IP Fabrics – The Future of Networking!

Chuck Hudson

Manager, Network System Engineering Industry Standard Servers, HP

Agenda

- Introduction
- Challenges for IP/Ethernet
- Improving Throughput Scaling
- Remote DMA
- Networked Storage
- Conclusions

The server environment today

A collection of special-purpose interconnects...

Network

- Gigabit Ethernet
- Limited processing offload (checksums, LSO)
- Virtual Local Area
 Networks (VLANs)

LAN

Storage

- Fiber Channel Storage Area Network (SAN)
- Network Attached Storage (NAS) using CIFS, NFS, etc.
- SCSI direct attached storage (DAS)

SAN, NAS

System

- Cluster Interconnect
- High-speed (>1Gb/s)
- Low-latency (<50 µS)
- IB and Proprietary Solutions (ServerNet, Myrinet, etc.)

IP

Management

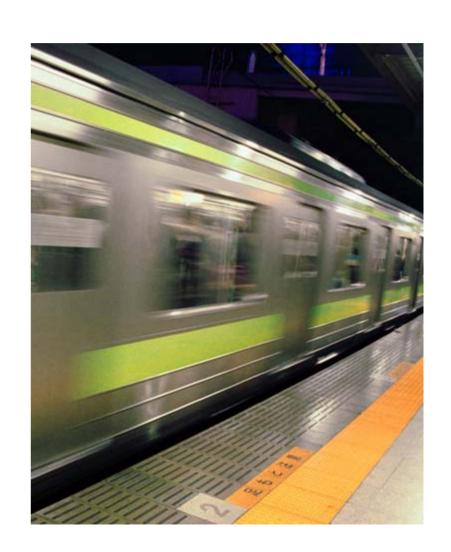
- KVM
- HP OpenView
- HP Insignt Manager
- Lights Out
 Management
- ProLiant Essentials RDP

KVM → iIO

Utility computing needs an adaptive interconnect fabric

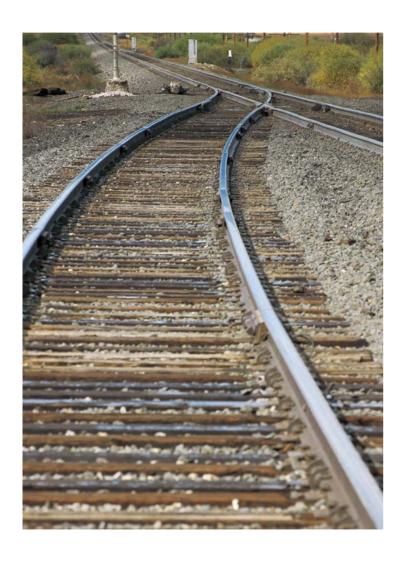
inflexible to change, over provisioned

increasing business


busi ness driven utility computin g technology and technology focused network focused height ared Internet client server perfectly synchronized with personal business needs mainframe time silos of technology utility computing

shared, optimized, heterogeneous

Wanted... a single interconnect fabric



- A single media that
 - provides a simpler, unified infrastructure
 - improves performance
 - increases flexibility
 - supports utility computing
- A single media to handle
 - networking
 - block and file storage
 - management
 - cluster interconnect

Requirements for our single fabric...

- Single medium
- Standards-based
- Scalable throughput
- Low-cost
- Reliable
- Low-latency
- Flexible
- Secure
- Familiar

Is IP/Ethernet our single fabric?

