
Configuring malloc
for faster and 

smaller 
applications

Colin Honess
Strategic Deals Team, HP



HP World 2003  Solutions and Technology Conference & Expo page 211/19/2003

What to expect 

Introduction to malloc
How malloc is implemented on HP-UX
– Basic malloc algorithms
– Small block allocator
– Multi-arena malloc
– Thread-local cache

How to monitor and tune malloc behavior.



HP World 2003  Solutions and Technology Conference & Expo page 311/19/2003

Why should I care?

Process Size for a Range of Tunings

800000

900000

1000000

1100000

1200000

1300000

1 82 163 244 325 406 487 568 649 730 811 892 973 1054 1135

Time

Pr
oc

es
s 

Si
ze

 (K
B)

1 Arena
2 Arenas
4 Arenas
8 Arenas



HP World 2003  Solutions and Technology Conference & Expo page 411/19/2003

Why should I care?

-87%165,6521 Arena

0%1,282,8088 Arenas (default)

14.5%1,469,47932 Arenas

37%1,762,570Thread-local cache

% ImprovementResult 
(operations/second)

Tuning



HP World 2003  Solutions and Technology Conference & Expo page 511/19/2003

When should I care? 

When any of the following is important:
– Process size
– Stability in process size
– Performance

Particularly for multi-threaded applications



HP World 2003  Solutions and Technology Conference & Expo page 611/19/2003

Using malloc – C examples

c = (char *)malloc(42);
f = (float *)malloc(sizeof(float));
fourints = (int *)calloc(sizeof(int),4);
pagealigned = valloc(8192);
f = (float *)realloc(f, 2*sizeof(float));
free(c);
newstr = strdup(“hello world”);



HP World 2003  Solutions and Technology Conference & Expo page 711/19/2003

How much memory can be 
allocated through malloc? 

It depends…
32 bit or 64 bit
32 bit memory model
Kernel parameters:
– maxdsiz 
– maxdsiz_64bit
– maxssiz
– maxssiz_64bit

Available swap space



HP World 2003  Solutions and Technology Conference & Expo page 811/19/2003

Logical segments in a process 

Text (program code)

Initialized data
Uninitialized data (bss)

Heap
Private mmap files

User stack

U-area
kernel stack

Shared memory
Public m map files
Shared libraries

maxtsiz

maxdsiz

maxssiz



HP World 2003  Solutions and Technology Conference & Expo page 911/19/2003

32 bit memory models 

Four 1GB quadrants into 
which we must place:
– Text
– Private data
– Shared libraries
– Shared memory
– Memory mapped files
– etc.

Each quadrant is either 
shared or private
Different memory models 
offer different mappings

4G

Q1

Q2

Q3

Q4
3G

2G

1G

0



HP World 2003  Solutions and Technology Conference & Expo page 1011/19/2003

32 bit memory models 

EXEC_MAGICSHARE_MAGIC
4G4G

Shared objects

Shared objects

Data

Text

Shared objects

Shared objects

Data

Text and data

3G3G

2G2G

1G1G

00



HP World 2003  Solutions and Technology Conference & Expo page 1111/19/2003

32 bit memory models 

+q3p +q4pSHMEM_MAGIC
4G4G

Shared objects

Shared objects

Shared objects

Text and data

Data

Data

Data

Text and data

3G3G

2G2G

1G1G

00



HP World 2003  Solutions and Technology Conference & Expo page 1211/19/2003

64 bit process layout 

32/64bit shared objects
32 bit IO

64 bit shared objects

64 bit user text

64 bit user data

64 bit IO

64 bit shared objects

4GB

4TB

4EB

4TB

8EB

4TB

12EB

4TB

16EB



HP World 2003  Solutions and Technology Conference & Expo page 1311/19/2003

How much memory can be 
allocated through malloc? 

