The Ultra-Scalable Lustre HPTC Filesystem

R. Kent Koeninger

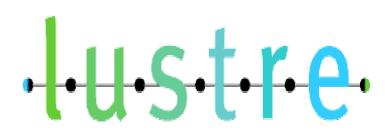
High Performance Technical Computing Division (HPTC) at HP

Agenda

- 1. What is Lustre?
- 2. Lustre, Hendrix, ASCI & HP
- 3. Organizations & Programs
- 4. Lustre a little more detail
- 5. Hendrix Milestones
- 6. Summary

What is Lustre?

A distributed-scalable filesystem for HPTC applications



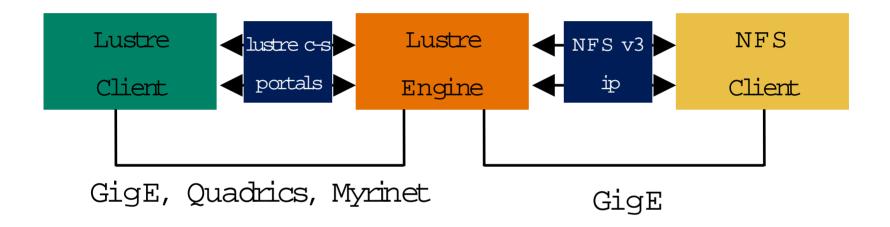
- High bandwidth: 10s of GB/s of bandwidth (or more)
 - Scalable-parallel file and filesystem access
 - Designed to serve thousands and tens-of-thousands of clients
 - (How many parallel connections/severs can afford?)
- Huge storage: terabytes, petabytes and exabytes
 - (How much storage can afford?)
- Highly responsive
 - (How many metadata servers can you afford?)
- Highly reliable
 - No single points of failure
- Fully sharable data
 - Accessible by Linux nodes with Lustre-specific clients or any node with an NFS client

Lustre filesystem introduction

- Open Source filesystem funded by ASCI Path Forward (the U.S. DOE National Laboratories: Livermore, Los Alamos, Sandia)
- HP is the prime contractor working with Clustered Filesystems Inc. (CFS) and Intel to bring Lustre to market
- single sharable image
 - single name space
 - parallel-coherent access
- high bandwidth transports: GbETN, Quadrics, Myrinet ...
- highly scalable
 - scalable bandwidth
 - multiple data servers
 - parallel filesystems
- scalable storage
 - petabytes of disks
- scalable metadata access

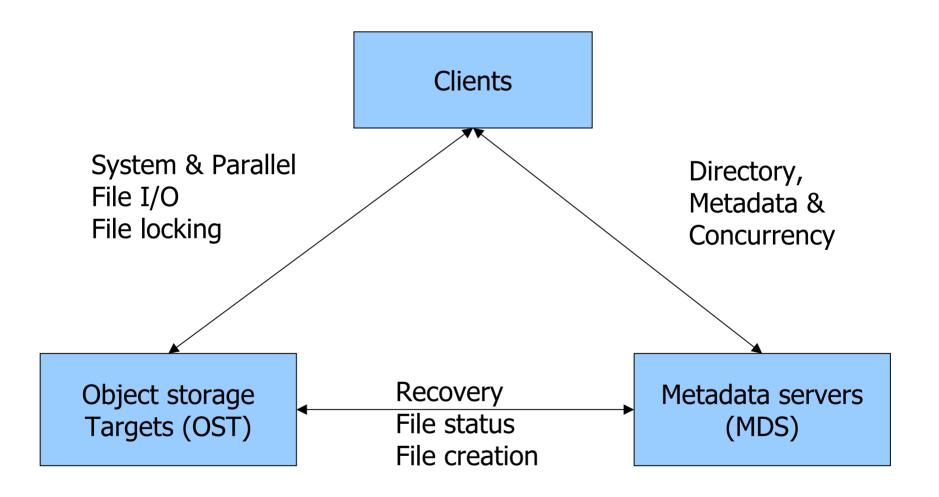
Lustre Capabilities Overview

- Lustre is a parallel-scalable-distributed filesystem designed to serve the most demanding high-performancetechnical-computing (HPTC) environments
 - Sometimes called the "inter-galactic" filesystem for its extremely high scalability, performance, and availability goals
- Designed for very high scalability:
 - Thousands of compute client nodes
 - Petabytes of storage
 - Hundreds of gigabytes per second bandwidth
 - With full coherence and high reliability