- Strengths
 - Ubiquitous; standard
 - Extends beyond the data center
 - Minimal training costs
 - Understood management model
 - Affordable adapter, cabling, switches
 - Mature foundation

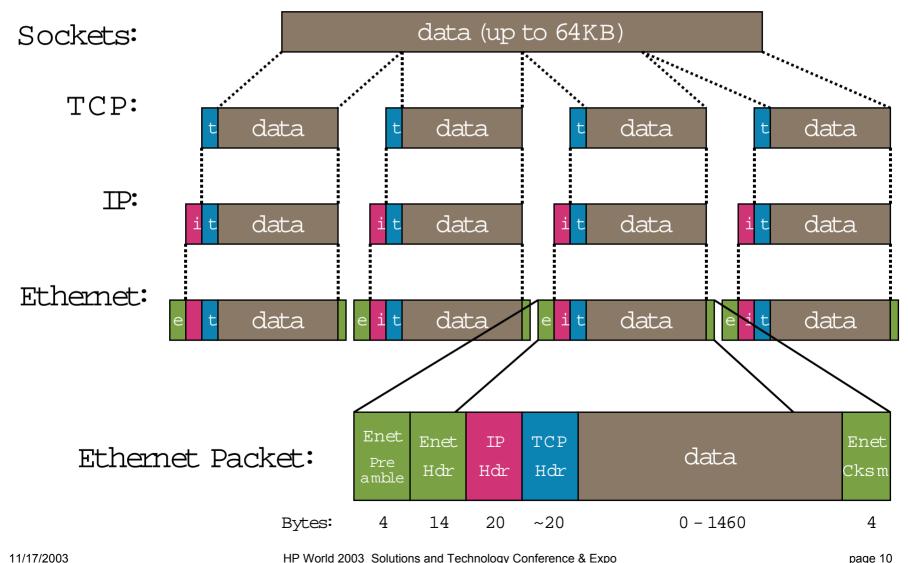
- Weaknesses
 - Scalability
 - CPU consumption
 - Memory bandwidth consumption
 - Latency

Agenda

- Motivation
- Challenges for IP/Ethernet
- Improving Throughput Scaling
- Remote DMA
- Networked Storage
- Conclusions

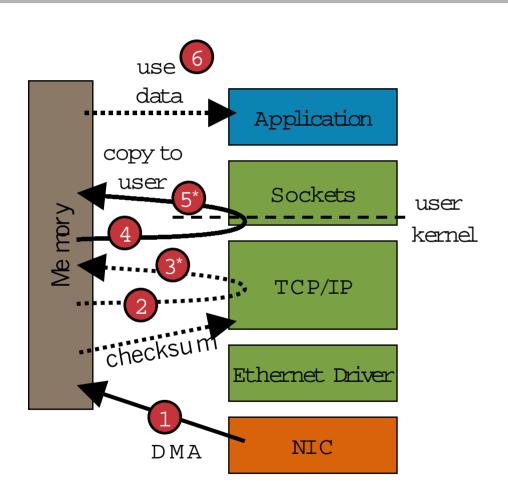
Challenges for IP/Ethernet:

TCP/IP CPU utilization



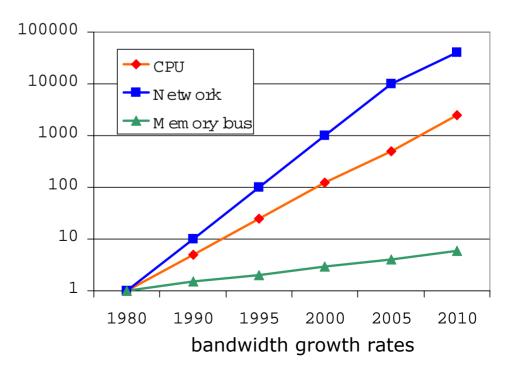
'CPU utilization'

- CPU computation
 - segmentation & re-assembly
 - checksum calculation
 - memory management
 - sync. data structures
- Context switches
 - caused by
 - user/kernel transitions
 - interrupts
 - may result in pre-emptions
- Buffer copies
 - between user and kernel memory
 - between kernel memory and network interface card


Challenges for IP/Ethernet: TCP segmentation & reassembly

Challenges for IP/Ethernet: Buffer copies (RX)