32 bit process:
– SHARE_MAGIC <1GB 
– EXEC_MAGIC 2GB for text and data
– SHMEM_MAGIC 1GB for text and data
– Private q3 & q4 4GB for text and data
64 bit process: <4TB
Tune:
–maxdiz, maxdsiz_64bit
–maxssiz, maxssiz_64bit
–Available swap space



HP World 2003  Solutions and Technology Conference & Expo page 1411/19/2003

Controlling the size of the 
heap: brk() 

brk value is the address of the first location beyond the 
end of the data segment:

brk value

heap unused



HP World 2003  Solutions and Technology Conference & Expo page 1511/19/2003

Controlling the size of the 
heap: brk() 

brk value can be increased through brk() or sbrk() to 
allocate more space to the heap:

brk value

heap unused

brk value can be decreased to truncate the heap:

brk value

heap unused



HP World 2003  Solutions and Technology Conference & Expo page 1611/19/2003

Malloc keeps track of free 
space within the heap 

…but we cannot release arbitrary memory within the heap

heap

brk value

unused

So malloc keeps track of memory the application has 
freed, and will reuse it to satisfy future requests



HP World 2003  Solutions and Technology Conference & Expo page 1711/19/2003

The free tree 

“Previous” pointer in chunk header

Free tree ordered by size of free 
chunk



HP World 2003  Solutions and Technology Conference & Expo page 1811/19/2003

Free space is coalesced 
during free 

1. Search for adjacent free memory

2. Remove adjacent free memory from free tree

3. Adjust previous pointer in following chunk

4. Insert coalesced chunk into free tree



HP World 2003  Solutions and Technology Conference & Expo page 1911/19/2003

Arena is expanded in large 
chunks 

Want to allocate a chunk:

No suitable free space, 
so expand arena…

Might expand by more than is needed to 
reduce frequency of expansion

Surplus space is placed 
into the free tree



HP World 2003  Solutions and Technology Conference & Expo page 2011/19/2003

Stop and reflect 

The heap typically only ever expands
Implement a best-fit approach to allocation
Pre-allocate for performance reasons
Coalesce on free
Free tree exists outside of managed memory – good for 
vhand, cache and TLB
Cost of managing free tree can be considerable



HP World 2003  Solutions and Technology Conference & Expo page 2111/19/2003

Small block allocator (SBA) 

Pools of fixed size blocks
Small allocations are rounded up to one of the fixed 
sizes
Allocations and frees are very quick – simple linked list 
operations
Significant overhead:
– Allocate more space than asked for
– Pre-allocate to populate the pool when first used

Pools are memory taken from the regular allocator
– Never returned to the regular allocator, even when free
– Cannot coalesce SBA and regular free space



HP World 2003  Solutions and Technology Conference & Expo page 2211/19/2003

Small block allocator (SBA) 

grain=8

8 16 24 32

maxfast=32
numblks=6



HP World 2003  Solutions and Technology Conference & Expo page 2311/19/2003

SBA pros and cons 

Reduced allocation/free costs:
– Hash, then linked list operation
– No tree manipulation
– No coalescing

Increased memory overhead:
– Pre-allocation based on NUMBLKS
– Inflexible fixed-sized blocks

Can help fragmentation
Can cause fragmentation



HP World 2003  Solutions and Technology Conference & Expo page 2411/19/2003

Tuning the HP-UX SBA

Most platforms have SBA, but traditionally it must be 
enabled through application calls to mallopt() 
– Optimal tuning may vary by use
– Most application vendors don’t bother

HP-UX allows SBA to be enabled through an 
environment variable:

_M_SBA_OPTS=maxfast:numblks:grain
e.g.
# export _M_SBA_OPTS=512:100:64

# ./myapp



HP World 2003  Solutions and Technology Conference & Expo page 2511/19/2003

Multi-threaded processes and 
malloc 

thread 0 thread 1

mutex protects arena



HP World 2003  Solutions and Technology Conference & Expo page 2611/19/2003

Multiple arenas in multi-
threaded processes 

Arena 0 Arena 1

Mutex Mutex

Mutex
brk

thread 
1

thread 
3

thread 
2

thread 
4



HP World 2003  Solutions and Technology Conference & Expo page 2711/19/2003

Multi-arena malloc 

By default, multi-threaded processes have eight arenas 
(single-threaded have one)
Each thread is assigned to an arena for all its 
allocations, for its lifetime
Assignment is based on simple load balancing (earlier 
versions round-robin)
Memory is always released into the arena from which it 
was allocated
– Prevents leaks arising from repeated allocations by one 

thread being freed by another into a different arena
– Still some potential for mutex contention, but greatly 

reduced.



