
Recent Customer Experiences 
with Oracle Rdb

Bill Gettys
Oracle New England Development Center

Copyright 2003, Oracle Corporation



Part 1: Data Replication in Oracle 
Rdb
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Why Data Replication is 
Important

Information access is increasingly important; disks 
are increasingly cheap

• Ad hoc, reporting access interferes with OLTP
• Access to information needs to be continuous, but

– Databases must sometimes be restructured
– Databases must sometimes be isolated
– Databases and systems sometimes fail

• Information must be protected from disaster
• Oracle Rdb is not always the right database 

management system
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5 Methods

TableApplication Based

~1990DiskShadowing/Mirroring

2000-02JournalLogMiner/Loader

~1995JournalHot Standby

~1985TableReplication Option for Rdb

YearYearTypeTypeReplication MethodReplication Method
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Replication Option for Rdb

• Easy to set up
• Define transfer

• Define a schedule

SQL> CREATE TRANSFER MY_TRANSFER TYPE IS REPLICATION
cont> MOVE TABLES TAB1
cont> TO EXISTING FILENAME DISK:[DIR]TARGET.RDB
cont> LOGFILE IS DISK:[DIR]MYTAB_EXTRACT.LOG;

CREATE SCHEDULE FOR MY_TRANSFER
START 14-MAR-2003 11:00:00.00
EVERY 1 00:00:00.00
RETRY 3 TIMES RETRY EVERY 0 00:30:00;
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Replication Option for Rdb

• Extraction and replication supported
• Scheduled rather than event driven
• Extensively used, reliable
• Transactional
• But,

– Hot Spot: RDB$CHANGES table and index
– Locking on sorted index
– Double journaled
– Possible performance issues on target system
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Hot Standby Architecture
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Hot Standby

• Excellent performance
– Near zero cost on master database
– Standby cost much lower than SQL

Physical address based replication
Asynchronous IO operations

• Exceedingly low network overhead
• Event, not schedule driven
• Transactional
• Extensively used
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Hot Standby (Cont.)

• No real geographic limit
• Excellent recovery from network failure
• Configurable database consistency
• Also maintains standby copy of AIJ
• But,

– Entire database is replicated
– Standby database can be read but not written

Isolation level is read committed
– Design center is failover, not reporting
– Limited to single target database
– Can’t back up standby database
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Continuous LogMiner / JCC
LogMiner Loader
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CLM/LML

• Transactional
– One or many source transactions = one target transaction

• Event driven or scheduled (Static LogMiner)
• Excellent performance on source database

– Uses journals, not tables
– Takes advantage of hardware disk cache; no database hot spot

• Excellent performance on target database
– Multiple load threads now supported

• Multiple target databases supported
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CLM/LML (Cont.)

• No Geographic Limit
• Low network overhead
• Write your own loader if you like
• Lots of flexibility

– Logical data model
– Physical implementation
– Supports Rdb, Oracle, Tuxedo targets; more possible
– Read/write access to target possible (be careful)
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CLM/LML (Cont.)

• But,
– More overhead than Hot Standby
– More complex to set up than ROR
– Not as extensively used, but…
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One Customer’s Experience 
with On-line Restructure

• 50GB database
– 175 tables
– Largest > 60 million rows; multiple 20+ million row

• Dual-processor ES40, 5GB, SCSI, SW-Raid
• Parallel unload/load streams
• Uses JCC’s LogMiner-Loader Technology 

– www.jcc.com
Method Downtime 
Traditional Export/Import 20 hours 

Parallel UNLOAD/LOAD 10.5 hours 

LogMiner Approach 32 Minutes 

 
 

0

2000

Production Downtime in 
Minutes
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Customer Experience 2

• Travel industry reservation system (after September 11 => 
little capital available)

• Must provide rapid internet access to rate information or 
the business dies

• Hot standby limitations
– No Row Cache
– One standby database
– No index customization; all tables