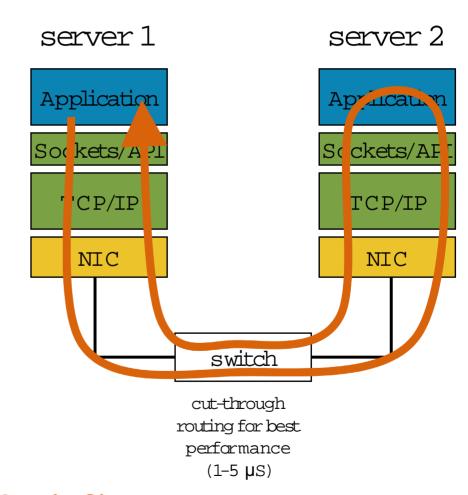
- transfer from NIC to server memory via DMA
- checksum calculation (may be offloaded)
- data may be copied to free up the NIC receive buffer 2
- application may copy data into other data structures


^{*} Note: writes consume $2x\,\mathrm{me}\,\mathrm{mory}$ bandwidth of read due to cache line reads

Challenges for IP/Ethernet: Memory bandwidth limitations

- Host-based TCP/IP consumes memory bandwidth equal to 4x to 7x the raw data rate.
 - 1-2 buffer copies + DMA
 - each buffer copy = 3x memory touches
- Memory Controller Bandwidth is not keeping up with CPU and network bandwidth.
- Current memory controller bandwidth is~ 3-6 GB/sec

Ethernet	Raw Data Rate	Required Memory Bandwidth (RX)	
1 GbE	125 MB/sec	500-875 MB/sec	
10 GbE	1250 MB/sec	5000-8750 MB/sec	


11/17/2003

Challenges for IP/Ethernet:

Round-trip message latency

- server 1 protocol stack (µS)
- network latency (µS)
 - NIC1 latency
 - Switch latency
 - NIC 2 latency
- server 2
 - protocol stack (µS)
 - wake-up application for response (mS)
 - server 2 protocol stack (µS)
- network latency (µS)
- server 1
 - protocol stack (µS)
 - wake-up receiving application (mS)

Agenda

- Motivation
- Challenges for IP/Ethernet
- Improving Throughput Scaling
- Remote DMA
- Networked Storage
- Conclusions

Improving throughput scaling

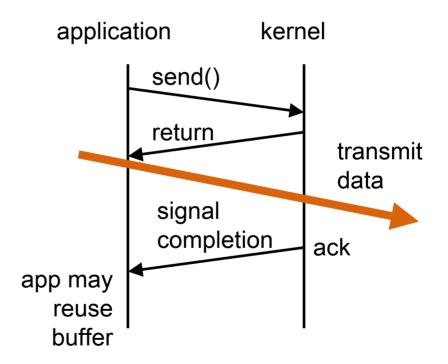
- Jumbo frames
- Asynchronous IO
- Large Send Segmentation Offload
- Receive Side Scaling
- TCP/IP Offload Engines (TOE)
- Remote Direct Memory Access (RDMA)

Improving Throughput Scaling

Jumbo Frames

- Ethernet frame size is increased.
- Reduces the amount of segmentation and reassembly overhead.
- Requires all points on the network to support jumbo frames (limits deployment).
- Informal standard.

Improving Throughput Scaling Asynchronous I/O



synchronous send

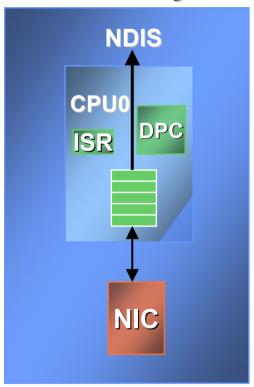
application kernel send() copy data return transmit data

