

Understanding Distributed Denial-of-Service Attacks

Craig Ozancin Senior Security Analyst Symantec Product Vulnerability Coordinator cozancin@symantec.com

Agenda

- The Anatomy of a Denial-of-Service attack
- Distributed Denial-of-Service
- Trends and Factors
- A history in the making
- Distributed Denial-of-Service tools
- Is there an solutions?
- Where can I find more information
- Conclusion
- Questions?

I: The Anatomy of a Denial-of-service Attack

What Is a Denial-of-Service

A Denial-of-Services is when someone or something is prevented from performing a desired task or operation.

Types of Denial-of-Service Attacks

Bandwidth Consumption

- · Flooding a smaller network with data
 - flooding a 56-kbps network connection from a T1 connection.
 - This may actually be legitimate network usage
- Using multiple sources to flood a network

Resource Starvation (Consuming system resources)

- filling Disk/File system
- · memory fully allocated
- CPU at maximum usage
- Filling process table

Definitions from "Hacking Exposed"

Types of Denial-of-Service Attacks

Programming Flaws

- Buffer overflows that cause services to terminate prematurely
- Memory leaks that can be used to consume system resources
- Malformed or illegal network packets that cause kernel crashes

Routing and DNS Attacks

- Manipulation of routing tables to prevent legitimate access (breaking into routers)
- Manipulation of DNS tables to point to alternate IP addresses

Definitions from "Hacking Exposed"

DoS Attacks Can Strike Anywhere

Web browsers

- The browser becomes unresponsive
- · Continues to open windows (until system resources are exhausted)

Individual Services

Disable or crash network services (a buffer overflow can cause a service to crash)

The whole system

• Resource attacks (file system, process table, memory, ...)

The whole network

• NIS, DNS, ...

Networks

- Cause a large amount of network traffic
- Connectivity slows to a standstill
- Starts dropping packets
- Network Information Service (NIS) attack:
 - Systems using NIS must request user information from the NIS server, one user at a time.
 - This creates a spike in network traffic (not to heavy under normal use).
 - The follow could be used to perform a network DoS:

```
while :
do
finger bogus-name@system &
```

done

The system power turns off!

Beginning of a Syn-flood Attack

The Complete Syn-flood

Evidence of SYN Flood

- Look for too many connections in the state "SYN_RECEIVED" may indicate an attack
 - SunOS
 - netstat -a -f inet
 - FreeBSD
 - netstat -s |grep "listenqueue overflows"
 - Windows
 - netstat -a
 - Linux
 - netstat -a

DNS Attacks (Domain Name Service)

- DNS is used to equate a human readable system name to a numeric IP address
 - My.Domain.Com = 12.208.5.23
 - Your.Domain.Com = 12.208.6.87
- Program and design flaws have allowed the DNS server information to be poisoned with incorrect data

DNS Poisoning

80days 22hours 41mins 51secs

quick re-entry

II: Distributed Denial-of-Service

A Definition Found on the Internet

"A computer attack that hijacks dozens or sometimes hundreds of computers around the Internet and instructs each of them to inundate a target site with meaningless requests for data."

What Is It?

- Represents a new level of attack
- Use of multiple, sometimes compromised systems, to launch attacks
- Type of attacks include:
 - Denial-of-service (Trinoo, tribal flood network, ...)
 - Password cracking (saltine cracker, Slurpie)
 - Information gathering (none available yet)

Simple ICMP (Ping)

ICMP (Ping) Flood

III: Trends and Factors

Development

- Attack technologies are being developed in a open source environment and are evolving quickly
 - Underground community providing quick feed back
 - New ideas and features discussed in group forums
 - · Global development teams via the internet
 - The time between idea and deployment can outpace the system and security administrators (opening a window of opportunity for abuse)
 - · As long as defensive strategies are defensive, this situation will continue
 - Solutions must be international in scope

Easy Deployment

- There are tens of thousands (perhaps even millions) of computers with week security connected to the internet
 - They make easy targets for attack
 - Attackers will compromise many of these systems
 - Backdoors, Trojan horses and/or Distributed Denial-of-Service clients (zombies) will be installed
 - These systems systems can then be combined to form attack networks
 - Availability of broadband internet connections in the home, schools, libraries, and other locations (likely without any implemented security measures) increases the problem

Vulnerabilities

Increasing complex software is being written

- New developers with little or no training in writing secure code
- Many working in environments where time-to-market is more important that security
- Testing time and QA has not always increased to match the code complexity
- Complex software is being deployed in security-critical environments
- The end user is at risk

Demand for Features

User demand for new features

- Industry response is often to put security last or even as an afterthought
- Results in software that is increasingly subject to:
 - Subversion
 - Computer viruses
 - Data theft
 - Other forms of abuse

Internet Complexity

- It is unlikely that changes to specific technologies will eliminate newly emerging problems due to the scope and variety of the internet
 - Broad community action required
 - Point solutions only help dampen effects of attacks
 - Need robust solutions that may require concentrated effort and several years
 - Many issues are due to inadequacies and shortcomings in a design that is over 30 years old

