Solid State File Cache

A New Infrastructure for Growing Your Business

Michael Casey

Solid Data Systems mcasey@soliddata.com

Agenda

- Why File Cache?
- File Cache for Transaction Servers
- Benefits: Speed + Persistence in Real Applications
- Diagnostic tools at CPU, I/O, & Application Levels
- New Applications = New Infrastructure
 - Telecom
 - Financial Services
- File cache for Storage Networks
- Conclusions

Why File Cache?

Waiting for I/O:

- Performance drops radically as users are added
- System no longer able to "keep up"
- Batch jobs don't complete within the available processing time window
- Month-end close takes days instead of hours
- Extensive tuning has not solved performance issues
- SAR (Unix) or PerfMon (NT) indicate >50% I/O Wait

The Solution: Solid-State File Cache

Bandwidth Bottleneck - Transaction Trauma

From Content to Commerce

File Cache for Transaction Servers

File Cache vs Cached RAID

- Entire file in RAM
- Latency <u>as low as</u> 0.014 ms
- Consistent performance
- No tuning required
- Best for small block random I/O
- No moving parts very high MTBF
- Independently scalable

- Selected blocks in RAM other blocks on disk
- Latency of 7.000 ms or greater
- Performance depends on cache algorithms
- Extensive tuning sometimes required
- Best for large block streaming I/O
- Mechanical complexity reduces MTBF
- Limited cache to RAID ratio

Speed and Persistence

Real-World Application Benefits

- Email server message capacity increased from 5/sec to over 40/sec
- Satellite-based stock data recording backlog reduced from 4 hours to 10 milliseconds
- Server cluster fail-over reduced from 15 minutes to 7 minutes
- Overall file system speed increased by 25%
- Billing application reduced from 5 days to 2 days
- Batch job reduced from 8 hours to 2 hours
- Batch job reduced from 72 hours to 8 hours
- System response time after data entry reduced from 15 seconds to 3 seconds

Diagnostic Tools

- CPU utilization is the server I/O bound?
 - Standard system tools SAR, Perfmon, etc.
 - Third-party utilities e.g., I/O Dynamics*
- I/O profile: is it skewed, with hot files?
 - Standard sys admin tools and displays
 - Third-party utilities e.g., I/O Dynamics*
- Application-level benchmark tests
 - 100% reads, 100% inserts, 100% updates
 - Synthetic workload generator
- * Available for free download

CPU Utilization – % Wait for I/O

Source: Solid Data measurement of an e-mail system workload over 24-hour period

I/O Activity vs. File Size

Analyzing Run: mydbonhp_20010209_09	1736				<u></u>	
2 🕥 🔄 Log File: C:VODynamicsLogfilesVe	stdb.mdb					
atabase: mydbonhp Run Name: mydbonhp	_20010209_091736	Time Sampling	2/9/2001 9:18:09 AM	- 2/9/2001 9:45:12 AM		
Database File	File Size [MG]	% DB Size	Total IOs/Sec (Avg)	Total IOs/Sec (Peak)	ID Density (Avg) 🔺	
oracle2/oradata/demo.dbf	268	36.7	17.2	70.4	0.4	
oracle2/oradata/mirror.dbf	268	36.7	15.6	60.4	0.4	
oracle2/oradata/0001/system01.dbf	80	10.9	0.4	3.4	0.6	
oracle2/oradata/0001/tools01.dbf	25	3.4	0.1	0.4	0.1	
pracle2/oradata/0001/hbs01.dbf	15	21	17.4	35.5	8.1	
pracle2/pradata/0001/temp01.dbf	1	0.1	0.1	0.4	0.9	
pracle2/pradata/0001/users01.dbf	1	0.1	0.1	0.4	0.9	
oracle2/oradata/test1.dbf	1	0.1	0.1	0.4	0.9	
oracle2/oradata/test10.dbf	1	0.1	0.1	0.4	0.9	
oracle2/oradata/test11.dbf	1	0.1	0.1	0.4	0.9	
oracle2/oradata/test12.dbf	1	0.1	0.1	Contraction of the local division of the	In the local division of the	Valley III and
oracle2/oradata/test13.dbf	1	0.1	0.1			
pracle2/pradata/test14.dbf	1	0.1	0.1			
pracle2/pradata/text15.dbf	1	0.1	0.1	10 Distribution Reads		
pracle2/pradata/test16.dbf	1	0.1	0.1	po prestribution reads		
pracle2/pradata/test17.dbf	1	0.1	0.1			+ **
oracle2/oradata/test18.dbf	1	0.1	0.1			
oracle2/oradata/test19.dbf	1	0.1	0.1	o 🍐 🧨		
oracle2/oradata/test2.dbf	1	0.1	0.1			
oracle2/oradata/test20.dbf	1	0.1	0.1	2 0		
pracle2/pradata/test21.dbf	1	0.1	0.1			
oracle2/oradata/test22.dbf	1	0.1	0.2	2 *		
oracle2/oradata/test23.dbf	1	0.1	0.2			
oracle2/oradata/test24.dbf	1	0.1	0.2	2		
oracle2/oradata/test25.dbf	1	0.1	0.2			
1						

Cumulative % Capacity

Real-Time Database Benchmark

C File Cache

- B Shared RAID (write-behind cache)
- A Disk Array (write-through cache)

Source: **Speed and Persistence for Real-Time Transactions** July 2002 white paper – www.soliddata.com/timesten

New Applications --> New Infrastructure

High-Volume Transaction Demand

Rich functionality with real-time response

Telecommunications: Enabling New Services for Revenue Growth

- Wireless text messaging (SMS)
- Prepaid mobile billing
- Anti Spamming
- Call detail record (CDR) mediation
- Fraud detection
- Instant Messaging

- Ring-tone download
- Location-based services
- Mobile Internet (WAP)
- Multimedia Messaging Service (MMS)
- Micro-payments

Case Study: Wireless Text Messaging

- Problem
 - Superior product offering (functionality) was not meeting throughput and response time requirements
- File Cache-based Solution
 - 2 mirrored 10GB file caching systems
- Business Benefits
 - Higher throughput at lower cost per subscriber
 - Accelerated purge expands daily window
 - Richer functionality
 - Higher reliability
 - Improved scalability
 - Lower cost of management

Financial Services: Real-Time Transactions

- Online securities trading
- Portfolio risk management
- Messaging middleware
- Real-time databases

- Credit card fraud detection
- T+1 Trade Settlement
- Straight Through Processing (STP)

File Cache for Storage Networks

Shared File Cache in the SAN

- E-Mail queues & server-to-server messaging queues
- Non-volatile shared memory for server clusters
- File system journaling
- Snap-shot device for backup / remote copy
- Virtualization lookup tables (address mapping)
- Databases
 - Rollback segments
- Transaction logs

Temp spaces

- Hot indexes

- Hot tables
- SRM policy based management

Conclusions

- The Internet has pushed many applications to the limits of scalability, causing I/O bottlenecks
- Solid-state file cache is low latency storage complementary to cached RAID
- Solid-state file cache is a cost efficient way to multiply performance and scalability of existing servers
- Diagnostic tools and benchmarks can help diagnose application issues and determine the fit for file cache
- Transaction and messaging applications especially in telecom and financial services – require a new infrastructure
- SAN connections and management software can extend the benefits of solid-state file cache to more servers and applications