• Rate information replicated to two other Rdb databases 
with < 5 second delay

• Database transaction duration for rate queries <0.02 
seconds, independent of reservation system load
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Customer Experience 3

• Huge OLTP system
– 10 Rdb databases
– 11 million customers
– 2+ updates per customer per day
– Most occur in a two hour batch window

• Able to load > 3,200 changes per second in a 
single Oracle 9i RAC database.
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Application Based 
Replication

• But,
– You’re not seriously interested in writing and 

maintaining all the code required, are you?
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Mirroring/Shadowing

• Really easy to implement
• Lots of successful implementations
• But,

– Limited geographic separation between sites
– High network bandwidth requirement
– Really one database, so

No protection from software failures
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5 Methods

TableApplication Based

~1990DiskShadowing/Mirroring

2000-02JournalLogMiner/Loader

~1995JournalHot Standby

~1985TableReplication Option for Rdb

YearYearTypeTypeReplication MethodReplication Method



Part 2: Row Cache Benefits with 
Rdb
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Why Row Cache?

• Cache individual records/index nodes
• Avoids page locking
• Can modify records in cache; no database 

I/O
• VLM → cache many records in memory
• Faster 

– code path for reading
– checkpointing from cache to disk
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…It can make a difference

• Less than 1 I/O per transaction
• Entire sorted indexes locked into memory
• Row modification with no database I/O
• Thousands of modified rows in memory
• Very Large Memory support
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Where Row Cache has 
Stumbled

• Heavy update activity
– Although cached indexes can often help

• When snapshots are enabled
• Caching many, many rows
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Review…
What are Snapshots

• Before RW modifies row, copies current 
content to “snapshot” storage area for RO

• Allows RO to see consistent, unchanging 
view of database for duration of transaction

• Space reclaimable as oldest transactions 
commit
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Work in Progress

• Snapshots in Cache
• 64 bit Row Cache
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Snapshots & Row Cache

• Initial row cache design didn’t allow 
snapshots at all

• Phase II added snapshot support with RO & 
RW 
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The Problem…

• Too much I/O & locking
– RW writing to snapshot area
– RW updating live page with snapshot pointer
– RO reading snapshot page(s)

• Contention for the snapshot pages 
• Contention for the live pages
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…A Solution

• Store snapshot copy of row in cache
• Memory write is faster than disk write
• RW can quickly write it

– No need to write snapshot page
– No need to update live page

• RO can quickly search for it
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Snapshots in Cache

• One visible parameter
– Number of snapshot rows per cache

• Snapshot chain maintained in cache slots
– Negative snapshot pointer → slot number in cache
– Positive snapshot pointer → page number on disk
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Cache Sizing Suggestions

• Snapshot cache may be much larger than 
“regular” part of cache
– Ratio of live area size to snapshot area size
– Similar needs

• Long running transactions may cause RW 
transactions to experience slowness
– Writing lots of snapshots back to disk
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Modified Rows in Memory

• Many modified rows in memory
– Checkpoints, shutdowns, backups, verifies can take 

longer → a lot longer

• Other changes with prestarted transactions 
& stale checkpoints helps ease recovery 
planning

• AIJ is your lifeline - only place data is on 
disk 
– Hot Standby provides additional protection
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Other Considerations

• Limits 
– ~2,100,000,000 pages per snapshot storage area
– ~2,100,000,000 total slots per cache

• RCS can probably be taught to move snaps 
from cache to disk proactively
– May have to look into reducing RCS process priority

• Reduced I/O can (greatly) increase average 
CPU consumption
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Possible Restriction

• For the first production release, objects 
stored in mixed-format areas won’t be 
eligible for snapshots in cache
– Sequential scans are problematic
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Native 64-bit Row Cache

• Replace existing VLM technique
• Improved performance
• Larger caches viable
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32-bit Background

• P0 address space
– 1GB
– …SHARED MEMORY IS PROCESS

• P1 address space
– 1 GB
– Mostly DCL & RMS
– Not used directly by Rdb

• S0/S1 address space
– 2GB
– …SHARED MEMORY IS SYSTEM
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Existing VLM Method

