
Recent Customer Experiences
with Oracle Rdb

Bill Gettys
Oracle New England Development Center

Copyright 2003, Oracle Corporation

Part 1: Data Replication in Oracle
Rdb

3

Why Data Replication is
Important

Information access is increasingly important; disks
are increasingly cheap

• Ad hoc, reporting access interferes with OLTP
• Access to information needs to be continuous, but

– Databases must sometimes be restructured
– Databases must sometimes be isolated
– Databases and systems sometimes fail

• Information must be protected from disaster
• Oracle Rdb is not always the right database

management system

4

5 Methods

TableApplication Based

~1990DiskShadowing/Mirroring

2000-02JournalLogMiner/Loader

~1995JournalHot Standby

~1985TableReplication Option for Rdb

YearYearTypeTypeReplication MethodReplication Method

5

Replication Option for Rdb

• Easy to set up
• Define transfer

• Define a schedule

SQL> CREATE TRANSFER MY_TRANSFER TYPE IS REPLICATION
cont> MOVE TABLES TAB1
cont> TO EXISTING FILENAME DISK:[DIR]TARGET.RDB
cont> LOGFILE IS DISK:[DIR]MYTAB_EXTRACT.LOG;

CREATE SCHEDULE FOR MY_TRANSFER
START 14-MAR-2003 11:00:00.00
EVERY 1 00:00:00.00
RETRY 3 TIMES RETRY EVERY 0 00:30:00;

6

Replication Option for Rdb

• Extraction and replication supported
• Scheduled rather than event driven
• Extensively used, reliable
• Transactional
• But,

– Hot Spot: RDB$CHANGES table and index
– Locking on sorted index
– Double journaled
– Possible performance issues on target system

7

Hot Standby Architecture

Master
Database

Replicated
Database

AIJ AIJ

Transactions

Reports

ALS LRS

LCS

AIJ Server

ABS

8

Hot Standby

• Excellent performance
– Near zero cost on master database
– Standby cost much lower than SQL

Physical address based replication
Asynchronous IO operations

• Exceedingly low network overhead
• Event, not schedule driven
• Transactional
• Extensively used

9

Hot Standby (Cont.)

• No real geographic limit
• Excellent recovery from network failure
• Configurable database consistency
• Also maintains standby copy of AIJ
• But,

– Entire database is replicated
– Standby database can be read but not written

Isolation level is read committed
– Design center is failover, not reporting
– Limited to single target database
– Can’t back up standby database

10

Continuous LogMiner / JCC
LogMiner Loader

Backup AIJs

Transactions

Restart
Context

Transactions

Control
File

LML
Control
Process

Master
Database

CLM JCC
LML

Target
Database

Rdb or O9i
AIJ

11

CLM/LML

• Transactional
– One or many source transactions = one target transaction

• Event driven or scheduled (Static LogMiner)
• Excellent performance on source database

– Uses journals, not tables
– Takes advantage of hardware disk cache; no database hot spot

• Excellent performance on target database
– Multiple load threads now supported

• Multiple target databases supported

12

CLM/LML (Cont.)

• No Geographic Limit
• Low network overhead
• Write your own loader if you like
• Lots of flexibility

– Logical data model
– Physical implementation
– Supports Rdb, Oracle, Tuxedo targets; more possible
– Read/write access to target possible (be careful)

13

CLM/LML (Cont.)

• But,
– More overhead than Hot Standby
– More complex to set up than ROR
– Not as extensively used, but…

14

One Customer’s Experience
with On-line Restructure

• 50GB database
– 175 tables
– Largest > 60 million rows; multiple 20+ million row

• Dual-processor ES40, 5GB, SCSI, SW-Raid
• Parallel unload/load streams
• Uses JCC’s LogMiner-Loader Technology

– www.jcc.com
Method Downtime
Traditional Export/Import 20 hours

Parallel UNLOAD/LOAD 10.5 hours

LogMiner Approach 32 Minutes

0

2000

Production Downtime in
Minutes

15

Customer Experience 2

• Travel industry reservation system (after September 11 =>
little capital available)

• Must provide rapid internet access to rate information or
the business dies

• Hot standby limitations
– No Row Cache
– One standby database
– No index customization; all tables

• Rate information replicated to two other Rdb databases
with < 5 second delay

• Database transaction duration for rate queries <0.02
seconds, independent of reservation system load

16

Customer Experience 3

• Huge OLTP system
– 10 Rdb databases
– 11 million customers
– 2+ updates per customer per day
– Most occur in a two hour batch window

• Able to load > 3,200 changes per second in a
single Oracle 9i RAC database.

