New Internet Infrastructure Features on HP-UX

William Gilliam

Network Architect

&

Muthukumar Lakshmanan

Engineer

Hewlett Packard SNSL

Agenda

- HP-UX Internet Infrastructure A business perspective
- HP-UX Enabling Network Technologies
 - IPv6 for the Wireless and Mobile Internet
 - Mobile IPv6
 - IPv6 Routing
 - IPv6 over PPP
 - PPP over Ethernet
- Q & A

HP-UX Internet InfrastructureA business perspective

Technology Trends

- •Standardization of "gray areas"
- •Increased component reliability and efficiency
- •Integrated, easy-to-use audio/video devices
- •Availability of digital cellular
- •Wireless network access
- •Using the Internet is "cheap"

Technology Solutions

- •Updates to existing protocols like TCP
- •New protocols like SCTP and SIP
- •VOIP
- •IPv6
- •Mobile-IP
- •SANs
- •RTP, RTSP, H.323, etc for multimedia delivery
- •RSVP, Diffserv for QOS

Business Trends

- Office work being done via computers and the Internet
- Use of "standards" instead of proprietary components/solutions
- Moving from POTS to IP-based Telephony
- Movement to "eliminate the wires"
- Guaranteed service delivery
- Guaranteed security
- Roaming/Mobility services
- Commonplace exchange of multimedia content

HP-UX Enabling Network Technologies

- HP-UX Mobility Enablers To facilitate roaming without losing connectivity (i.e. "Always-On")
 - Mobile IPv6
 - Router Advertisement Daemon
 - Multicast Listener Discovery
 - Mobile IPv4
 - AAA Support in HA/FA Mobility Agents
 - IPSec for IPv6

HP-UX Enabling Network Technologies

- HP-UX Wireless Enablers To facilitate use of the various services from anywhere
 - "Wireless TCP", including TCP Limited Transmit
 - DNS performance improvements
 - EAP authentication using a Radius AAA server

HP-UX Enabling Network Technologies

- HP-UX Routing Enablers To insure that packets get from Point-A to Point-B
 - RIPng
 - BGP4+
 - IS-ISv6
- HP-UX Internet Connectivity Enablers Via dial-up or dedicated lines, to provide connections to end-users or local network domains
 - PPP over IPv6
 - PPP over Ethernet

IPv6 for the Wireless and Mobile Internet

- Why IPv6
- Benefits of IPv6
- Advantages of IPv6
- IPv6 Product Features
- IPv6 Deployment
- HP-UX Roadmap for IPv6
- IPv6 Strategy

Why IPv6

IPv4

- –Uses a 32-bit address
- Running out of internet addresses
- –Security was an addon
- –System management is complex and slow
- -Incredibly successful

–20 + years old

- -Uses 128-bit addressing
- Enough address space to give every human on the planet a unique IP address
- –Mandatory and effective IP security
- Less Infrastructure Maintenance and complexity required
- -More efficient Mobile IP = seamless service availability
- Architecture of the future = NextGeneration internet protocol

Benefits of IPv6

- Increased Address Space 2^128 is a really big number
 - Enough unique addresses for all devices
- Reduce common-case processing cost of pkt handling
- Efficient and Extensible IP datagram
 - Fixed Size IPv6 Header, Fewer fields in basic header
- Efficient option processing
 - Processing of most options limited performed only at destination
- Performance Wins Processing
 - Remove checksum from Network Layer
 - No fragmentation in the network
- Efficient Route Computation and Aggregation

Advantages of IPv6

IPv6 Product Features

- Large address support
 - 128-bit addresses
- Natural Mobility support
 - Autoconfiguration
 - Routing Headers
 - Built-in security
 - Integrated support for QoS (Traffic class & Flow label)
- IPv4/IPv6 Dual Stack support
- Internet solutions such as BIND9, DHCPv6, ftp, telnet, inetd, sendmail, and nslookup have been integrated with HP-UX IPv6

11/14/2003

IPv6 Product Features

- Provide complete IPv6 Internet solution
- Having IPv6 enabled services are key to the success of IPv6. For example, the following HP-UX products will be integrated with HP-UX IPv6 seamlessly:
 - Mobile IPv6
 - IPSec
 - OpenView
 - HA / ServiceGuard
 - SAM
 - NFS
 - Apache Web Server
 - FDDI, PPP, ATM
 - Java Virtual Machine (JVM)

IPv6 Deployment

IPv6 Deployment

Example: End-2-End IPv6 Mobile Wireless Services

HP-UX Roadmap for IPv6

2002

2001

HP-UX 11i v.1

IPv6 Base **Functions**

- Dual Stack
- Basic and Advanced

Socket APIs

- •32/64 bit support
- Ethernet Links
- •BIND 9.2
- Sendmail
- •DHCPv6
- •FTP

HP-UX 11i v.1

Security **Enhancement**

- •IPSec (IPv6)
- Sam (IPv6)
- •JVM
- Apache Web Server
- Secure Shell
- SNMP Agent
- Glance and MeasureWare