Lustre Capabilities Overview

- Designed for full resiliency
 - No single points of failure
 - Journaling, fail-over, redundancy, etc.
- Designed to manage the storage independently of the client operating systems
 - As with NAS (CIFS or NFS), the compute clients need not know the details of managing the Lustre storage


Simplified View: Lustre and NFS Clients

Lustre File System logical structure

Lustre - Object Storage Model

- An OST is more intelligent than a block device
- An object is a logical unit of storage
 - Used to store a "piece" of a user file
 - Lives in flat name space with an ID
 - Contains data and metadata (similar to an inode)
 - File-like methods: open, close, read, write
- An OST stores objects and could be any of
 - Disk drive, storage appliance, storage controller,
- OSTs enable high performance, secure <u>and</u> crosplatform access
 - ✓ Uses a higher level abstraction
 - ✓ Offload read & write from the storage server
 - ✓ Can enforce secure client access

ID x123 Blocks:3,42 Length:512

January 4, 2002 page 9

Lustre Scalability targets: Phased Implementation

- Lustre Lite
 - 100 Clients, 10 OST, 1 MDS (no fail over)
- Lustre Performance
 - 700 Clients, 32 OST, 1+1 MDS
- Lustre Clustered MDS
 - 3000 Clients, 200 OST, 4 MDS
- Lustre T10
 - 3000 Clients, 1000 OST, 16 MDS
- Lustre GNS
 - 10000 Clients, 1000 OST, 100 MDS

Lustre is an Open Source Project funded by the DOE through the Tri-Labs

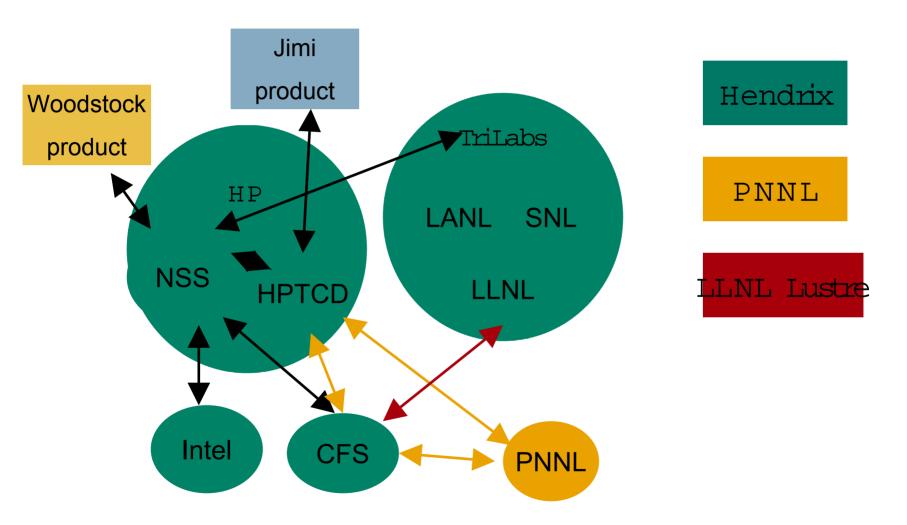
- HP is investing in Lustre technology
- Lustre is Open Source technology implemented on equipment from many vendors, including HP
 - The code is Open Source GPL
- Luster projects are well funded by the Department of Energy (US DOE) through the Tri-National Labs (Livermore, Los Alamos and Sandia)
 - HP is the prime contractor for and is co-funding this Lustre ASCI-PathFoward project code-named "Hendrix"

Hendrix

- Open Source TriLabs program HP, CFS & Intel
 - Funding is via ASCI PathForward grant with HP co-funding its development
 - Series of phased deliverables
- Members
 - CFS: Cluster Filesystem, Inc. technical design lead
 All Lustre Lite development
 - HP Prime contractor with co-funding
 Program management
 Lustre Lite test development and processes
 LLP and beyond part of core Lustre design
 Active work in NSS & HPTCD HP Divisions
 - Intel focus is on networking & performance instrumentation

