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Capacity planning vs. Tuning

• Tuning: the art and science of determining why a 
system is not performing well
– Lots of tools: glance+, measureware, sar, vmstat, iostat…
– Lots of books and best practices
– Usually involves finding out that system usage has grown 

beyond the original deployment
– In other words, tuning is usually troubleshooting!

• Capacity planning: the art and science of designing a 
system so that it meets users current and projected 
needs
– Few tools
– Few resources
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Quote slide

“Tuning is common, 

capacity planning is rare.”

Me
HP
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Why capacity planning?

• Cost: Deploy only what you need. No more, no less.

• Effort: Less sysadmin time backfilling and tuning an 
improperly sized system. Less sysadmin time and 
downtime upgrading.

• Adaptive Enterprise: In order for a UDC administrator to 
properly deploy a solution, the capacity necessary to 
support that solution must be known.

• Competitive Advantage: Most software providers can’t 
really tell you which platform will provide the desired 
performance.
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The capacity planning loop

Calculate

Verify

Baseline

Benchmark

Baseline: 
determine the 
TRUE capacity of a 
known system by 
running the 
benchmarks and 
the application.

Calculate: use pre-
determined relations 
to predict 
performance

Verify: periodically check predicted 
performance against actual and re-
baseline if needed.

Benchmark: run only the benchmarks 
on a new or unknown system

Plan
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Benchmark: selection

• Selecting the benchmark is crucial to capacity planning
• May need more than one benchmark to properly model 

the application
• An ideal benchmark should be:

– Specific, to match the application
– Economical, able to run in reasonable amount of time with 

reasonable resources
– Reproducible, i.e. insensitive to tweaks and tunes
– Standard benchmarks are preferred (because other 

people run them for you)

• Of course, you’ll never find the ideal benchmark so you 
must make do with what is available!
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Benchmarks: The problem with standards

• Although standard benchmarks (Spec, TPC) are preferred, 
they also pose problems

• Manufacturers published results can cause trouble due to 
sparse coverage and overtuning
– Sparse coverage: only running the benchmark for certain 

configurations of hardware and software
– Overtuning: setting parameters that improve benchmark 

performance but which don’t reflect real-world practices

• But of course HP would never do such things ☺

• You can still used standard benchmarks, just know their 
limitations
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Benchmarks: problematical published 
results
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Benchmarks: selection & types

• Synthetic benchmark
– TPC-C, SDET, Volano, Linpack

• Partially synthetic benchmark
– SpecINT, SpecFP, Ariba, SAP

• Natural benchmark
– Custom

• Examine your application & know it’s characteristics in 
order to match up with a benchmark
– Language: Java? C++?
– Middleware: Oracle? SAP? BEA?
– Behavior: single threaded? multi threaded? Disk 

intensive?
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Benchmarks: selection & types cont’d.

• Benchmarks should be reasonably cost effective
– Run it in a few hours or less, not days
– Set it up in a day or less, not weeks
– Baseline it on hardware that’s affordable, not a 

Superdome/128 with 60 Terabytes of high-end mass 
storage

• TPC-C fails for this purpose because it’s too costly, too 
complicated, too high-stakes (published results)

• TPC-C is still good for other purposes (comparing 
platforms prior to creating or deploying apps)
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Benchmarks: selection & types cont’d.

• Benchmarks must also be able to run in the available 
time

• Example: scalability benchmark
– If I want to run it with 5 different CPU configs (1,2,4,8,16)
– …and 5 different disk configs (5, 10, 15, 20, 25 spindles)
– Then I have to run the benchmark up to 25 times
– If each run takes 2 hours, that’s over a week in the CPC
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Benchmarks: running the benchmarks

• Above all, to thine own self be true
– In other words, you run the benchmarks so you get to run 

it in good faith for your own purposes. Cheating doesn’t 
help you.

• You still need to tune the system properly, but it does 
you no good to “overtune” the system and squeeze 
every last CPU cycle out of it

• Eliminate extraneous bottlenecks and benchmark only 
for the key parameter (usually application throughput)
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Benchmarks: parameters to “tune out”

• RAM
– Should have an excess of physical memory
– No swapping or paging
– If you don’t, you’re only testing the virtual memory 

subsystem
• LAN

– Look at pps, collisions, throughput: none should be more 
than 80% of max

• Disk I/O
– This may not be a parameter to “tune out” for disk 

intensive apps
– If app is disk intensive, use a CPU throughput benchmark 

and a Disk I/O benchmark seperately (Teamquest)
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Benchmarks: decomposing parameters

• CPU Capacity decomposes into:
– Single CPU performance (depth)
– SMP scalability (breadth)
– Measure only one parameter, tune out the others!