• P0 virtual address “window” moved to 
different physical address locations

• Additional CPU to “turn” window
– Updates page table entry 
– Invalidate TB

• Kernel-mode code – knows VMS memory 
management

• Rdb shipped with VLM before VMS
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Rdb’s Existing Row Cache 
VLM Limitations

• Some data structures always live in 32-bit 
space 
– “GRIC” (24 bytes per cache slot)
– Hash table (~8 bytes per cache slot)
– Bit vector (one bit per cache slot)

• Limits total number of cache slots
– 1GB ~= absolute max of ~ 33,000,000 (really less)

• Run-time “window turn” cost
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…VMS V7 adds native 
64-bit support

• System services allow process manipulation 
of memory beyond 1GB

• Additional performance options (memory 
resident, shared page tables, granularity 
hints)
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64-bit & VMS

• P2 address space
– At least ~4TB

• S2 address space
– At least ~1TB
– PFN database
– Global page table
– Lock management structures
– XFC
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Row Cache 
Moves to 64-Bit Space

• The Cache
– Cached slots (record & overhead)
– Hash table
– Bitmap

• P2 global sections
– Optional

Resident with shared page tables
Galaxy resident
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64-bit Implementation

• Effectively no…
– algorithmic changes
– user-visible changes

• Modify data structures to use 64-bit 
addresses for row cache shared data

• Return all data to caller via RCWS
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What it all Means

• Snapshots in cache
– Potentially huge reduction in I/O for environments with 

snapshots enabled

• 64-bit Row Cache
– Nearly limitless number of records in cache
– Improved performance over VLM
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Introduction

• MnSCU Comprised of 37 Institutions
– 8 State Universities
– 29 Community and Technical Colleges
– Serves over 250,000 Students per year

• Integrated State-wide Record System (ISRS) 
Application

• Written in Uniface, Cobol, C, JAVA
– 1951+ 3GL programs, 2181+ 4GL forms
– 2,460,832+ lines of code
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Database Overview

• 4 Distributed Regional Computer Centers
– Production is GS160 
– OpenVMS 7.2-2 (without fast-path)
– Hot Standby on 3-4100’s clustered to the GS160

• 39 Production ISRS databases (v7.0-63)
– Each with 1173 tables and 1443 indexes
– Each with Hot Standby enabled

• 20+ Development, QC, Training, Testing databases
• 6 Regional / Central databases
• Over 500,000,000 rows in production ISRS databases
• Over 550 Gb Production ISRS Db disk space
• Over 1Terra-byte total database disk space
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Server Configuration
• GS160

– Partition 0&1: 2 QBB’s – each w/ 4 1001 MHZ CPU’s
32 Gb Memory w/ 32 way interleaving
2 HSG80 Dual Redundant Fiber Controllers

- connected to 16 port Fiber channel SAN switch
- 8 RAID 3-5 Sets each w/ 36 Gb disk (10,000 RPM)
- 512 Mb mirrored disk Cache
- 1.2 ms response

8 HSZ80 Dual Redundant SCSI Controllers
- 6 RAID 3-5 Sets each w/ 18 Gb disk (10,000 RPM)
- 512 Mb mirrored disk Cache
- 1.2 ms response

– Partition 2: 1 QBB w/ 2 1001 MHZ CPU’s (2Gb memory)
True64 Web Server

• Hot Standby
– 3 Alpha 4100’s Clustered to the GS160, each with:

4Gb memory
3 466 MHZ CPU’s
6 HSZ50 RAID5 Sets each w/ 20 Gb disk (7,200 RPM)
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Users

• Each regional server supports between 400 
and 800 on-line users (during the day)

• Many batch reporting and update jobs daily 
and over-night

• 10,000+ Web transactions each day 24x7 
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Topics of Discussion

• The Problem
• Proof of Concept Testing
• Performance Benchmarks
• Determining what to Cache
• Cache Implementation
• Cache Tuning
• Post Implementation Statistics
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Our Problem

• Database Tuning has been nearly ignored for seven 
years so there were ample opportunities for 
improvement!