History of Lustre, Hendrix, ASCI & HP

- Original Pathforward RFP generated many proposals:
 - One from HP Labs
 - One from CFS Inc/Intel
- TriLabs requested a joint proposal from HP/Intel/CFS
- DOE money was committed in Fall 01
- HP NSS (storage) saw potential in proposal
 - Provided program management and technical staff
 - Negotiated contract & SOW
- Winston Prather, HPTCD, signs contract in June 02.
 - Joint development between agreed to by HPTCD and NSS.
- Program codenamed Hendrix



Programs & Organizations

- Hendrix DOE ASCI Path Forward project
- Jimi HP HPTCD project
 - Productization of Hendrix for HPTCD
- Woodstock HP Storage project
 - Productization of Hendrix for NSS
- LLNL (Lawrence Livermore National Lab)
 - Large Lustre program on 32-bit cluster (non-HP)
- PNNL (Pacific Northwest National Lab)
 - Early Lustre support on 64-bit cluster

Lustre/Hendrix Eco System

System Area network

Comparing SAN and NAS

- Storage Area Networks (SANs) provide high bandwidth, low latency connections from multiple hosts to storage
 - Fibre Channel: industry standard SAN
 Pro: High bandwidth with low latency
 Con: Expensive interconnect difficult to scale
 Con: Block level access: hard to share, manage, and secure
- Sys Admin

 System

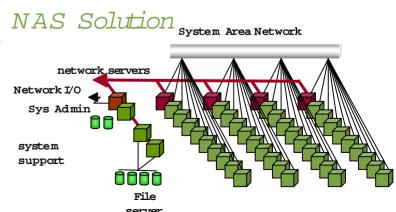
 Support

 Dedicated

 resources

 For Metadata

 service and
 lock management

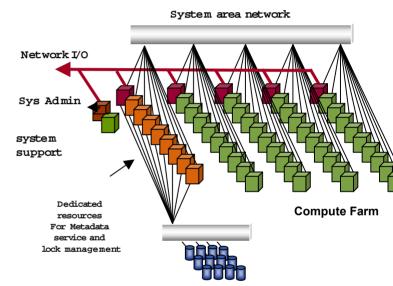

 Storage area network

SAN Solution

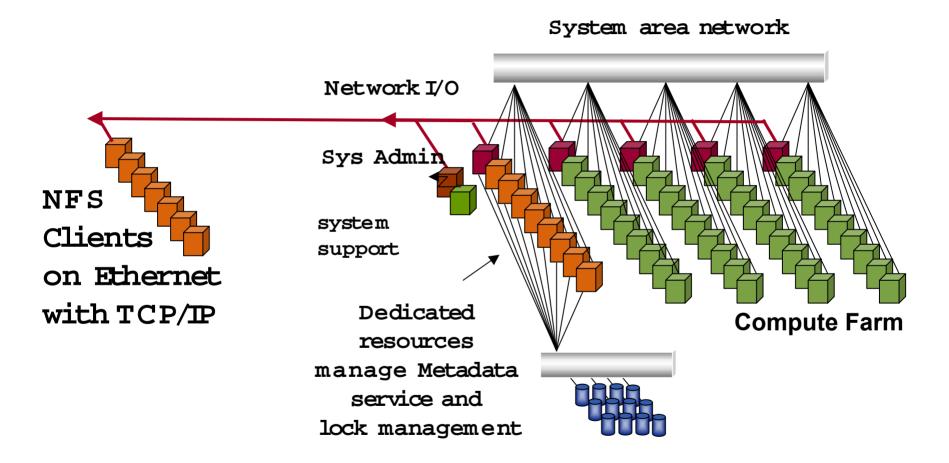
- Network Access Storage (NAS) provides independently managed storage that can be accessed by many clients
 - CIFS and NFS on Ethernet: industry standard NAS
 Pro: File level access: easy to share, manage,