Middle of 2003

HP-UX 11i v.1

System Management **Enhancement**

- •FDDI
- OpenView NNM
- MC ServiceGuard
- •EMS

2nd Half of 2003

HP-UX 11i v.2 For Itanium Base **Systems**

- •IPv6 Base Functions on **IPF**
- X server
- •xlib
- Online Diagnostics
- Kerberos Client
- CDE/Motif
- SharedX

New Features for End of 2003:

Mobile IPv6, 6to4, Generic Tunneling, MLDv1, RFC 2893

IPv6 Strategy

- Will provide an Internet evolution to support connectivity of devices and people worldwide
 - At a scale that is beyond the dreams of the Internet when it was created, or as it exists now, where devices are pervasive and ubiquitous and people are mobile
 - Advanced Industry adoption of IPv6
 - Services
 - Solutions
 - Platforms
 - Secure Infrastructure
 - Network Management infrastructure
 - Research and Development
 - (e.g. Multimedia, Grid Computing, Sensor Devices)

Mobile IPv6

- Benefits of Mobile IPv6
- Advantages of Mobile IPv6
- Mobile IPv6 Product Features
- Architecture of "Mobile IP Agent Platform"
- Mobile IPv6 Deployment
- Mobile IPv4 Deployment with AAA
- HP-UX Roadmap for Mobile IP

Benefits of Mobile IPv6

- To enable telecom customers to provide secure continuous connectivity anytime anywhere
- Mobile users, workers, travelers

Advantages of Mobile IPv6

- Tightly-Coupled with IPv6 Protocol
 - Large Address space (no NATing is needed)
 - Stateless and Statefull Address Autoconfiguration for Care-of-Address
 - Leverages AH and ESP IPv6 headers for security
 - New IPv6 Extension header (Mobility Header) for MIPv6 control messages
 - Modified IPv6 Routing header for better performance and less overhead

Mobile IPv6 Product Features

- Standards Features (Draft 23)
 - Home Agent support
 - Correspondent Node support
 - Route Optimization support
 - Reverse Tunnel support
 - IPSec (MN-HA)
 - MN-CN authentication (Return Routability)
 - Dynamic Home Agent Address Discovery

Mobile IPv6 Product Features

- Product Deployment Features
 - Automatically Disabling/Enabling IPSec based upon location
 - Dynamic Configuration
 - High Availability for HAs
 - Load Balancing among HAs
 - Mobile IPv6 MIB
 - Event Monitoring
 - AAA (MN authentication and authorization)
 - AAA (MN accounting statistics)
 - AAA (Key generation and distribution)

Architecture of "Mobile IP Agent Platform"

Mobile IPv6 Deployment

Mobile IPv4 Deployment with HP-UX AAA Server

- AAA provides mobile node authentication and authorization while visiting foreign networks
- Scalable key generation and distribution feature

HP-UX Roadmap for Mobile IP

- MIPv6 Prototype product (draft 15) demonstrated at
 - HP World (Los Angeles, CA)
 - Network+Interop (Tokyo, Japan)
 - IPv6 Forum (Washington D.C.)
- MIPv6 Prototype product (draft 20) successfully tested at Connectathon 2003 – March 2003
- MIPv6 Product Release (RFC) Q1/2004
 - HP-UX 11.11 (PA)
 - HP-UX 11.23 (IPF)
- MIPv4 Product Release with AAA support April 2003
 - HP-UX 11.11 (PA)

IPv6 Routing

- Routing basics
- IPv6 routing concepts
- Static routing Vs Dynamic routing
- RIPng protocol
- IPv6 routing infrastructure on HP-UX
- HP-UX roadmap for IPv6 routing

Routing Basics

What is Routing?

- Moving packets from a source to a destination on the internet
 - Each host/router on the internet uses its routing table to make a decision on the path the packet should traverse
 - Routing table is part of the network layer.

Routing Basics

IPv6 Routing Table

A sample IPv6 Routing table is as follows:

Destination/Prefix	Gateway	Flags Refs Interface Pmtu
::1/128	::1	UH 0 lo0 4136
fe80::210:83ff:fe18:88	6f/128 fe80::210:83ff:fe18:886f	UH 0 lan0 4136
fe80::/10	fe80::210:83ff:fe18:886f	U 2 lan0 1500
default	fe80:: 210:83ff:fe18:886f	UG 0 lan0 1500

Forwarding Algorithm

- Longest prefix match
 - Transmitted on the local link if the destination is also on the same link.
 - Transmitted to the router if the destination is on a different link.