kernel copy needed

asynchronous send

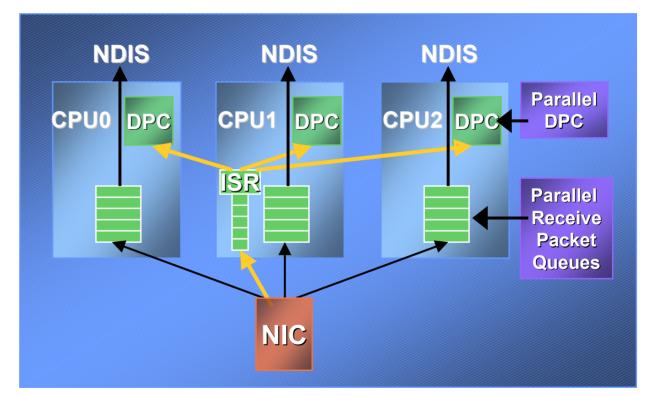
No copy required!

Improving Throughput Scaling Large Send Offload (LSO)



- Pushes segmentation of out-going data to NIC
- TCP passes large blocks (up to 64KB) to NIC hardware
- NIC partitions into Ethernet frames (1.5KB)
- Only works for sends
- Reduces segmentation CPU utilization
- No special infrastructure support required
- Available in Microsoft Windows Server 2003

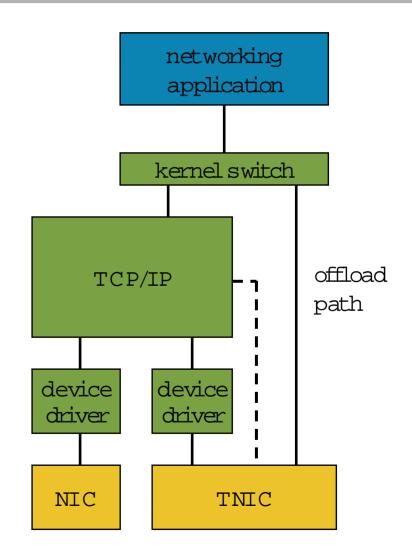
Improving Throughput Scaling Receive Side Scaling (RSS)


Today

One processor per NIC

Figure courtesy of Microsoft, Copyright © 2003 Microsoft Corp.

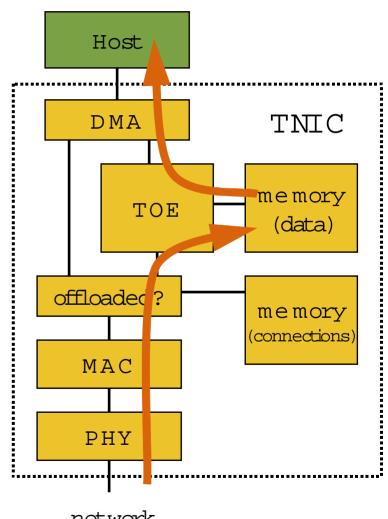
NIC with RSS


- One RSS Implementation
 - Single Interrupt Service Routine (ISR), ISR queue tells which hardware packet queue received a packet
 - Second-level lookup to find which CPU to run DPC
 - DPC processes receive packet queue

Improving Throughput Scaling

TCP/IP Offload Engines (TOE)

- TCP/IP processing moved from the host CPU to TOE NIC (TNIC)
- TCP connections may be established in TNIC or by host
- Reduces CPU utilization for segmentation and reassembly
- Reduces interrupts and context switches
- Allows for zero-copy receives to kernel memory buffers
- Works best with async IO



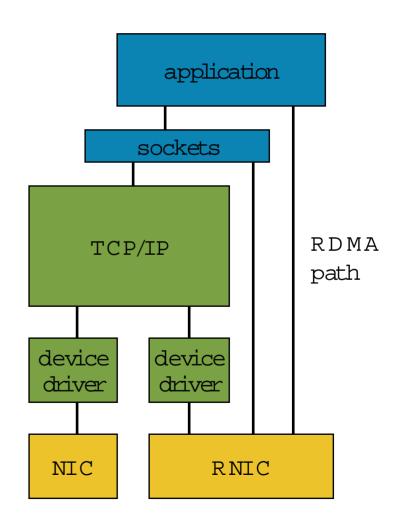
Improving Throughput Scaling

TOE NIC operation

- TCP connection state retained on NIC
- Incoming packet sequence
 - headers inspected to see if associated with offloaded connection
 - if so, TCP/IP processed on-chip
 - packet re-ordering may be required (data memory)
 - data transferred to host
 - if not, packet sent for host processing