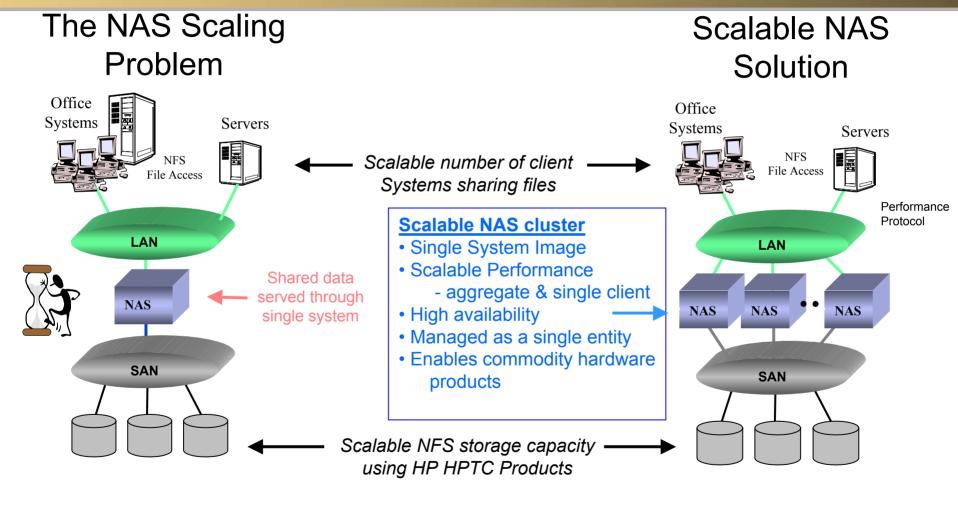
and secure

Con: Low bandwidth, high protocol overhead

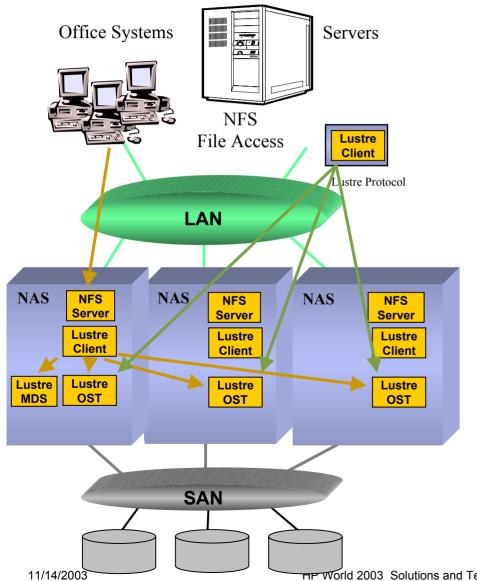


Lustre Combines the Best of SAN and NAS


- Shared data (as with NAS)
- High bandwidth, low overhead access (as with SAN)
- High scalability (even higher than NAS)
- Storage managed independently of client hosts (as with NAS)
- Highly resilient
- Designed to work with multiple interconnects
 - Can use existing message-passing interconnects
 - Gb Ethernet, 10 Gb Ethernet, Quadrics, Myrinet, ...
 - Lower cost than connecting Fibre Channel to each of hundreds or thousands of compute clients

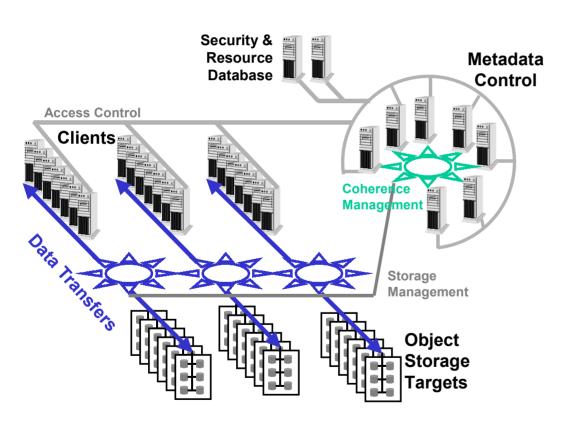


Lustre is also a Scalable NFS Server



Scalable NAS File Sharing HP WORLD 2003 Solutions and Technology Conference & Expo