Technical Talent

Technical talent is growing scarce

- The growth of the internet has out paced availability
- The average level technical ability and knowledge has decreased of the past few years
- People with little or no technical experience are being placed in system and network administrative positions (often right out of school)
- Graduates have little real experience and there is little effort to improve this in the educational system

Finding the Attacker

- International law and the complexity of attacks makes apprehension and prosecution of computer crime difficult or unlikely
 - Attack systems me be located across the globe
 - Incriminating evidence may be unattainable
 - True identify of perpetrator may never be determined
 - The attack may not even be illegal in the country where the attacker lives
 - Some governments unwilling to aid other (enemy) in an investigation

IV: A History in the Making

The Internet Meltdown – February 7, 2000

- Yahoo hit by first recorded denial-of-service attack.
- Many other high profile commercial sites where hit next over a three day period of time.
- During proceeding months many sites with high speed connections were broken into and infested with "zombies".
- Zombie systems waited until they received attack command.
- System owners were unaware of their participation.
- Broadcast amplification using "ICMP echo reply" intensified attack.
- Flood estimated at over 1 gigabit per second.

The Internet Meltdown – February 7, 2000

The following Sites where attacked:

• Yahoo	10:20 a.m.	2/7/00 PST	3 hours
• Buy.com	10:50 a.m.	2/8/00 PST	3 hours
• eBay	3:20 p.m.	2/8/00 PST	90 minutes
• CNN.com	4:00 p.m.	2/8/00 PST	110 minutes
Amazon.com	5:00 p.m.	2/8/00 PST	1 hour
• ZDNet	6:45 a.m.	2/9/00 PST	3 hours
• E*Trade	5:00 a.m.	2/9/00 PST	90 minutes

Many others sites rumored to have been attacked

Why Should I Be Worried – February 2001

- Microsoft (router glitch)
- IRC servers
- It has been estimated by at least one internet service provider that up to 10 percent of internet traffic on it's networks are from attackers attempting a denial of service attack (source ZDNet)

Why Should I Be Worried – To The Present

- Massive DDoS attack against all 13 root DNS servers October 21, 2002
 - 13 servers are distributed across the globe
 - Zombies traced to computers in United States and South Korea
 - Seven of the 13 servers failed to accept legitimate requests and 2 others failed intermittently during the attack
 - Largest attack to date
 - Work done to increase protection and robustness of servers
- Latest threat from fast spreading worms that deliver and install zombie code
 - Could possibly build DDoS network of gigantic size in under an hour
 - Zombie code may join IRC Channel and wait for instructions
 - Worm could contain target information difficult to trace back to attacker
- New attacks and methods are being created even as we speak

- These are some of the automated tools that attackers might use to simplify the task
 - Mstream
 - Trin00
 - TFN/TFN2K– Tribe Flood Network
 - Trinity
 - Stacheldraht
 - Shaft
 - omegav3
- Primary purpose is to inundate a web site or server with data, stopping the servers ability to respond to other request

- mstream
 - TCP ACK Flood
- Trin00
 - No source IP spoofing
 - UDP Flood Attack

TFN/TFN2K– Tribe Flood Network

- Source IP randomization
- UDP Flood Attack
- TCP SYN Flood
- ICMP Echo Request Flood
- ICMP Directed Broadcast (smurf)

Stacheldraht

- Encrypted communications
- Source IP randomization
- UDP Flood Attack
- TCP SYN Flood
- ICMP Echo Request Flood
- ICMP Directed Broadcast (smurf)
- TCP ACK flood
- TCP NULL (no flag) flood

Shaft

- UDP flood
- TCP SYN flood
- ICMP Echo Flood
- Can randomize all Three floods

Omegtav3

- TCP ACK flood
- ICMP flood
- IGMP flood
- UDP flood

Trinity

- Can be controlled through IRC (Trinity connects to IRC and chooses a nickname)
- UDP flood
- Fragmented flood
- TCP SYN flood
- TCP RST flood
- TCP Random Flag flood
- TCP ACK flood
- Establish flood

VI: Is There a Solution?

Indicators And Safeguards

- Indications your system may have been compromised for the purpose of being used as a Distributed Denial-of-Service agent or handler
 - Unknown open ports (the tools can change port numbers at compile time)
 - Startup scripts may have changed
 - Run "strings" on unknown binaries (see CERT advisories)
 - May have rootkit or back orifice install

Offensive Problems

- Source IP spoofing makes it very difficult to identify the attack system
- Broadcast amplification can increase attack intensity by magnitude greater
- Lack of appropriate response to attacks many organizations will not respond to complaints of misuse
- Hundreds (possibly thousands) of attack systems intensify the issue – many with little or no security that where enlisted as zombies by the attacker
- Distributed Denial-of-Service attacks appear as normal network connection/control traffic – no way to identify it as an attack until its to late)