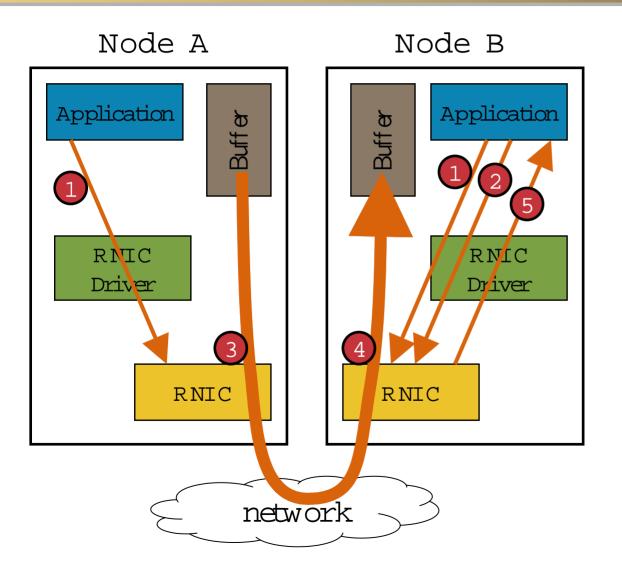
network

Agenda



- Motivation
- Challenges for IP/Ethernet
- Improving Throughput Scaling
- Remote DMA
- Networked Storage
- Conclusions

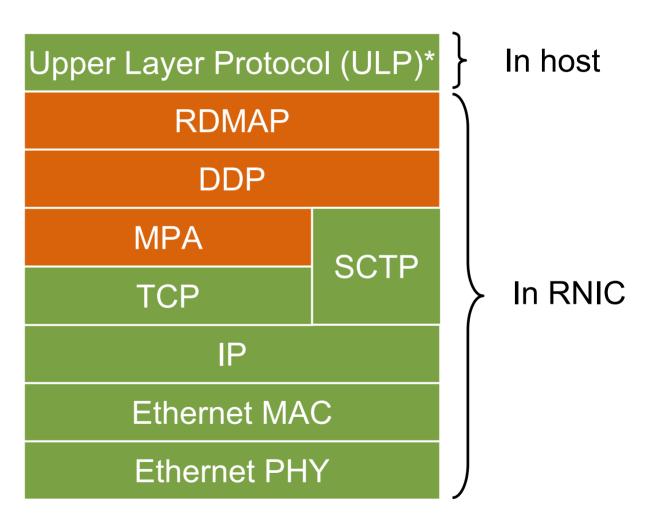
Remote DMA NIC (RNIC)



- Provides direct communication between application buffers in separate servers.
- Bypasses the OS kernel
 - avoids protocol processing
 - avoids context switches
 - avoids interrupt processing
 - yet, preserves kernel protections
- Improves both
 - throughput scaling
 - message latency
- Provides the performance needed by networking, IPC, and storage