Scalable NAS File Sharing



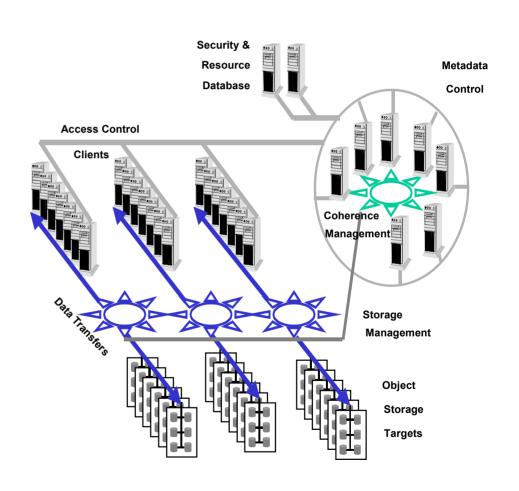
- Included in HP HPTC-Lustre Servers
- Multi-protocol NAS cluster supporting:
 - NFS/CIFS
 - Lustre protocol
- SSI file access across servers for NFS/CIFS
- Parallel access across servers for Lustre client access
- High availability All modules fail-over among servers Browser based management GUI
 - Manage whole cluster from single point (including HA config)

Lustre Topology

- Metadata controllers manage file system metadata
- Direct client I/O to object storage targets
 - RDMA
 - Storage fabric
- Metadata protocol
 - RDMA
 - Aggressive client caching
- Security defined in Resource DB, enforced by storage targets

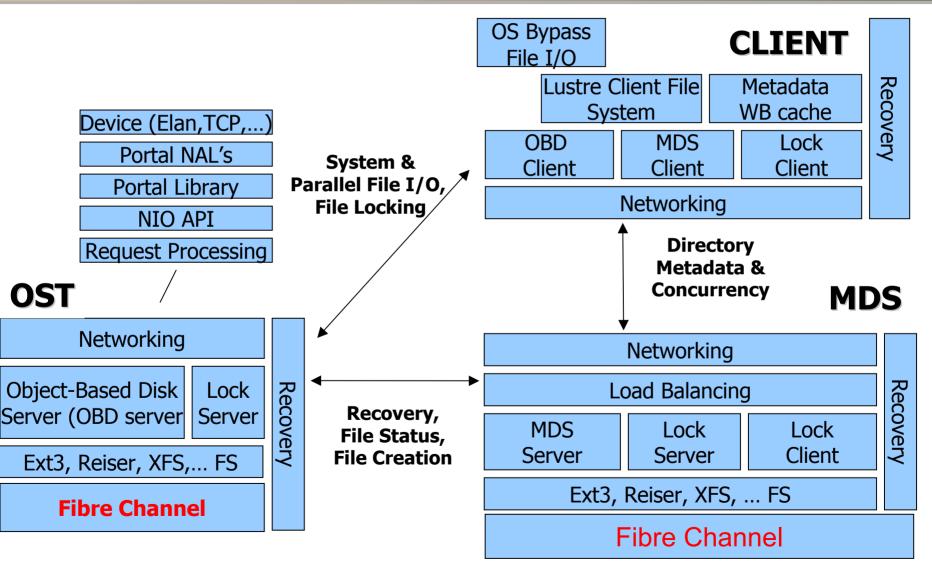
Lustre technology

- Key features
 - Scalable/parallel data serving
 - Metadata separation
 - Metadata scaling
- Comparative technologies
 - NFS
 - SANergy
 - TruCluster CFS
 - Petal/Frangiapani
 - PFS
 - GPFS


Global File System evolution

- Per SMP file system not sharable
- NFS has been traditional solution to sharing
 - Workable with shortcomings
 - Not scalable
- Slow evolution
- Equally a problem for Enterprise & HPTC
 - HPTC more demanding
- Initial solutions in Enterprise space
 - E.g.: SANergy, TruCFS
 - Limited value to HPTC
- GPFS in HPTC
- All are deltas to classic file system design

Lustre is a new approach using best practices in a new ultra-scalable design


- Not encumbered by existing architecture
- Scalability at inception
 - Separation of Metadata& file data
 - Scalable Metadata
 - Scalable file data
 - Block management at OST level
 - Efficient locking
- Object architecture

Lustre File system

protocol view

Lustre/Hendrix (phased development)

	2003				
Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	

Lustre Lite

Key Features:

- Functional file system
- Parallel I/O, Distributed benchmarks can be run.
- 100 clients, 10 OSTs, 1 Meta-Data server
- Performance at 20% theoretical (single node) 10% theoretical (parallel nodes)
- Recover from system failure
- Multiple clients, single MDS
- MDS serving more than 1 file system
- Client node failure recovery automatic.
- Metadata journaling.