HP World 2003  Solutions and Technology Conference & Expo page 2811/19/2003

Multi-arena malloc has high 
overhead 

Arenas are interspersed 
throughout the heap

Cannot coalesce free 
space in different 

arenas

Each arena has free 
space which cannot 
be seen by threads 
tied to another arena

Arena 0
Arena 1



HP World 2003  Solutions and Technology Conference & Expo page 2911/19/2003

Pros and cons of multi-arena 
malloc 

Potentially enormous performance improvement for 
malloc-intensive multi-threaded processes
Increased memory use:
– Free space in one arena cannot be allocated by a thread 

tied to another
– Free space from different arenas cannot be coalesced
– Each arena has its own SBA if enabled
– Applications can take a lot longer to settle to stable 

memory use



HP World 2003  Solutions and Technology Conference & Expo page 3011/19/2003

Tuning the HP-UX multi-
arena malloc

Multi-arena malloc is controlled through an environment 
variable:
_M_ARENA_OPTS=num arenas:expansion pages

where expansion pages is 1 – 4096 4K pages (default 32)

Example:

# export _M_ARENA_OPTS=4:128
# ./myapp



HP World 2003  Solutions and Technology Conference & Expo page 3111/19/2003

Thread local cache 

Private cache that requires no locking
Caches a definable number of previously used blocks
Provides deferred coalescing
Organized into buckets by size
– buckets cover a power-of-2, e.g. 28 – (2(9)-1)
– blocks ordered by size within bucket
– replacement policies exist for each bucket and the entire 

cache
Caches of exiting threads are stored for reuse
A retirement age defines how long we store a cache 
awaiting reuse before discarding



HP World 2003  Solutions and Technology Conference & Expo page 3211/19/2003

Tuning the thread local cache 

Three parameters:
– bucket_size

The average number of blocks per bucket                         
(max is 4xbucket_size). 
Legal values: 0 (disable) through (8x4096)

– number_of_buckets
Largest block cached will be 2 (number_of_buckets)

Legal values: 8 through 32
– retirement_age

Number of minutes for which we’ll retain unused caches for 
possible reuse
Legal values: 0 through (24 x 60)



HP World 2003  Solutions and Technology Conference & Expo page 3311/19/2003

Tuning the thread local cache 

Tune through an environment variable:

_M_CACHE_OPTS=bucket_size:buckets:retirement_age



HP World 2003  Solutions and Technology Conference & Expo page 3411/19/2003

Fragmentation of the heap 

Lots of free memory but in chunks that are too small
Steps we take to avoid fragmentation
– Best-fit allocation
– Coalescing of free space
– Separation of malloc metadata

Things that increase fragmentation:
– Dividing heap into many separate management domains 

through SBA, multi-arena and thread local cache
– Small allocation units: 

• numblks for SBA
• Arena expansion unit in _M_ARENA_OPTS

Multiple arenas take longer to reach steady state



HP World 2003  Solutions and Technology Conference & Expo page 3511/19/2003

How much memory is in the heap?
GlancePlus



HP World 2003  Solutions and Technology Conference & Expo page 3611/19/2003

How is the memory used? 
mallinfo() and memorymap()

mallinfo(3C) and memorymap(3C) can be called from 
your application
mallinfo() returns structure, memorymap() prints to 
stdout
mallinfo() sums data for all arenas, memorymap() 
shows each arena separately



HP World 2003  Solutions and Technology Conference & Expo page 3711/19/2003

mallinfo() 

arena total space in arena
fsmblks number of bytes in free small blocks
fordblks number of bytes in free ordinary blocks
ordblks number of ordinary blocks
smblks number of small blocks
uordblks number of bytes in ordinary blocks in use
usmblks number of bytes in small blocks in use



HP World 2003  Solutions and Technology Conference & Expo page 3811/19/2003

Would I benefit from more 
arenas?