17

Application Based
Replication

• But,
– You’re not seriously interested in writing and

maintaining all the code required, are you?

18

Mirroring/Shadowing

• Really easy to implement
• Lots of successful implementations
• But,

– Limited geographic separation between sites
– High network bandwidth requirement
– Really one database, so

No protection from software failures

19

5 Methods

TableApplication Based

~1990DiskShadowing/Mirroring

2000-02JournalLogMiner/Loader

~1995JournalHot Standby

~1985TableReplication Option for Rdb

YearYearTypeTypeReplication MethodReplication Method

Part 2: Row Cache Benefits with
Rdb

21

Why Row Cache?

• Cache individual records/index nodes
• Avoids page locking
• Can modify records in cache; no database

I/O
• VLM → cache many records in memory
• Faster

– code path for reading
– checkpointing from cache to disk

22

…It can make a difference

• Less than 1 I/O per transaction
• Entire sorted indexes locked into memory
• Row modification with no database I/O
• Thousands of modified rows in memory
• Very Large Memory support

23

Where Row Cache has
Stumbled

• Heavy update activity
– Although cached indexes can often help

• When snapshots are enabled
• Caching many, many rows

24

Review…
What are Snapshots

• Before RW modifies row, copies current
content to “snapshot” storage area for RO

• Allows RO to see consistent, unchanging
view of database for duration of transaction

• Space reclaimable as oldest transactions
commit

25

Work in Progress

• Snapshots in Cache
• 64 bit Row Cache

26

Snapshots & Row Cache

• Initial row cache design didn’t allow
snapshots at all

• Phase II added snapshot support with RO &
RW

27

The Problem…

• Too much I/O & locking
– RW writing to snapshot area
– RW updating live page with snapshot pointer
– RO reading snapshot page(s)

• Contention for the snapshot pages
• Contention for the live pages

28

…A Solution

• Store snapshot copy of row in cache
• Memory write is faster than disk write
• RW can quickly write it

– No need to write snapshot page
– No need to update live page

• RO can quickly search for it

29

Snapshots in Cache

• One visible parameter
– Number of snapshot rows per cache

• Snapshot chain maintained in cache slots
– Negative snapshot pointer → slot number in cache
– Positive snapshot pointer → page number on disk

30

Cache Sizing Suggestions

• Snapshot cache may be much larger than
“regular” part of cache
– Ratio of live area size to snapshot area size
– Similar needs

• Long running transactions may cause RW
transactions to experience slowness
– Writing lots of snapshots back to disk

31

Modified Rows in Memory

• Many modified rows in memory
– Checkpoints, shutdowns, backups, verifies can take

longer → a lot longer

• Other changes with prestarted transactions
& stale checkpoints helps ease recovery
planning

• AIJ is your lifeline - only place data is on
disk
– Hot Standby provides additional protection

32

Other Considerations

• Limits
– ~2,100,000,000 pages per snapshot storage area
– ~2,100,000,000 total slots per cache

• RCS can probably be taught to move snaps
from cache to disk proactively
– May have to look into reducing RCS process priority

• Reduced I/O can (greatly) increase average
CPU consumption

33

Possible Restriction

• For the first production release, objects
stored in mixed-format areas won’t be
eligible for snapshots in cache
– Sequential scans are problematic

34

Native 64-bit Row Cache

• Replace existing VLM technique
• Improved performance
• Larger caches viable

35

32-bit Background

• P0 address space
– 1GB
– …SHARED MEMORY IS PROCESS

• P1 address space
– 1 GB
– Mostly DCL & RMS
– Not used directly by Rdb

• S0/S1 address space
– 2GB
– …SHARED MEMORY IS SYSTEM

36

Existing VLM Method

• P0 virtual address “window” moved to
different physical address locations

• Additional CPU to “turn” window
– Updates page table entry
– Invalidate TB

• Kernel-mode code – knows VMS memory
management

• Rdb shipped with VLM before VMS

37

Rdb’s Existing Row Cache
VLM Limitations

• Some data structures always live in 32-bit
space
– “GRIC” (24 bytes per cache slot)
– Hash table (~8 bytes per cache slot)
– Bit vector (one bit per cache slot)