RDMA read operation

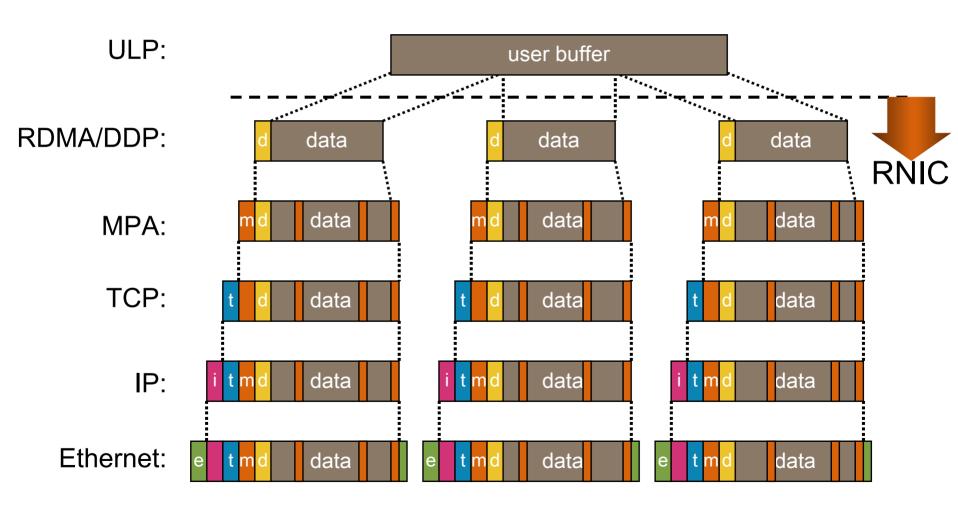
- 1. Both nodes have suitable memory regions registered
- 2. Node Binitiates RDMA Read
- 3. RNIC in Node A sends data
- 4. RNIC in Node B places data in final buffer destination
- 5. RNIC in Node B completes read (w/o kernel intervention)


RDMA protocol stack

Remote Direct Memory Access Protocol

Direct Data Placement

Marker PDU Alignment



*Application or, e. g., iSCSI, SDP, WSD, NFS.

RDMA

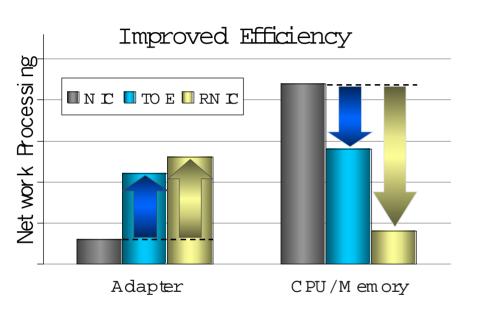
Protocol wire formats

Emerging RDMA Standards

- Roots in Virtual Interface (VI) and InfiniBand
 - VI established the offload model
 - InfiniBand completed user-mode Verbs model
- RDMA Consortium formed
 - HP, Microsoft, Adaptec, Broadcom, Cisco, Dell, EMC, IBM, Intel, NetApp
 - Developed v1.0 protocols for MPA/DDP/RDMA
 - Evolved IB Verbs to include Kernel/Storage
 - Developing SDP & iSER/DA Upper Layer Protocols
 - http://www.rdmaconsortium.org
- RDMA Consortium turning specs over to IETF
 - http://www.ietf.org/html.charters/rddp-charter.html

Interfacing applications to RDMA

- Sockets (existing applications)
 - Microsoft Windows WinSock Direct (WSD)
 - IETF Sockets Direct Protocol (SDP)
- RDMA-specific APIs
 - Linux/Unix:
 - The Open Group's Interconnect Software Consortium (ICSC) APIs
 - Microsoft Windows:
 - 'Named Buffer' API
 - Future OS release; described briefly at WinHEC 2003


"Big wins" for RDMA

- Accelerate sockets applications
 - User space sockets → WSD/SDP → RDMA
 - Universal 25% 35% performance gain in Tier 2-3 application communication overhead (long lived connections)
- Parallel commercial database
 - <100us latency needed to scale real world apps</p>
 - Requires user space messaging and RDMA
- IP based storage
 - Decades old block storage access model (iSCSI, SRP)
 - Command/RDMA Transfer/Completion
 - Convergence of NAS and SAN storage (DAFS, NFS, CIFS)