HP World 2003  Solutions and Technology Conference & Expo page 3911/19/2003

Which mutex?
Random samples with gdb
# gdb main
(gdb) run
<ctrl c>
Program received signal SIGINT, Interrupt.
(gdb) info threads

6 system thread 707215  0x800003ffff638f74 in __ksleep ()
from /usr/lib/pa20_64/libc.2

5 system thread 707214  0x4000000000005ae8 in busy_loop ()
4 system thread 707213  0x800003ffff7b936c in pthread_mutex_unlock ()
from /usr/lib/pa20_64/libpthread.1

3 system thread 707212  0x4000000000005ae8 in busy_loop ()
* 2 system thread 707220  0x800003ffff5d9c2c in .stub ()

from /usr/lib/pa20_64/libc.2
1 system thread 707208  0x800003ffff63bc54 in _select_sys ()
from /usr/lib/pa20_64/libc.2

(gdb) t 6
(gdb) bt
#0  0x800003ffff638f74 in __ksleep () from /usr/lib/pa20_64/libc.2
#1  0x800003ffff7b8dc0 in pthread_mutex_lock ()

from /usr/lib/pa20_64/libpthread.1
#2  0x800003ffff64b780 in __thread_mutex_lock () from /usr/lib/pa20_64/libc.2
#3  0x800003ffff5dbc70 in .stub () from /usr/lib/pa20_64/libc.2
#4  0x800003ffff5d9c2c in .stub () from /usr/lib/pa20_64/libc.2
#5  0x800003ffff5debdc in malloc () from /usr/lib/pa20_64/libc.2
#6  0x800003ffff74fdf8 in malloc (size=728) at lmt_libc.c:139
#7  0x4000000000003b10 in routine ()
#8  0x800003ffff7b5da0 in __pthread_body () from /usr/lib/pa20_64/libpthread.1
#9  0x800003ffff7bf874 in __pthread_start () from /usr/lib/pa20_64/libpthread.1
(gdb) 



HP World 2003  Solutions and Technology Conference & Expo page 4011/19/2003

Which mutex?
Breakpoint at __ksleep()

__ksleep() called when sleeping for mutex
When setting breakpoint in shared library must make private:
# pxdb –s enable testprog

Set a breakpoint at __ksleep():
(gdb) break __ksleep
Breakpoint 1 at 0xc0000000001f5f48

Script some commands for when breakpoint 1 is hit:
(gdb) commands 1
>backtrace
>continue
>end

Continue execution of the program:
(gdb) continue



HP World 2003  Solutions and Technology Conference & Expo page 4111/19/2003

Would I benefit from 
enabling the SBA?

Look for CPU spent in malloc-related functions, e.g.:
– malloc, free
– real_malloc, real_free
– tree-insert, tree_cut, tree_concatenate…

Best tool is prospect
www.hp.com/go/prospect

http://www.hp.com/go/prospect
http://www.hp.com/go/prospect


HP World 2003  Solutions and Technology Conference & Expo page 4211/19/2003

Would I benefit from 
enabling the SBA?
pcnt   Hits  Secs  Routine name             Filename

21%   95    0.95  pthread_mutex_unlock     /usr/lib/hpux32/libpthread.so.1

17%   76    0.76  routine                  /home/col/malloc/main

11%   51    0.51  real_malloc              /usr/lib/hpux32/libc.so.1

10%   43    0.43  busy_loop                /home/col/malloc/main

9%   41    0.41  real_free                /usr/lib/hpux32/libc.so.1

8%   36    0.36  pthread_mutex_lock       /usr/lib/hpux32/libpthread.so.1

6%   25    0.25  rand_r                   /usr/lib/hpux32/libc.so.1

4%   16    0.16  free                     /usr/lib/hpux32/libc.so.1

4%   16    0.16  __thread_mutex_lock /usr/lib/hpux32/libc.so.1

3%   15    0.15  __thread_mutex_unlock /usr/lib/hpux32/libc.so.1

3%   12    0.12  malloc /usr/lib/hpux32/libc.so.1

2%    9    0.09  _malloc /usr/lib/hpux32/libc.so.1



HP World 2003  Solutions and Technology Conference & Expo page 4311/19/2003

Would I benefit from enabling the 
thread-local cache?