• Limits total number of cache slots
– 1GB ~= absolute max of ~ 33,000,000 (really less)

• Run-time “window turn” cost

38

…VMS V7 adds native
64-bit support

• System services allow process manipulation
of memory beyond 1GB

• Additional performance options (memory
resident, shared page tables, granularity
hints)

39

64-bit & VMS

• P2 address space
– At least ~4TB

• S2 address space
– At least ~1TB
– PFN database
– Global page table
– Lock management structures
– XFC

40

Row Cache
Moves to 64-Bit Space

• The Cache
– Cached slots (record & overhead)
– Hash table
– Bitmap

• P2 global sections
– Optional

Resident with shared page tables
Galaxy resident

41

64-bit Implementation

• Effectively no…
– algorithmic changes
– user-visible changes

• Modify data structures to use 64-bit
addresses for row cache shared data

• Return all data to caller via RCWS

42

What it all Means

• Snapshots in cache
– Potentially huge reduction in I/O for environments with

snapshots enabled

• 64-bit Row Cache
– Nearly limitless number of records in cache
– Improved performance over VLM

43

Introduction

• MnSCU Comprised of 37 Institutions
– 8 State Universities
– 29 Community and Technical Colleges
– Serves over 250,000 Students per year

• Integrated State-wide Record System (ISRS)
Application

• Written in Uniface, Cobol, C, JAVA
– 1951+ 3GL programs, 2181+ 4GL forms
– 2,460,832+ lines of code

44

Database Overview

• 4 Distributed Regional Computer Centers
– Production is GS160
– OpenVMS 7.2-2 (without fast-path)
– Hot Standby on 3-4100’s clustered to the GS160

• 39 Production ISRS databases (v7.0-63)
– Each with 1173 tables and 1443 indexes
– Each with Hot Standby enabled

• 20+ Development, QC, Training, Testing databases
• 6 Regional / Central databases
• Over 500,000,000 rows in production ISRS databases
• Over 550 Gb Production ISRS Db disk space
• Over 1Terra-byte total database disk space

45

Server Configuration
• GS160

– Partition 0&1: 2 QBB’s – each w/ 4 1001 MHZ CPU’s
32 Gb Memory w/ 32 way interleaving
2 HSG80 Dual Redundant Fiber Controllers

- connected to 16 port Fiber channel SAN switch
- 8 RAID 3-5 Sets each w/ 36 Gb disk (10,000 RPM)
- 512 Mb mirrored disk Cache
- 1.2 ms response

8 HSZ80 Dual Redundant SCSI Controllers
- 6 RAID 3-5 Sets each w/ 18 Gb disk (10,000 RPM)
- 512 Mb mirrored disk Cache
- 1.2 ms response

– Partition 2: 1 QBB w/ 2 1001 MHZ CPU’s (2Gb memory)
True64 Web Server

• Hot Standby
– 3 Alpha 4100’s Clustered to the GS160, each with:

4Gb memory
3 466 MHZ CPU’s
6 HSZ50 RAID5 Sets each w/ 20 Gb disk (7,200 RPM)

46

Users

• Each regional server supports between 400
and 800 on-line users (during the day)

• Many batch reporting and update jobs daily
and over-night

• 10,000+ Web transactions each day 24x7

47

Topics of Discussion

• The Problem
• Proof of Concept Testing
• Performance Benchmarks
• Determining what to Cache
• Cache Implementation
• Cache Tuning
• Post Implementation Statistics

48

Our Problem

• Database Tuning has been nearly ignored for seven
years so there were ample opportunities for
improvement!

• In July systems managers announced that fall term
start-up ‘will bury the machines’

• No time to re-write expensive portions of
application

• Had to deliver a solution that would produce large
performance gains with no additional resources

• ROW CACHE is the only hope!