IPv6 routing concepts

Problems with IPv4 Routing

- No relationship between addresses and topology
- Need for core routers to maintain a route table entry for every network

IPv6 Routing Solution

- Provider-based addressing
- Hierarchical addressing aids in route aggregation
- Need for core routers to maintain a single route table entry per provider

Static Routing Vs Dynamic Routing

Static Routing

- Manual addition of routes by the administrator
- Inability to handle outages or down connections
- Difficult to configure on large networks

Dynamic Routing

- Dynamic discovery of routes by routing protocols
- Optimal routes
- Automatic handling of outages and down connections

RIPng

- IGP Interior Gateway Protocol
- Belongs to the distance vector class
- Same design of RIPv2
- Important requirement for immediate deployment of IPv6
- Next-hop limit of 15
- Uses UDP port 521 and the multicast address ff02::9
- New feature: Next-hop RTE

ramD (Route Administration Manager Daemon)

- Role of ramD
 - Reads the /etc/ramd.conf file and initializes the configured routing protocols.
 - Maintains a routing table in the user space and synchronizes it with the kernel forwarding table.
 - Notifies the routing protocol daemons of changes in the kernel forwarding table and the interface table.
 - Redistributes routes between the various routing protocol daemons.

ramD & RIPngD Architecture

The rdc Utility

The RDC utility can be used to:

- Restart and reconfigure ramD & RIPngD.
- Produce status dumps and core dumps.
- Retrieve kernel interface table information.

The ram_monitor Utility

- Establishes a connection with ripngd.
- Retrieves forwarding table or interface table information from the kernel.
- Enables or disables ripngd tracing.

Sample ramD Configuration File

```
preference ripng 100;
preference static 20;
preference direct 10;
ripng on {
  admin up;
  cliport 15000;
  maxroutes 30000;
};
kernel {
 scaninterval 40;
  routepoll on interval 50;
 remnantholdtime 1;
 traceoptions "/var/tmp/ramd/ramd.trace" size 2m files 3 all except nostamp;
};
```

HP-UX Roadmap for IPv6 Routing

- RIPng Q3/2003
 - HP-UX 11.11 (PA)
- BGP4+ and IS-IS (IPv6) Q4/2003
 - HP-UX 11.11 (PA)

IPv6 over PPP

Point-to-Point Protocol

- Need for PPP
 - Transmission of packets over serial links
- Components of PPP
 - Encapsulation of datagrams over serial links
 - A Link Control Protocol for establishing, configuring and testing the data link
 - Network Control Protocols for establishing and configuring different network layer protocols

IPv6 over PPP

IPV6CP - IPV6 Control Protocol

- Network Control Protocol for IPv6 over PPP
- Configure IPv6 modules on either end of the PPP link
- Negotiate IPv6 parameters for the PPP session
 - IPv6 Interface-Identifier
 - IPv6-Compression-Protocol
- fe80:: is appended with the negotiated interfaceidentifier to generate the link local address
- No need for Duplicate Address Detection(DAD)

IPv6 over PPP

How IPV6CP Fits in PPP

IPv6 over PPP

Configuring IPv6 over PPP

- Same as that of existing pppd
- New command-line options added to pppd for supporting IPv6
 - exec6
 - ipv6 local-ifid, remote-ifid
 - noipv4
 - need-ip6-ifid

PPPoE overview

- Connects users on Ethernet to the Internet using broadband access device.
- Based on the cost-effective LAN technology, such as Ethernet.
- Provides administrative controls of PPP.
- No permanent connections.
- Specifications in RFC 2516

PPPoE Protocol Overview

- Discovery phase
 - The PPPoE client identifies Access concentrator that is able to provide the required services.
 - The PPPoE client and the server allocate the necessary resources for the PPPoE session.
- Session phase
 - Actual PPP session.
 - PPP data is encapsulated in PPPoE header and transmitted over Ethernet.

How PPPoE Works

PPPoE - Typical Deployment Scenario

Configuring PPPoE

Configuration files in /etc/ppp/

```
# PPPoE client configuration file
[ lan0 ]
service=isp
acname=gatt3
host_unique=0
timeout=120
retry-number=4
pppd-options=debug 11 log /tmp/pppoec.log
enable ipv6=1
```

```
# PPPoE server configuration file

[ lan1 ]

service=isp

acname=gatt3

ac_cookie=2

timeout=120

local-ipv4-address=9.2.3.4

ipv4-address-pool=2.6.7.8 - 2.6.7.20

local-ipv6-identifier=::9

ipv6-identifier-pool=::10 - ::15
```

pppd-options=debug 11 log /tmp/pppoesd.log

Questions and Answers

Interex, Encompass and HP bring you a powerful new HP World.