Look for CPU spent in mutex- and malloc-related 
functions, e.g.:
– pthread_mutex_lock/unlock
– malloc, free
– real_malloc, real_free
– tree-insert, tree_cut, tree_concatenate…

Best tool is prospect
www.hp.com/go/prospect

http://www.hp.com/go/prospect
http://www.hp.com/go/prospect


HP World 2003  Solutions and Technology Conference & Expo page 4411/19/2003

Would I benefit from enabling the 
thread-local cache?

pcnt   Hits  Secs  Routine name             Filename

21%   95    0.95  pthread_mutex_unlock     /usr/lib/hpux32/libpthread.so.1

17%   76    0.76  routine                  /home/col/malloc/main

11%   51    0.51  real_malloc              /usr/lib/hpux32/libc.so.1

10%   43    0.43  busy_loop                /home/col/malloc/main

9%   41    0.41  real_free                /usr/lib/hpux32/libc.so.1

8%   36    0.36  pthread_mutex_lock       /usr/lib/hpux32/libpthread.so.1

6%   25    0.25  rand_r                   /usr/lib/hpux32/libc.so.1

4%   16    0.16  free                     /usr/lib/hpux32/libc.so.1

4%   16    0.16  __thread_mutex_lock /usr/lib/hpux32/libc.so.1

3%   15    0.15  __thread_mutex_unlock /usr/lib/hpux32/libc.so.1

3%   12    0.12  malloc /usr/lib/hpux32/libc.so.1

2%    9    0.09  _malloc /usr/lib/hpux32/libc.so.1



HP World 2003  Solutions and Technology Conference & Expo page 4511/19/2003

A Case Study: mallbench

10 concurrent threads
Repeatedly:
– 50% chance of calling malloc
– Do some work
– 50% chance of calling free

Try to keep memory use within desired bounds
Each allocation selects a size at random from 17 
predefined sizes
Results in malloc operations per second



HP World 2003  Solutions and Technology Conference & Expo page 4611/19/2003

Default Configuration

HP-UX 11.23 on Itanium:
– 8 arenas
– Expansion unit 32 pages
– SBA enabled:

• maxfast=512, numblks=100, grain=16
– Thread-local cache disabled

1x1 thread model
2,580,792 ops/sec
Data segment:
– RSS 4.0MB
– VSS 5.0MB



HP World 2003  Solutions and Technology Conference & Expo page 4711/19/2003

Default configuration –
Prospect profile

pcnt Routine name             Filename

21% routine                  /home/col/malloc/main
19% pthread_mutex_unlock     /usr/lib/hpux32/libpthread.so.1
12% busy_loop                /home/col/malloc/main
11% real_malloc              /usr/lib/hpux32/libc.so.1
10% pthread_mutex_lock       /usr/lib/hpux32/libpthread.so.1
7% real_free                /usr/lib/hpux32/libc.so.1
7% rand_r                   /usr/lib/hpux32/libc.so.1
3% __thread_mutex_lock      /usr/lib/hpux32/libc.so.1
3% free                     /usr/lib/hpux32/libc.so.1
2%.stub                     /home/col/malloc/main
2% __thread_mutex_unlock /usr/lib/hpux32/libc.so.1
1% malloc /usr/lib/hpux32/libc.so.1
0% _malloc /usr/lib/hpux32/libc.so.1
0% tree_insert /usr/lib/hpux32/libc.so.1
0% tree_concatenate /usr/lib/hpux32/libc.so.1
0% T_82_27f5_cl_tree_delete /usr/lib/hpux32/libc.so.1



HP World 2003  Solutions and Technology Conference & Expo page 4811/19/2003

Remove mutex contention

Engage thread-local cache
_M_CACHE_OPTS=1024:16:20
5,074,398 ops/sec (+97%)
Data segment:
– RSS 5.5MB (+37%)
– VSS 6.6MB (+32%)



HP World 2003  Solutions and Technology Conference & Expo page 4911/19/2003

Remove mutex contention
pcnt Routine name          Filename

36% routine               /home/col/malloc/main
17% busy_loop             /home/col/malloc/main
15% get_cached_block      /usr/lib/hpux32/libc.so.1
7% rand_r                /usr/lib/hpux32/libc.so.1
6% cache_ordinary_block  /usr/lib/hpux32/libc.so.1
6% add_to_cache          /usr/lib/hpux32/libc.so.1
4% free                  /usr/lib/hpux32/libc.so.1
3% cache_small_block     /usr/lib/hpux32/libc.so.1
3% malloc                /usr/lib/hpux32/libc.so.1
1% arena_id              /usr/lib/hpux32/libc.so.1
1% div32U                /usr/lib/hpux32/libc.so.1