49

The Challenge

• Had to focus on the most expensive portions of the
system

• Had list of known expensive 3GL programs, but
had nearly no knowledge of Uniface data access
patterns

• Spent 2 weeks of intensive tuning – starting with
expensive processes and ‘hot’ storage areas

• Obviously did not have time to do extensive tuning

50

Proof of Concept

• We were certain Row Cache could help a lot
• Needed to ‘try’ it on a small scale as a proof

of concept

51

Concept Testing

• Initial tests on two portions of the
application
– Registration process
– Full Tuition Calculation

• Preliminary testing showed we could have
significant performance improvements by
index and query tuning and using Row
Cache and Global Buffers

52

Registration Performance

• Registration Test
– Many processing steps plus a query from a known expensive view

• Full Tuition Calculation Test
– Perform a tuition calculation for all students for one term at one

institution

• Captured execution times and I/O statistics as
benchmark baselines.

• Then implemented Row Cache and Global Buffers

53

Registration Performance

SynchronousSynchronous

ReadsReads

Before RC and GBBefore RC and GB 19,21419,214

AsynchronousAsynchronous

ReadsReads

6,1586,158

After RC and GBAfter RC and GB 33 77

54

Full Tuition Calc Test

Production BatchProduction Batch
1818--MayMay--20022002

Buffered I/OBuffered I/O 3,2103,210

Direct I/ODirect I/O 69,258,74469,258,744

CPU TimeCPU Time 4:31:02.884:31:02.88

Elapsed TimeElapsed Time 12:09:45.5712:09:45.57

AfterAfter
RC and GBRC and GB

3,5043,504

1,675,8241,675,824

1:06:33.281:06:33.28

2:28:12.712:28:12.71

55

Test Results

• These tests showed us there are great
performance gains to be had

• Its relatively easy to tune a single program
or set of programs

• Challenge is how to tune an application as
large as ISRS (in the timeframe we were
allowed)

56

Benchmarks

• Next captured some System and Database
statistics

57

Benchmarks

• System Stats:
– Overall Cluster Disk I/O rates
– Overall Cluster CPU rates

• Database Stats:
– Synchronous data reads
– Asynchronous data reads
– Transactions per second
– Others – Locks Requested per Trans and Average Trans

Duration

58

System Benchmarks

• Cluster Disk I/O Rates
– One production system was averaging 4000 to

5000 I/O’s per second, with peaks over 5000
prior to row cache

• Cluster CPU Rates
– Averaging 50% use prior to row cache

59

Database I/O

DatabaseDatabase Synch I/O Synch I/O AsynchAsynch I/OI/O

MNSCUNRCMNSCUNRC 113.7113.7 80.980.9

MNSCUCEMMNSCUCEM 119.3119.3 103.1103.1

WINWIN 148.1148.1 54.954.9

SCSUSCSU 222.9 222.9 133.7133.7

BEMBEM 160.0160.0 67.567.5

MHDMHD 196.1196.1 106.2106.2

MANMAN 138.1138.1 81.281.2

60

Database Transactions

Trans/SecTrans/Sec
NonNon--CachedCached

RegionRegion 9/4/20029/4/2002

MNSCU1MNSCU1 0.160.16

METEMETE 0.230.23

STC2STC2 0.230.23

SATURNSATURN 0.300.30

61

What to Cache

• Needed to analyze data access patterns
• Used JCC’s workload analysis tool to

capture SQL and store in a database
• Used RMU file statistics

62

JCC’s Workload Analysis
Tool1

• Aided in determining SQL generated by
Uniface

• Allowed us to determine the most costly
queries quickly

• Data gathered from production – real queries
by real users

1See http://www.jcc.com/

63

RMU File Stats

Notice the
system area
tops the list!

64

Cache Implementation

• Based on analysis of data access patterns,
we created 25 caches that could affect up to
337 tables and 440 indexes

• Tuning also included index changes and
moving user data out of rdb$system area

65

Cache Implementation

• Initial Cache sizing is between about 30mb
and 60mb of System Memory per database

• Between 500mb and 1500mb of total
memory per database

• Used spreadsheet to do sizing and compare
results (available from MetaLink)

66

Sizing Spreadsheet

67

Cache Tuning

• Some caches were very successful from the
start, while others were under-sized
somewhat