• In July systems managers announced that fall term 
start-up ‘will bury the machines’

• No time to re-write expensive portions of 
application

• Had to deliver a solution that would produce large 
performance gains with no additional resources

• ROW CACHE is the only hope!
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The Challenge

• Had to focus on the most expensive portions of the 
system

• Had list of known expensive 3GL programs, but 
had nearly no knowledge of Uniface data access 
patterns

• Spent 2 weeks of intensive tuning – starting with 
expensive processes and ‘hot’ storage areas

• Obviously did not have time to do extensive tuning
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Proof of Concept

• We were certain Row Cache could help a lot
• Needed to ‘try’ it on a small scale as a proof 

of concept
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Concept Testing

• Initial tests on two portions of the 
application
– Registration process
– Full Tuition Calculation

• Preliminary testing showed we could have 
significant performance improvements by 
index and query tuning and using Row 
Cache and Global Buffers
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Registration Performance

• Registration Test
– Many processing steps plus a query from a known expensive view

• Full Tuition Calculation Test
– Perform a tuition calculation for all students for one term at one 

institution

• Captured execution times and I/O statistics as 
benchmark baselines.

• Then implemented Row Cache and Global Buffers
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Registration Performance

SynchronousSynchronous

ReadsReads

Before RC and GBBefore RC and GB 19,21419,214

AsynchronousAsynchronous

ReadsReads

6,1586,158

After RC and GBAfter RC and GB 33 77
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Full Tuition Calc Test

Production BatchProduction Batch
1818--MayMay--20022002

Buffered I/OBuffered I/O 3,2103,210

Direct I/ODirect I/O 69,258,74469,258,744

CPU TimeCPU Time 4:31:02.884:31:02.88

Elapsed TimeElapsed Time 12:09:45.5712:09:45.57

AfterAfter
RC and GBRC and GB

3,5043,504

1,675,8241,675,824

1:06:33.281:06:33.28

2:28:12.712:28:12.71
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Test Results

• These tests showed us there are great 
performance gains to be had

• Its relatively easy to tune a single program 
or set of programs

• Challenge is how to tune an application as 
large as ISRS (in the timeframe we were 
allowed)
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Benchmarks

• Next captured some System and Database 
statistics
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Benchmarks

• System Stats:
– Overall Cluster Disk I/O rates
– Overall Cluster CPU rates

• Database Stats:
– Synchronous data reads
– Asynchronous data reads
– Transactions per second
– Others – Locks Requested per Trans and Average Trans 

Duration
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System Benchmarks

• Cluster Disk I/O Rates
– One production system was averaging 4000 to 

5000 I/O’s per second, with peaks over 5000 
prior to row cache

• Cluster CPU Rates
– Averaging 50% use prior to row cache
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Database I/O

DatabaseDatabase Synch I/O Synch I/O AsynchAsynch I/OI/O

MNSCUNRCMNSCUNRC 113.7113.7 80.980.9

MNSCUCEMMNSCUCEM 119.3119.3 103.1103.1

WINWIN 148.1148.1 54.954.9

SCSUSCSU 222.9 222.9 133.7133.7

BEMBEM 160.0160.0 67.567.5

MHDMHD 196.1196.1 106.2106.2

MANMAN 138.1138.1 81.281.2
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Database Transactions

Trans/SecTrans/Sec
NonNon--CachedCached

RegionRegion 9/4/20029/4/2002

MNSCU1MNSCU1 0.160.16

METEMETE 0.230.23

STC2STC2 0.230.23

SATURNSATURN 0.300.30
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What to Cache 

• Needed to analyze data access patterns
• Used JCC’s workload analysis tool to 

capture SQL and store in a database
• Used RMU file statistics
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JCC’s Workload Analysis 
Tool1