HP World 2003  Solutions and Technology Conference & Expo page 5011/19/2003

Expand the SBA

_M_CACHE_OPTS=1024:16:20
_M_SBA_OPTS=16348:32:256
6,070,517 ops/sec (+135%)
Data segment:
– RSS 5.4MB (+35%)
– VSS 7.5MB (+50%)



HP World 2003  Solutions and Technology Conference & Expo page 5111/19/2003

Expand the SBA
pcnt Routine name             Filename

44% routine                  /home/col/malloc/main
13% busy_loop                /home/col/malloc/main
11% rand_r                   /usr/lib/hpux32/libc.so.1
9% get_cached_block         /usr/lib/hpux32/libc.so.1
6% add_to_cache             /usr/lib/hpux32/libc.so.1
6% cache_small_block        /usr/lib/hpux32/libc.so.1
5% free                     /usr/lib/hpux32/libc.so.1
2% malloc                   /usr/lib/hpux32/libc.so.1
2% div32U                   /usr/lib/hpux32/libc.so.1
1% arena_id                 /usr/lib/hpux32/libc.so.1
0% cache_ordinary_block     /usr/lib/hpux32/libc.so.1



HP World 2003  Solutions and Technology Conference & Expo page 5211/19/2003

Reduce the number of arenas

_M_CACHE_OPTS=1024:16:20
_M_SBA_OPTS=16348:32:256
_M_ARENA_OPTS=1:32
6,114,896 ops/sec (+138%)
Data segment:
– RSS 4.6MB (+15%)
– VSS 5.7MB (+14%)



HP World 2003  Solutions and Technology Conference & Expo page 5311/19/2003

Reduce the number of arenas
pcnt Routine name             Filename

43% routine                  /home/col/malloc/main
15% busy_loop                /home/col/malloc/main
9% rand_r                   /usr/lib/hpux32/libc.so.1
8% get_cached_block         /usr/lib/hpux32/libc.so.1
7% add_to_cache             /usr/lib/hpux32/libc.so.1
4% free                     /usr/lib/hpux32/libc.so.1
4% malloc                   /usr/lib/hpux32/libc.so.1
4% cache_small_block        /usr/lib/hpux32/libc.so.1
3% div32U                   /usr/lib/hpux32/libc.so.1
2% arena_id                 /usr/lib/hpux32/libc.so.1
1% cache_ordinary_block     /usr/lib/hpux32/libc.so.1



Interex, Encompass and HP bring you a powerful new HP World.


	Configuring malloc for faster and smaller applications
	What to expect
	Why should I care?
	Why should I care?
	When should I care?
	Using malloc – C examples
	How much memory can be allocated through malloc?
	Logical segments in a process
	32 bit memory models
	32 bit memory models
	32 bit memory models
	64 bit process layout
	How much memory can be allocated through malloc?
	Controlling the size of the heap: brk()
	Controlling the size of the heap: brk()
	Malloc keeps track of free space within the heap
	The free tree
	Free space is coalesced during free
	Arena is expanded in large chunks
	Stop and reflect
	Small block allocator (SBA)
	Small block allocator (SBA)
	SBA pros and cons
	Tuning the HP-UX SBA
	Multi-threaded processes and malloc
	Multiple arenas in multi-threaded processes
	Multi-arena malloc
	Multi-arena malloc has high overhead
	Pros and cons of multi-arena malloc
	Tuning the HP-UX multi-arena malloc
	Thread local cache
	Tuning the thread local cache
	Tuning the thread local cache
	Fragmentation of the heap
	How much memory is in the heap?GlancePlus
	How is the memory used? mallinfo() and memorymap()
	mallinfo()
	Would I benefit from more arenas?
	Which mutex?Random samples with gdb
	Which mutex?Breakpoint at __ksleep()
	Would I benefit from enabling the SBA?
	Would I benefit from enabling the SBA?
	Would I benefit from enabling the thread-local cache?
	Would I benefit from enabling the thread-local cache?
	A Case Study: mallbench
	Default Configuration
	Default configuration – Prospect profile
	Remove mutex contention
	Remove mutex contention
	Expand the SBA
	Expand the SBA
	Reduce the number of arenas
	Reduce the number of arenas

