Managing Linux Clusters

Overcoming the Complexities Associated with Managing Linux Clusters

Clusters: What and Why?

What?

 Collection of computers networked together to perform a particular application in parallel

Why?

- Scalability
- Cost-effective

Key Management Issues

- Nodes do not contain:
 - Floppy disk
 - CD-ROM
 - Monitor, Keyboard, or Mouse
- Each node has a full/partial installation (even system images)
- Everything must be done over network or serial
- Installation and configuration of the operating system and applications
- Controlling every aspect of the system from a single administration point
- Being able to administer the system remotely

Management Layers

Event Management

System Monitoring

Incremental Updates

Image Installation (Cloning)

Image Creation and Management

Kernel Management

Boot Process

BIOS Access and Management

Temperature Monitoring

Power Monitoring and Management

System Management

Operating System

Pre-boot Management

Environment

Power and Temperature

- Distributing power evenly
- Controlling power to individual nodes remotely
- Managed via Network or Serial
- Allows "broadcasted" power commands
- Must be scalable
- Monitor internal CPU and chassis temperatures
- Temperatures must be remotely viewable
- Temperature warning system to prevent overheating

The BIOS is the firmware in charge of:

- Initialising hardware (Memory, Hard Disk, PCI Devices, I/O Ports, etc...)
- Checking for bad memory
- Initialising the boot processes (including the installation mechanism for the OS).

LinuxBIOS Features

- An Open Source BIOS Alternative
- Boots very quickly (3-5 seconds)
- Is remotely accessible
- Configured specifically for cluster systems

Why use LinuxBIOS?

- Speed LinuxBIOS can increase the boot time of a node by 10-20x
- Accessibility LinuxBIOS is accessible from within Linux user space – making it accessible while the machine is running from network or serial
- Maintainability Using LinuxBIOS tools, an entire cluster system can be upgraded in minutes
- Flexibility Make changes to the BIOS or tools to support custom options (Example: Booting over Myrinet)

Boot Process Overview

Kernel Management

- Nodes should always get their kernels over the network.
 - Simplifies kernel management
 - Easy to upgrade the kernel on the entire cluster
 - Support for optimized kernels
 - Support for packaged kernels or built-from-scratch kernels
 - Support for multiple kernels
 - Kernels can be assigned to node-types
 - Kernels are not tied to OS installation (image)

What is an Image?

- Operating System
- Applications
- Custom Libraries
- Source Code
- Node configuration files (/etc directory)
- Running services
- File system information (partition table or mount points)

Image Creation and Management

- Support for multiple images
 - Images are stored on the "host" machine
 - Images are compressed as large files
 - Uncompressed images can be edited simply by making changes to images root (/) directory
 - Support for chroot
 - Ability to install new RPMs into the image
- Base Linux Install
 - Support for multiple OS versions
 - Support for RPM packages
 - Support for Source files or copied directories

Boot Process Overview

Image Installation

- Cloning (or Provisioning) is the process of installing the Image onto each of the nodes
- Support for different image types:
 - Clone boot image
 - Repartitions the disk
 - Rebuilds the file systems
 - Installs the Image
 - Configures services
 - HD boot image
 - Mounts the previously installed file systems
 - NFS root image
 - Mounts a remote NFS file system as its root file system
 - Allows local scratch and swap

Multicast Technology

- Multicast will clone with 99.9% reliability, that's 999/1000 nodes.
- Multicast will clone an entire system all at once, no matter the size.
- Previously, cloning was limited to about 40-60 nodes at a time.
- Multicast technology is limited by having switches that support multicast.
- Nodes can also be booted and given their kernels using multicast

Incremental Updates

- Parallel Shell & Parallel Update commands
 - Parallel update can take advantage of multicast for large files
- Parallel shell is used for mass administration all/groups of nodes
- Changes to the node should be done in the clone image, other wise the information will be lost the next time the node is cloned.
- Important data should never be stored on the node
- OS should be "disposable"
- Changes to NFS Root nodes are made just by making changes to the NFS root image