• Aided in determining SQL generated by 
Uniface

• Allowed us to determine the most costly 
queries quickly

• Data gathered from production – real queries 
by real users

1See http://www.jcc.com/
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RMU File Stats

Notice the 
system area 
tops the list!
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Cache Implementation

• Based on analysis of data access patterns, 
we created 25 caches that could affect up to 
337 tables and 440 indexes

• Tuning also included index changes and 
moving user data out of rdb$system area
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Cache Implementation

• Initial Cache sizing is between about 30mb 
and 60mb of System Memory per database

• Between 500mb and 1500mb of total 
memory per database

• Used spreadsheet to do sizing and compare 
results (available from MetaLink)
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Sizing Spreadsheet
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Cache Tuning

• Some caches were very successful from the 
start, while others were under-sized 
somewhat

• Several dbs have had the caches re-sized to 
accommodate actual data access
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Cache Tuning

Node: MNSCU1 (1/1/1)       Oracle Rdb V7.0-63 Perf. Monitor      4-SEP-2002 09:51:24.48
Rate: 3.00 Seconds           Row Cache Overview (Unsorted)      Elapsed: 24 00:53:51.00
Page: 1 of 2              ISRSMHDDB_ROOTA:[DATA]ISRS_DB.RDB;1   Mode: Online
--------------------------------------------------------------------------------------
Cache.Name.....................   #Searches  Hit% Full%  #Inserts #Wrap   #Slots   Len
RDB$SYSTEM_AREA_CACHE             247251472  99.1  68.6   1659724    21   100000   700
UTF_DETL_AR_INDEX_AREA_CACHE      171363423  99.3  94.4   1028411    10   100000   432
UTF_DETL_AR                        47248974  48.4  99.9  20338882    40   500000   320
CT_COU_INDEX                       42261356  76.6  97.9   9836571  1012    10000   432
YRTR_CAL_DATES_INDEX_C               960250  99.9   2.4        12     0      500   960
YRTR_CAL_INDEX_C                     103813  99.9   0.8         4     0      500   960
UTF_EVENT_INDEX_AREA_CACHE       1518643232  99.8  93.6   2153513    11   200000   432
UTF_DETAIL_INDEX_AREA_CACHE        57290613  97.5  91.3   1379276     7   200000   432
AR_MISC_DATA_INDEX_AREA_CACHE       3909624  95.8  21.2     17266     0     5000   432
ST_INDEX_AREA_CACHE                66509402  96.7  91.0   2128460     9   100000   432

RG_INDEX_AREA_CACHE                 7752297  98.0  62.7    153098     0    80000   432
INDEX_CACHE                        22707002  99.2  39.3    174174     9    50000  1000
AR_CHG_GENERATE                        7246  43.4  12.0        24     0      200    72
NEED_ANAL_INDEX_CACHE               2462030  95.2  88.6    117144    12    10000  1000
CT_COU                             65021925  99.3  83.7    429136    19    30000  1388
PS_INDEX_AREA_CACHE                 2459960  99.0  57.0     22607     7     5000   480
MISC_DATA_AREA_CACHE               38997649  31.6  47.5   1857080    19    60000   100

Good 
Hit %

No
Wraps
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Cache Performance

Node: MNSCU1 (1/1/1)         Oracle Rdb V7.0-63 Perf. Monitor    4-SEP-2002 09:51:24.48
Rate: 3.00 Seconds             Row Cache Overview (Unsorted)    Elapsed: 24 00:53:51.00
Page: 1 of 2                ISRSMHDDB_ROOTA:[DATA]ISRS_DB.RDB;1 Mode: Online
--------------------------------------------------------------------------------------
Cache.Name.....................   #Searches  Hit% Full%  #Inserts #Wrap   #Slots   Len
RDB$SYSTEM_AREA_CACHE             247251472  99.1  68.6   1659724    21   100000   700
UTF_DETL_AR_INDEX_AREA_CACHE      171363423  99.3  94.4   1028411    10   100000   432
UTF_DETL_AR                        47248974  48.4  99.9  20338882    40   500000   320
CT_COU_INDEX                       42261356  76.6  97.9   9836571  1012    10000   432
YRTR_CAL_DATES_INDEX_C               960250  99.9   2.4        12     0      500   960
YRTR_CAL_INDEX_C                     103813  99.9   0.8         4     0      500   960