RNICs – Just Better Networking

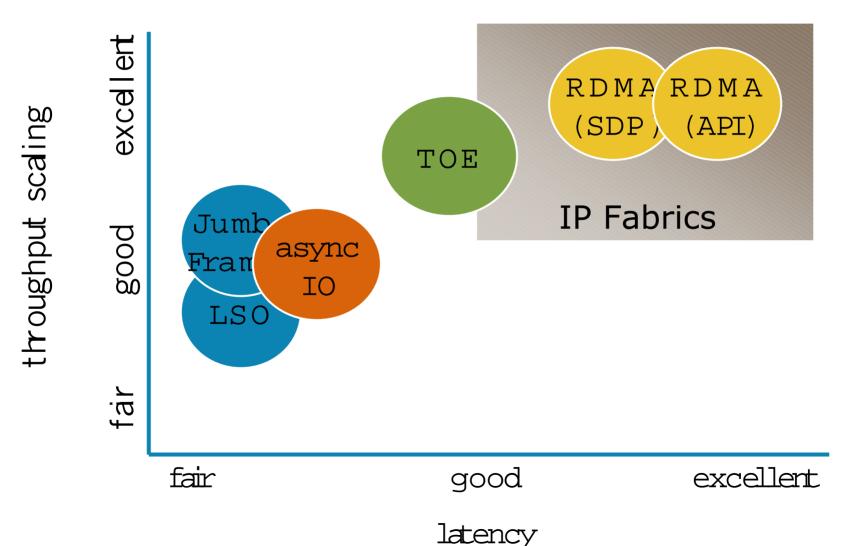
Networking	BW	CPU	Perf.	
Benchmarks	Mbps	Util %	Index	
1Gb/s Enet	1000	60%	17	
TOE	1000	40%	25	
1Gb/s RDMA	1250	15%	74	X
10Gb/s RDMA	8500	15%	567	30x

Note: Based on internal HP projections

RDMA enabled NICs (RNICs)

- More efficient network communications
- TOE moves TCP/IP work from the CPU
- RDMA reduces the communication work

CPU/memory freed up for applications


- Zero-copy RDMA protocol conserves valuable memory bandwidth
- Much lower CPU utilization
- Per message communication overhead

Improved application performance

- Opportunity for increased application throughput or server consolidation
- Improved scalability for streaming applications or large data files

Comparing TCP/IP Networking Performance Features

Agenda

- Motivation
- Challenges for IP/Ethernet
- Improving Throughput Scaling
- Remote DMA
- Networked Storage
- Conclusions

Storage Fabric Directions

Fibre Channel

Proven storage fabric choice for data centers and backbones

- Faster speeds and resource virtualization under development
- New SAN disaster recovery over WAN option with bridged FC over IP

Serial Attached SCSI (SAS) / Serial ATA (SATA)

Drive interface technology migration - parallel to a common serial interconnect

- Chassis and controllers can accommodate both types of drives
- Drives remain differentiated by performance, reliability, cost per gigabyte
 - SAS (SCSI) remains highest performance, reliability
 - SATA (ATA) great bulk storage for online archival

iscsi (storage over IP)

Unified network and storage infrastructure possible

- Geographic flexibility Broader access to FC SAN via iSCSI proxy
- Consolidate file & block storage access with one Ethernet wire

iSCSI – Block storage

- Proposed Standard published Jan 2003.
- iSCSI initiators (Host)
 - Software-based iSCSI initiators provide connectivity at lowest host cost
 - Windows, HP-UX and Linux support
 - Multi-purpose NICs will integrate iSCSI functionality with other host IP functions (TOE)
- iSCSI targets (Storage)
 - Variety of SW/HW implementations possible
 - iSCSI to FC bridges available today
 - Native iSCSI targets will emerge as TOE technology matures

NAS – File Storage

- NAS just means File Oriented IO Services (instead of block)
- There are many standard wire protocols:
 - CIFS (SMB), NFS, NCP, Appletalk, HTTP, FTP.
 - Just wire protocols, so they operate over Ethernet as well.