IP Spoofing

Egress filtering

- Insure that packets leaving a site contain a source IP address consistent with that site
- Insure that no packets with unroutable packets are sent from the site
- Limits IP spoofing to addresses
 within the site
- Attack could be traced back to site (helps identify attack traffic source)

Ingress filtering

 ISPs only accept traffic from authorized sources

IP Spoofing

Dialup users

- Ensure that proper filters are in place to prevent dial-up connections from using spoofed addresses
- Network equipment vendors should ensure that no-IP-spoofing is a user setting, and the default setting, on their dial-up equipment
- itrace (an ICMP Traceback message) has bee proposed by the engineering task force to help solve problem of spoofed IP addresses
 - Routers would generate a Traceback message that is sent along to the destination
 - With enough Traceback messages from enough routers along the path, the traffic source and path can be determined

Broadcast Amplification

- Forwarding of directed broadcast traffic should be turned of unless there is a legitimate use
 - If there is a legitimate use, disable all traffic to the broadcast address except those types that may be needed (e.g., ICMP Echo Reply) to protect against smurf attacks
- Network hardware vendors should turn off IP directed broadcast packet (RFC 2644) and this should be the default.
- Chargen and echo services should be disabled

Lack of Response to Attack

- A incident response policy should be written that clearly defines responsibilities and procedures
- ISPs should define methods of quick response and should be followed by staff
- Encourage participation in industry-wide early warning systems (ARIS at securifyfocus.com)
- Report attacks and system flaws to appropriate authorities

Unprotected Computers - Gateway

- Vulnerability and risk assessment
- Multiple ISP's (I.e. different providers using different pipes)
- Load balancing
- Redundancy or fail over in network devices and servers
- Install firewalls and harden with rule sets that tightly to limit traffic (incoming and outgoing) to required needs
- Use Network based Intrusion Detection

Unprotected Computers - Host

- Vulnerability and risk assessment
- Use Host based Intrusion Detection
- Run minimum systems (no applications or services that are not needed)
- Keep your systems, applications and network devices updated to latest patch levels
- Check for Trojan horse and zombie code don't allow your system(s) to be used as zombies in an attack against another site
 - Network vulnerability scans
 - Tripwire/Anti Virus/Network and host based Intrusion Detection
- Good password discipline

Unprotected Computers - Personnel

- Adopt a security policy
- Train IT staff on security issues
- Educate end users on system uses and security issues
- Participate in security community bug tracking discussions (BUGTRAQ, NTBUGTRAQ, ...)
- Vendors need to incorporate system hardening controls to allow novice system administrators to obtain a reasonable level of security – security defaults should be set to highest levels by default

DDoS Solutions – Shutdown routers

- Identify Core router that attack is passing through to you boarder router
- Contact owner of Core router and provide them with the details of your attack
- They should then attempt to identify the router that is feeding that the attack is passing through to them
- They should then contact the owner of that router
- This process should continue down the line as far as possible
- The closer to the source of the attack the better
- The closes router to the source of the attack should be shutdown or configured to block traffic to your site
- Not all router owners will be cooperative or available (path may lead across multiple countries and continents

DDoS Solutions - Router Traffic Limits

- Identify normal traffic for specific packet types (I.E. RST packets)
- Set traffic limit that limits traffic of that specific network packet type to a reasonable threshold
- This allows normal traffic to be routed without being impeded
- Prevents excessive amounts of specific network traffic from clogging your network

DDoS Solutions - Router Traffic Limits

- In the event of a DDoS flood (I.e. RST packets) the router threshold eliminates much of the attack traffic that would have chocked the target.
- Router thresholds are best placed as close as possible to the attack
- They should however be far enough back to catch a reasonable portion of the attack.
- You may need to use multiple router traffic limits to deal with a large scale DDoS attack

DDoS Solutions - Router Traffic Limits

DDoS Solutions – Add Resources

- Add additional systems to server clusters
- Utilize second channel ISP
- Limited solution
- Requires before hand preparation

×		

Where You Can Find More Information

- Symantec Corporation
 - <u>http://www.symantec.com</u>
- Security Focus (Home of BUGTRAQ)
 - <u>http://www.securityfocus.com</u>
- Packet Storm
 - <u>http://www.packetstormsecurity.com</u>
- CVE (Common Vulnerability and Exposures)
 - <u>http://cve.mitre.org</u>

Where You Can Find More Information

SANS Institute

<u>http://www.sans.org</u>

The Center for Internet Security

- <u>http://www.cisecurity.org</u>
- Linux Security
 - <u>http://www.linuxsecurity.com</u>
- Network Security Library
 - <u>http://secinf.net</u>

VIII: Conclusion

Conclusion

- Distributed Denial-of-Service attacks like these are publicly available
- They can simply be downloaded and installed
- They are very difficult to deal with when under attack
 - They exploit unforeseen design flaws in the way the Internet works
- We have to understand the technical aspects to combat the threat
- We need our own tools to fight back

×

IX: Questions?