
Case Study

Pat Kilfoyle
Hewlett Packard

HP World 2003 Solutions and Technology Conference & Expo page 211/17/2003

Case Study

Problem -

– Poor firewall performance – http traffic
• A multiprocess, multithreaded http daemon on a firewall

was having slow connection handling stats according to
an external network load balancer device.

• Performance was compared with another HW vendor
running the same revision of firewall product.

HP World 2003 Solutions and Technology Conference & Expo page 311/17/2003

Case Study

Application details -

• http daemon had 10 processes with 8 kernel threads each.

• load balancer algorithm was ‘assign new connection to
firewall with fewest active connections’

• New installation on 11.0

Firewalls www

Load balancer

http clients

HP World 2003 Solutions and Technology Conference & Expo page 411/17/2003

Case Study

Questions to be answered & tools to consider -
• How do you find/ID an intermittent slow connection amongst 80

different threads spread among 10 processes?
- http daemon logs that record time of transaction
- A lot of network tracing and luck

• How do you measure/trace where a process threads spends its time?
- glance process detail screens
- nettl tracing at the IP layer to trace the network traffic
- tusc syscall tracing …all threads traced at the same time.
- kitrace syscall/kernel tool
- kgmon tool to enable kernel profiling
- Application logging with excruciating detail – wishful thinking.

HP World 2003 Solutions and Technology Conference & Expo page 511/17/2003

Case Study – tools

Tools used and the data they provided -
• http daemon logs showed which connections were delayed, but

they seemed too few and infrequent to account for the overall
slow performance.

- Typically a failed DNS lookup was seen in the nettl IP layer traces.
- The other vendors system would be subject to the same issue so this was ruled

out as a root cause.
• tusc syscall trace, one tusc invocation for each process

- Showed the thread interaction for each process
- Searching for timestamp gaps in the syscall trace entries we were able to spot

‘slow responses’.
- recv() and ksleep() syscalls seemed to account for most of the thread delay

time.
- The tusc data showed an unexpected sequence of DNS lookups holding off

other threads within the same process, calling kwakeup immediately after
getting the DNS reply.

• sample threaded code was written to duplicate the DNS interaction
outside of the http daemon…a simpler environment to debug.

HP World 2003 Solutions and Technology Conference & Expo page 611/17/2003

Case Study
tusc – sample output

6.514689 [11972]{12562} <0.000046> socket(AF_INET, SOCK_DGRAM, 0) = 4

6.514860 [11972]{12562} <0.000033> connect(4, 0x400e0970, 16) = 0
sin_family: AF_INET
sin_port: 53

sin_addr.s_addr: 201.155.160.51

6.515042 [11972]{12562} <0.000017> send(4, "\00201\0\001\0\0\0\0\0\0\ai p 2 ".., 25, 0) = 25

6.559376 [11972]{12562} <0.000020> select(5, 0x7f7918f0, NULL, NULL, 0x7f7918e8) = 1
readfds: 4
writefds: NULL
errorfds: NULL

6.559555 [11972]{12562} <0.000013> recv(4, "\0028183\001\0\0\001\0\0\ai p 2 "..,
1024, 0) = 100

6.559762 [11972]{12562} <0.000030> close(4) = 0

6.563612 [11972]{12562} <0.000017> kwakeup(PTH_CONDVAR_OBJECT, 0x40001340,
WAKEUP_ONE, 0x7f790298) = 0 threads awakened: 1

6.563731 [11972]{12558} <0.000029> ksleep(PTH_CONDVAR_OBJECT, 0x40001340,
0x40001348, NULL) = 0

HP World 2003 Solutions and Technology Conference & Expo page 711/17/2003

Case Study –
resolution

Single threaded DNS code path found

– The tusc output showed us an unexpected interaction
among threads within the same process doing DNS
queries.
• It appeared to be a deliberately single threaded code

path.
• gdb debugger on the sample code showed us that the

mutex lock was occurring in the DNS code within
libnss_dns.1

• Code review of the specific routines involved found old
protection code in place from the days when the DNS
resolver back end routines were not thread safe.

• PHNE_27795 for 11.0 now contains the fix.

HP World 2003 Solutions and Technology Conference & Expo page 811/17/2003

Case Study

Key points - The tools and methodologies used are
trying to answer the following:

• Where is the thread/process spending it’s time?
– Kernel code active or sleeping?
– User space active or sleeping?

• What is the process/thread doing?
– What kernel code is it executing?
– What user space code is it executing?

• Whatever it’s doing, is it suppose to be doing it this way?
– Between the application developers, the customer and HP,

somebody had better know.

	Case Study
	Case Study
	Case Study
	Case Study
	Case Study – tools
	Case Studytusc – sample output
	Case Study –resolution
	Case Study