UTF_EVENT_INDEX_AREA_CACHE       1518643232  99.8  93.6   2153513    11   200000   432
UTF_DETAIL_INDEX_AREA_CACHE        57290613  97.5  91.3   1379276     7   200000   432
AR_MISC_DATA_INDEX_AREA_CACHE       3909624  95.8  21.2     17266     0     5000   432
ST_INDEX_AREA_CACHE                66509402  96.7  91.0   2128460     9   100000   432
RG_INDEX_AREA_CACHE                 7752297  98.0  62.7    153098     0    80000   432
INDEX_CACHE                        22707002  99.2  39.3    174174     9    50000  1000

Check 
Out This 
Number

With
This
Hit %
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Post Implementation 
Statistics

• System Performance
• Database Performance
• Application Performance
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System Performance

• Cluster-wide I/O was only about 1500/sec, 
even during periods last fall with more users 
than ever

• Cluster CPU Usage is now about 30% -
down significantly from before



72

Database Performance

DatabaseDatabase Synch I/O Synch I/O AsynchAsynch I/OI/O

MNSCUNRCMNSCUNRC 113.7113.7 80.980.9

MNSCUCEMMNSCUCEM 119.3119.3 103.1103.1

WINWIN 148.1148.1 54.954.9

SCSUSCSU 222.9 222.9 133.7133.7

BEMBEM 160.0160.0 67.567.5

MHDMHD 196.1196.1 106.2106.2

MANMAN 138.1138.1 81.281.2

Synch I/OSynch I/O AsynchAsynch I/OI/O

44.544.5 7.17.1

51.451.4 13.013.0

56.156.1 7.37.3

79.679.6 14.614.6

57.257.2 12.812.8

99.499.4 38.038.0

89.889.8 17.117.1
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Database Performance

Trans/SecTrans/Sec
NonNon--CachedCached

RegionRegion 9/4/20029/4/2002

MNSCU1MNSCU1 0.160.16

METEMETE 0.230.23

STC2STC2 0.230.23

SATURNSATURN 0.300.30

Trans/SecTrans/Sec
CachedCached
9/4/20029/4/2002

0.550.55

0.500.50

1.401.40

1.001.00
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Web Function Statistics

FunctionFunction BeforeBefore

DRPDRP 2.392.39

HLDHLD 0.710.71

…… ……

OSIOSI 1.221.22

SCHSCH 0.870.87

VCRVCR 1.181.18

…… ……

AvgAvg 1.041.04

AfterAfter % Improve% Improve

0.420.42 445445

0.070.07 914914

…… ……

0.190.19 542542

0.180.18 383383

0.050.05 22602260

…… ……

0.230.23 975975

22ndnd AfterAfter 22ndnd %%

0.270.27 748748

0.050.05 13201320

…… ……

0.140.14 771771

0.100.10 770770

0.040.04 28502850

...... ……

0.170.17 10061006
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Conclusion

• Row Cache has been exceptionally 
successful for MnSCU

• This has been only ‘Phase 1’ – with more 
databases getting cached and tuned, our 
servers performance should continue to 
improve
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Summary

• You can make real differences in performance and 
efficiency by

– Replicating data using the most efficient technique for your 
environment

– Using row cache to pin critical tables and indexes in memory

• Row Cache enhancements will soon allow
– Read + write performance improvements for databases with 

snapshots
– Much larger caches
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For More Information

• http://www.oracle.com/rdb
• http://www.jcc.com/
• http://metalink.oracle.com/
• http://www.openvms.compaq.com/
• bill.gettys@oracle.com
• miles.oustad@csu.mnscu.edu

+1 (218) 755-4614
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