because of the quaternary nature, a flower can house up
to four data elements

Elements: Dtree (3)

• What problem are we trying to solve?

– The data we store is number of hits indexed by
virtual address (the program counter value)

– We need sorted output at the report stage
– We have a 32 bit virtual address space

• This (potentially) has up to 4 billion possible indexes

– Applicable to every process running on system
and kernel

Elements: Dtree (4)

• The interface to this module for inserting and
querying is defined in the dtree.h header file
as
– DTI(*Pdt, Idx)

• Insert data at index Idx in trie pointed to by Pdt
• Will create entry if first insert

– DTG(*Pdt, Idx)
• Lookup data at index Idx in trie pointed to by Pdt

• Will return NULL if index does not exist (no data there)

Elements: Dtree (5)

• And the interface for extracting all data is
defined in the dtree.h header file as
– DTF(*Pdt, &Idx)

• Return first element and its index Idx in trie pointed to by
Pdt

• Inclusive of Idx passed in

– DTN(*Pdt, &Idx)
• Return next element and its index Idx in trie pointed to by

Pdt
• Exclusive of Idx passed in

Design Elements: Disassembly

• GDB is used as a cross-platform disassembly
"server", of sorts, in the post-sampling
processing and report generation phase

• Prospect opens a configurable number of
pipes to slave GDB processes tied to
particular binary files
– Each GDB process is responsible for one binary

file
– Prospect passes addresses to disassemble and

GDB returns disassembled code as a table of
strings

Elements: Disassembly (2)

• This is accomplished by "librarizing" GDB in
code found in prospect/dass_gdb which has
the following interface
– dass_open():

• fork/exec a GDB process on a particular file

– dass():
• pass in addresses and returns table of strings of

disassembled code

– dass_free():
• free the block of memory that dass() created

– dass_close():
• close the file and end GDB process

Elements: Disassembly (3)

• A number of such opened GDB processes
(eight by default) are kept open and in a
"rolling queue"
– Once a new file is to be disassembled, prospect first

searches the queue for an already opened pipe to a GDB
process for that file

– If found, prospect moves this pipe to the head of the queue
– If not found, a new pipe is opened to a new GDB process

and added to the head of the queue

– If there are more GDB processes open than queue elements,
the one that "falls off" the tail is closed

Elements: Disassembly (4)

• Thus, this code has the following properties

– The most often used files for disassembly gravitate toward
the front of the queue and are found quicker that less often
used files

– The length of the queue determined how many simultaneous
pipes to GDB processes are held open and is user-
configurable with "-g <number>"

– Setting -g to 1 (one) will force using only one slave GDB
process and save memory but performance will suffer

– Setting -g to many will improve performance, however
memory consumption will go up

Simple Use: To Get a Profile

• Profile immediate child
– prospect my_app > output.file

• Profile immediate and all descendants
– prospect -f output.file -V3 my_app

• Profile everything on the system
– prospect -V4 -f output.file sleep 60

• Errors and diagnostics are output to stderr
– prospect -V3 -f prospect.output \
your_app > app.output 2>errors

Simple Use: Sample Frequency

• Avoiding aliasing
– Aliasing is a common problem for sampling

systems

– The command line switch "-H <frequency in Hz>"
will change sampling frequency for the run

– For first analysis, run at different frequencies to
figure out aliasing

– Center in on a good frequency from initial runs for
further analysis

Advanced Use: Diassembled
Profiles

• Command line switch: "-e" will create
disassembled profiles
– Two -e's will force disassembly for all symbols

• Disassembled profiles are useful for
determining the "why" of hot functions

• Need to understand the CPU micro
architecture in order to account the hits
correctly (pipeline effects, etc.)
– Can then estimate cache and TLB misses

Advanced Use: Kernel Profiles

• Command line switch: "-V k" (exclusive of -V
[2-4]) will create kernel profiles in the output
– NMI-based sampling is imperative for correct

kernel profiles

• Four profiles created:
– Global kernel profile: all kernel hits for everybody
– Kernel profile due to kernel threads
– Kernel profile due to user processes
– Kernel profile of hits to process zero (interrupts)

• Note: The first profile above is the sum of the
others

Differences to HPUX Prospect

• Things that are worse
– No system call information

• Sugges t : s t race

– No memory map information

• Sugges t : ca t /p roc/p id/maps

– Incomplete features (save to file, etc.)

• Will fill in with time and demand

Differences to HPUX (2)

• Things that are better
– Adjustable sampling frequency!

• Command-line parameter “-H”, 1 Hz to ?....

• 4000 Hz max tested and approved

– No missed buffers (at the expense of missed
samples)

• Easier to keep up with trace. Miss singles on overflow

– Symbols for stripped shared libraries
• Since statics are gone, we “guess”

• Qsort hits: bsearch->qsort

Prospect Output: Simple qsort

• Header information

Output: Simple qsort (2)

Output: Simple qsort (3)

• Process table

Output: Simple qsort (4)

• qsort process header

Output: Simple qsort (5)

Output: Simple qsort (6)

That Wraps it Up

• Prospect's home page is:
– http://prospect.sourceforge.net

• The project summary page is at:
– http://sf.net/projects/prospect

• Also of interest is the oprofile site:
– http://oprofile.sourceforge.net

• Thank you.