HP has a full product line:
 From the NAS b2000,
 To b3000, Up to
 NAS e7000 & 8000

Conclusion:

- For Storage, there are no technical barriers preventing the development & deployment of IPbased block and file oriented storage.
- iSCSI is the emerging block storage standard

Agenda

- Motivation
- Challenges for IP/Ethernet
- Improving Throughput Scaling
- Remote DMA
- Networked storage
- Conclusions

Is IP/Ethernet our single fabric?

- Strengths
 - Ubiquitous; standard
 - Extends beyond the data center
 - Minimal training costs
 - Understood management model
 - Affordable adapter, cabling, switches
 - Mature foundation

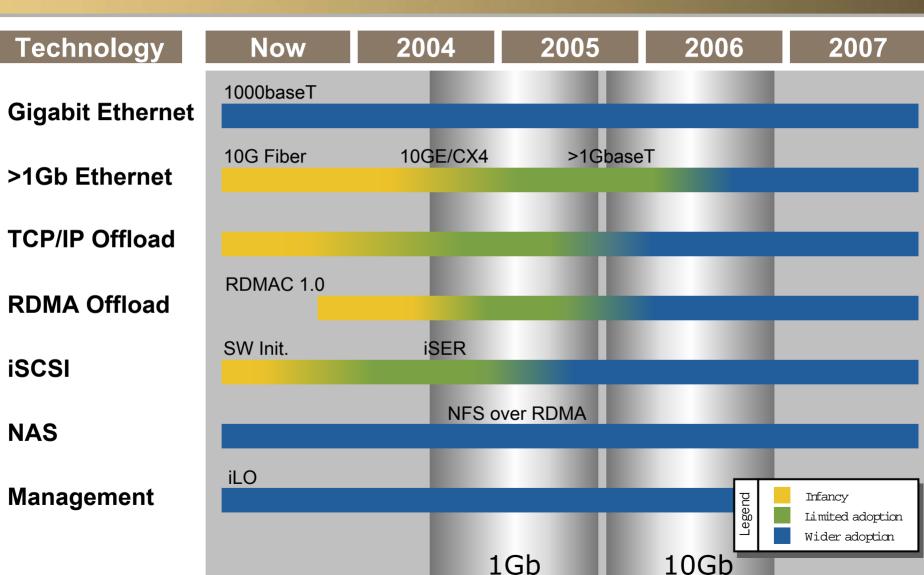
- Weaknesses
 - Scalability

solution: Jumbo frames, Async IO, TOE, and RDMA

Latency

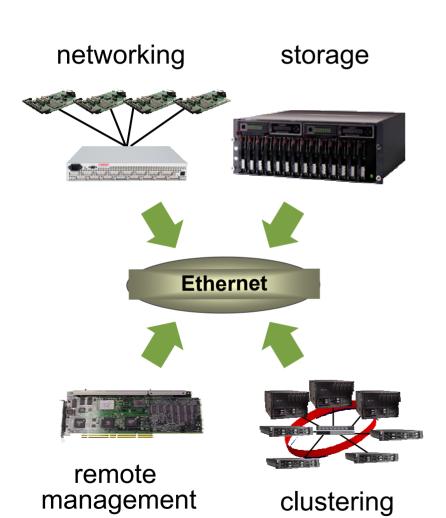
solution: TOE and RDMA

When will IP fabrics emerge?



Legend:

- Infancy: limited suppliers, premium pricing
- Limited adoption: >1 supplier, moderate pricing
- Wider adoption: affordable, integrated


When will IP fabrics emerge?

IP Fabrics: a simpler, unified infrastructure

Converges functions

- Multiple functions (SAN, LAN, IPC, Mgmt.) can be consolidated to a single fabric type.
- Blade server storage connectivity (low cost)
- Packaged "end-to-end" Ethernet solutions

Consolidates ports

- Leverage Ethernet pervasiveness, knowledge, cost leadership and volume
- Consolidate KVM over IP and reduce switch port costs

Ethernet Everywhere

- Bridge storage & network "islands"
- Extend geographic reach globally
- Centralized management

Interex, Encompass and HP bring you a powerful new HP World.