• Several dbs have had the caches re-sized to
accommodate actual data access

68

Cache Tuning

Node: MNSCU1 (1/1/1) Oracle Rdb V7.0-63 Perf. Monitor 4-SEP-2002 09:51:24.48
Rate: 3.00 Seconds Row Cache Overview (Unsorted) Elapsed: 24 00:53:51.00
Page: 1 of 2 ISRSMHDDB_ROOTA:[DATA]ISRS_DB.RDB;1 Mode: Online
--
Cache.Name..................... #Searches Hit% Full% #Inserts #Wrap #Slots Len
RDB$SYSTEM_AREA_CACHE 247251472 99.1 68.6 1659724 21 100000 700
UTF_DETL_AR_INDEX_AREA_CACHE 171363423 99.3 94.4 1028411 10 100000 432
UTF_DETL_AR 47248974 48.4 99.9 20338882 40 500000 320
CT_COU_INDEX 42261356 76.6 97.9 9836571 1012 10000 432
YRTR_CAL_DATES_INDEX_C 960250 99.9 2.4 12 0 500 960
YRTR_CAL_INDEX_C 103813 99.9 0.8 4 0 500 960
UTF_EVENT_INDEX_AREA_CACHE 1518643232 99.8 93.6 2153513 11 200000 432
UTF_DETAIL_INDEX_AREA_CACHE 57290613 97.5 91.3 1379276 7 200000 432
AR_MISC_DATA_INDEX_AREA_CACHE 3909624 95.8 21.2 17266 0 5000 432
ST_INDEX_AREA_CACHE 66509402 96.7 91.0 2128460 9 100000 432

RG_INDEX_AREA_CACHE 7752297 98.0 62.7 153098 0 80000 432
INDEX_CACHE 22707002 99.2 39.3 174174 9 50000 1000
AR_CHG_GENERATE 7246 43.4 12.0 24 0 200 72
NEED_ANAL_INDEX_CACHE 2462030 95.2 88.6 117144 12 10000 1000
CT_COU 65021925 99.3 83.7 429136 19 30000 1388
PS_INDEX_AREA_CACHE 2459960 99.0 57.0 22607 7 5000 480
MISC_DATA_AREA_CACHE 38997649 31.6 47.5 1857080 19 60000 100

Good
Hit %

No
Wraps

69

Cache Performance

Node: MNSCU1 (1/1/1) Oracle Rdb V7.0-63 Perf. Monitor 4-SEP-2002 09:51:24.48
Rate: 3.00 Seconds Row Cache Overview (Unsorted) Elapsed: 24 00:53:51.00
Page: 1 of 2 ISRSMHDDB_ROOTA:[DATA]ISRS_DB.RDB;1 Mode: Online
--
Cache.Name..................... #Searches Hit% Full% #Inserts #Wrap #Slots Len
RDB$SYSTEM_AREA_CACHE 247251472 99.1 68.6 1659724 21 100000 700
UTF_DETL_AR_INDEX_AREA_CACHE 171363423 99.3 94.4 1028411 10 100000 432
UTF_DETL_AR 47248974 48.4 99.9 20338882 40 500000 320
CT_COU_INDEX 42261356 76.6 97.9 9836571 1012 10000 432
YRTR_CAL_DATES_INDEX_C 960250 99.9 2.4 12 0 500 960
YRTR_CAL_INDEX_C 103813 99.9 0.8 4 0 500 960

UTF_EVENT_INDEX_AREA_CACHE 1518643232 99.8 93.6 2153513 11 200000 432
UTF_DETAIL_INDEX_AREA_CACHE 57290613 97.5 91.3 1379276 7 200000 432
AR_MISC_DATA_INDEX_AREA_CACHE 3909624 95.8 21.2 17266 0 5000 432
ST_INDEX_AREA_CACHE 66509402 96.7 91.0 2128460 9 100000 432
RG_INDEX_AREA_CACHE 7752297 98.0 62.7 153098 0 80000 432
INDEX_CACHE 22707002 99.2 39.3 174174 9 50000 1000

Check
Out This
Number

With
This
Hit %

70

Post Implementation
Statistics

• System Performance
• Database Performance
• Application Performance

71

System Performance

• Cluster-wide I/O was only about 1500/sec,
even during periods last fall with more users
than ever