System Monitoring

Monitoring of each individual system

- CPU
- Memory
- Network
- Disk
- Minimal Application
- OS
- Node Information (read at start-up)
- Provide monitoring information to Event Engine
- Store monitoring information for historical analysis

Historical Tracking

- Displays monitoring information over a period of time.
 - View Cluster performance over time
 - Compare nodes or monitoring values
 - Predict future computing needs
 - Spot system bottlenecks
 - Improve cluster efficiency

Event Management

- Events perform automatic system administration tasks
- Example:
 - If (Temperature >= 60 °) { Shutdown the node; }
 - If (LoadAvg >= 4) { Run a script; }
 - If (RootPartition >= 95%) { Run a script; }
- Send email or take action when an event has been triggered.
- Monitor any default or custom properties
- Support for custom scripts (bash, perl, sym-link)
- Sometimes simple events management can be handled at the hardware level

Management Layers

Event Management

System Monitoring

Incremental Updates

Image Installation (Cloning)

Image Creation and Management

Kernel Management

Boot Process

BIOS Access and Management

Temperature Monitoring

Power Monitoring and Management

System Management

Operating System

Pre-boot Management

Environment

Software Solutions

Generally management software is limited to a single tier (System Management, OS & Kernel, BIOS & Environment)

System Management

- Graphing Tools
 - RDDTool, Ganglia
- High-end SNMP based (not great for clusters)
 - Open View, Tivoli, Unicenter, BMC
- Cluster Specific
 - Clusterworx, Beowatch, ABC

Software Solutions

OS Installation

- Redhat Kickstart Based:
 - OSCAR (OSS)
 - xCAT
 - NPACI Rocks (OSS)
- Image Based
 - Clusterworx
 - PowerCockpit

Software Solutions

Power and Temperature (hardware dependent)

Power

- Tripp Lite, APC, Baytech
- Temperature
 - LM Sensors, IMPI

Importance of Serial Access

Features:

- Out-of-Band management
- Watch the node boot
- Access/Modify the BIOS
- Universal availability of the serial port on hardware
- Less expensive and more convenient and scalable than KVM.
- Doesn't require X installed
- Support for "serial over IP"
- Supports offline data buffering

Issues to over come

- Poor Scalability
- Low port density (used a lot of rack space)
- Low speed (was 9600, now 115200)
- No remote access
- Focused on Data Center

Serial access solutions

- Three types of solution
- Internal Management Cards
 - HP's Integrated Lights Out
 - IBM's RSA
 - Intel's IPMI
- Serial Console Servers
 - Cyclades
 - Lightwave
- Cluster Management Appliance
 - Linux Networx ICE Box

HP Integrated Lights Out

Features:

- Scalability
- Network or Serial Access (or "serial over IP")
- Internal Power management
- Motherboard monitoring
- Onboard event management
- Runs a Mini web server

Drawbacks:

- Scalability
- Second 10/100 network required
- Still requires serial switch
- Very architecture dependent.
- Shell is very limited
- Can't set network settings without DHCP or serial

Serial Terminal Servers

Features:

- Serial Access & Power management
- Up to 48 ports in a 1U space
- Better security features
- Two PCMCIA card slots for expanded functionality
- Web-based management

Drawbacks:

- 15 / 20 Amp power units available with support for 8 nodes or devices
- No temperature, reset, beacon, or other monitoring.
- The PDU requires a serial connection
- Focused on Data Centers

Cluster Management Appliance

Features:

- Serial Access & Power management
- Requires no rack space
- Support for 10 nodes & 2 devices per box – Total of 30 Amps
- Very scalable
- Linux based command shell
- Easy to use Keypad / LCD
- Cluster Specific

Drawbacks:

- No expansion for external devices
- Legacy 10 Base-T Ethernet
- No voltage monitoring

Conclusion

Questions?