Key Features:

- Improve performance to 80% theoretical (single node) 40% theoretical (parallel nodes)
- 700 clients, 30 OSTs, 1+1 Meta-Data server
- Scalability is much improved
- Locking system improved.
- Exporting NFS
- MPI-IO support.
- OST fail over

Clustered MDS

Key Features:

- First implementation of scalable clustered metadata servers
- 3000 clients, 200 OSTs, 4 node MetaData server
- Improve Parallel I/O performance @ 60% theoretical
- (single node still @ 80%)
- Add global namespace support

Lustre T10 & Security

Key Features:

- Add T10/OSD compatibility and Security pieces.
- Improve Parallel I/O performance @ 70% theoretical
- (single node still @ 80%)
- 3000 clients, 1000 OSTs, 16 node Meta-Data server

Lustre GNS & Management

- Improve Parallel I/O performance
 @ 85% theoretical
- Single node performance to 95% theoretical
- 10,000 clients, 10,000 OSTs, 100 node Meta-Data server
- Integration with enterprise management tools
- Hooks for HSM application

Lustre Lite

- Functional file system
- Parallel I/O, Distributed benchmarks can be run.
- 100 clients, 10 OSTs, 1 Meta-Data server
- Performance at 20% theoretical (single node) 10% theoretical (parallel nodes)
- Recover from system failure
- Multiple clients, single MDS
- MDS serving more than 1 file system
- Client node failure recovery automatic.
- Metadata journaling.

Lustre Lite Performance

- Improve performance to 80% theoretical (single node) 40% theoretical (parallel nodes)
- 700 clients, 30 OSTs, 1+1 Meta-Data server
- Scalability is much improved
- Locking system improved.
- Exporting NFS
- MPI-IO support.
- OST fail over

Lustre Lite Performance (w/Clustered Meta Data Servers)

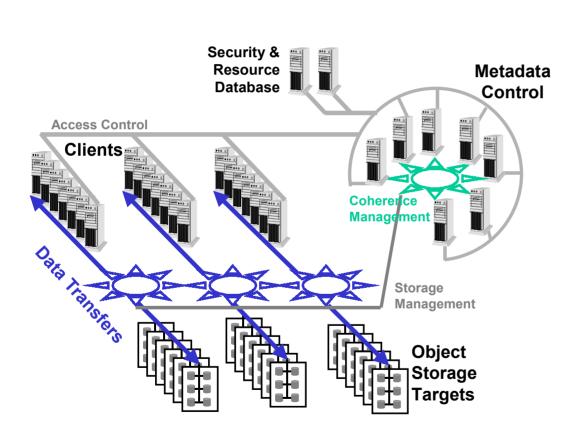
- First implementation of scalable clustered metadata servers
- 3000 clients, 200 OSTs, 4 node MetaData server
- Improve Parallel I/O performance @ 60% theoretical
- (single node still @ 80%)
- Add global namespace support

Lustre T10 & Security

- Add T10/OSD compatibility and Security pieces.
- Improve Parallel I/O performance @ 70% theoretical
- (single node still @ 80%)
- 3000 clients, 1000 OSTs, 16 node Meta-Data server

Lustre GNS & Management (final product!)

- Key Features:
 - Improve Parallel I/O performance @ 85% theoretical
 - Single node performance to 95% theoretical
 - 10,000 clients, 10,000 OSTs, 100 node Meta-Data server
 - Integration with enterprise management tools
 - Hook for HSM application


Recap Lustre and HP

- Next generation global file system
- Open Source
- TriLabs support
- Hendrix program
 - HP, CFS & Intel
 - HP in position to influence design
 - HP knowledge advantage and differentiation opportunity
- HP's goal is to lead with Lustre products
 - HPTC clusters and NSS storage servers
- HP Early field experience at PNNL
- Extensive HP customer interest

Lustre Summary

The future for scalable, high bandwidth, parallel, high capacity, resilient, filesystems

Open Source Backed by HP

For More Information

- www.lustre.org
 - The main source for Lustre news, overviews, and technical information
- HP HPTC Web site
 - www.hp.com/techservers
 - All about HP scalable-technical solutions, including Linux clusters and Lustre

Lustre

Hendrix, Jimi, and Woodstock

Interex, Encompass and HP bring you a powerful new HP World.