• Cluster CPU Usage is now about 30% -
down significantly from before

72

Database Performance

DatabaseDatabase Synch I/O Synch I/O AsynchAsynch I/OI/O

MNSCUNRCMNSCUNRC 113.7113.7 80.980.9

MNSCUCEMMNSCUCEM 119.3119.3 103.1103.1

WINWIN 148.1148.1 54.954.9

SCSUSCSU 222.9 222.9 133.7133.7

BEMBEM 160.0160.0 67.567.5

MHDMHD 196.1196.1 106.2106.2

MANMAN 138.1138.1 81.281.2

Synch I/OSynch I/O AsynchAsynch I/OI/O

44.544.5 7.17.1

51.451.4 13.013.0

56.156.1 7.37.3

79.679.6 14.614.6

57.257.2 12.812.8

99.499.4 38.038.0

89.889.8 17.117.1

73

Database Performance

Trans/SecTrans/Sec
NonNon--CachedCached

RegionRegion 9/4/20029/4/2002

MNSCU1MNSCU1 0.160.16

METEMETE 0.230.23

STC2STC2 0.230.23

SATURNSATURN 0.300.30

Trans/SecTrans/Sec
CachedCached
9/4/20029/4/2002

0.550.55

0.500.50

1.401.40

1.001.00

74

Web Function Statistics

FunctionFunction BeforeBefore

DRPDRP 2.392.39

HLDHLD 0.710.71

…… ……

OSIOSI 1.221.22

SCHSCH 0.870.87

VCRVCR 1.181.18

…… ……

AvgAvg 1.041.04

AfterAfter % Improve% Improve

0.420.42 445445

0.070.07 914914

…… ……

0.190.19 542542

0.180.18 383383

0.050.05 22602260

…… ……

0.230.23 975975

22ndnd AfterAfter 22ndnd %%

0.270.27 748748

0.050.05 13201320

…… ……

0.140.14 771771

0.100.10 770770

0.040.04 28502850

...... ……

0.170.17 10061006

75

Conclusion

• Row Cache has been exceptionally
successful for MnSCU

• This has been only ‘Phase 1’ – with more
databases getting cached and tuned, our
servers performance should continue to
improve

76

Summary

• You can make real differences in performance and
efficiency by

– Replicating data using the most efficient technique for your
environment

– Using row cache to pin critical tables and indexes in memory

• Row Cache enhancements will soon allow
– Read + write performance improvements for databases with

snapshots
– Much larger caches

77

For More Information

• http://www.oracle.com/rdb
• http://www.jcc.com/
• http://metalink.oracle.com/
• http://www.openvms.compaq.com/
• bill.gettys@oracle.com
• miles.oustad@csu.mnscu.edu

+1 (218) 755-4614

Q U E S T I O N S

A N S W E R S
&

	Recent Customer Experiences with Oracle Rdb
	Part 1: Data Replication in Oracle Rdb
	Why Data Replication is Important
	5 Methods
	Replication Option for Rdb
	Replication Option for Rdb
	Hot Standby Architecture
	Hot Standby
	Hot Standby (Cont.)
	Continuous LogMiner / JCC LogMiner Loader
	CLM/LML
	CLM/LML (Cont.)
	CLM/LML (Cont.)
	One Customer’s Experience with On-line Restructure
	Customer Experience 2
	Customer Experience 3
	Application Based Replication
	Mirroring/Shadowing
	5 Methods
	Part 2: Row Cache Benefits with Rdb
	Why Row Cache?
	…It can make a difference
	Where Row Cache has Stumbled
	Review…What are Snapshots
	Work in Progress
	Snapshots & Row Cache
	The Problem…
	…A Solution
	Snapshots in Cache
	Cache Sizing Suggestions
	Modified Rows in Memory
	Other Considerations
	Possible Restriction
	Native 64-bit Row Cache
	32-bit Background
	Existing VLM Method
	Rdb’s Existing Row Cache VLM Limitations
	…VMS V7 adds native 64-bit support
	64-bit & VMS
	Row Cache Moves to 64-Bit Space
	64-bit Implementation
	What it all Means
	Introduction
	Database Overview
	Server Configuration
	Users
	Topics of Discussion
	Our Problem
	The Challenge
	Proof of Concept
	Concept Testing
	Registration Performance
	Registration Performance
	Full Tuition Calc Test
	Test Results
	Benchmarks
	Benchmarks
	System Benchmarks
	Database I/O
	Database Transactions
	What to Cache
	JCC’s Workload Analysis Tool1
	RMU File Stats
	Cache Implementation
	Cache Implementation
	Sizing Spreadsheet
	Cache Tuning
	Cache Tuning
	Cache Performance
	Post Implementation Statistics
	System Performance
	Database Performance
	Database Performance
	Web Function Statistics
	Conclusion
	Summary
	For More Information