• Disk Capacity decomposes into:
– Per-spindle I/O per second (depth)
– Channel throughput (breadth)
– Measure only one parameter, tune out the others!

• Concentrate on CPU capacity for the remainder of this 
exercise
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Decomposing CPU throughput
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Throughput is affected by both the speed

of the CPU and the number of CPUs.

Throughput increases non-linearly

(usually logarithmically) with the 

number of CPUs

Faster CPUs typically raise the whole

curve linearly

Therefore throughput can be de-

composed into a simple formula

using # of CPUs and single-CPU

scaling (assuming no saturation)
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Calculate: generate a FOM

• FOM = Figure Of Merit; a measure of relative capacity
• FOM combines benchmarked single CPU performance 

times an “effective” number of CPUs

FOM  =  α Eff ( N )

α = Relative throughput of a single CPU system

Eff(N) = Effective number of CPUs provided

by an N-CPU system
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Calculate:  α

single CPU benchmark for SUTα = 
single CPU benchmark for baseline system

The α factor relates to the single-CPU performance 

of the SUT (System Under Test).  It is a measure of 

the ratio of the performance of the SUT to the 

performance of the baseline system
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Calculate:  Eff(N)

SMP benchmark result for N CPUs
Eff(N)  = 

SMP benchmark result for 1 CPU

EFF(N), or the Effective CPU factor, relates the performance

of a single-CPU configuration of the SUT to an N-CPU 

configuration of the SUT. It measures how much faster a 

multi-CPU configuration is in terms of an effective number

of CPUs.  In almost all cases, Eff(N) < N
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Calculate: relating FOM to real capacity

β = 
measured capacity of baseline system

FOM of baseline system

The β factor converts the FOM to a real capacity

number (transactions per minute; number of users; 

megabytes processed…). This is typically the factor 

that costs the most to determine, since it involves running 

the full application.
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Predict

Capacity =  β ( α Eff (N))

Capacity will be in whatever units were

used in the baseline benchmarks; transactions

per minute, number of simultaneous users, 

megabytes processed…
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Predict: units analysis

Capacity =  β ( α Eff (N))

Capacity =  β ( FOM (SUT))

FOM (SUT)
capacity of baseline

FOM (baseline)
Capacity =

capacity of baseline
FOM (baseline)

FOM (SUT)
Capacity =
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Verification

• Baseline system is automatically verified
• Verification should be done periodically

– Major architectural changes, like conversion from bus to 
crossbar architecture

– Major software revisions, like Oracle 7 to 9i
– Platform changes, like IA32/Linux to IA64/HP-UX

• Verification process:
1. run benchmarks on system
2. calculate capacity
3. run application on system
4. compare predicted capacity to actual capacity
5. if they match, great; if not then re-baseline
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Example from the Real World

• Telecom software provider
• Performance SLAs are a competitive differentiator

– “Mercedes S-Class” penalty per hour outage
• Originally predicted capacity based on TPC-A & B

– Dismal failure due to sparse population of public 
benchmarks

• Performance parameter:
– CPU cost (in seconds) per transaction
– Tantamount to transactions per minute
– Run a million transactions and time it; divide time by one 

million times the number of CPUs to get single-CPU cost 
for each transaction
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Example from the Real World cont’d.

• CPU performance decomposition:
– Single-CPU performance: CDF (natural benchmark)
– Single-CPU performance: SpecINT (natural benchmark)
– CPU scalability: SDET (synthetic benchmark)

• Baseline systems:
– HP 9000 I70
– HP 9000 K460
– HP 9000 N4000

• Predictions performed for every single HP 9000 model 
to date. 

• Accuracy within 5% (predicted vs. actual CPU cost per 
transaction) for every verification
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Final Words

• Predicting application performance for capacity 
planning requires diligence

• Maintaining good capacity planning data pays off for:
– Software developers and ISVs who deploy multiple copies 

of a single application
– Enterprises using templates for deployments of duplicate 

applications, especially in an adaptive infrastructure
• This process might not be worthwhile for onesies-

twosies deployments of custom apps
• There are also some hidden benefits:

– When performance drops, you know it isn’t due to 
improper sizing

– Catches unforseen system performance issues such as 
OS patch “swiss cheese” effect
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Final Words cont’d.

• Take advantage of the HP Capacity Planning Center
– They’ll give you up to two weeks (one week is easier to 

get scheduled though)
– They have every machine, every OS revision, and lots of 

mid- and high-end disk
• Use published benchmarks wisely

– Some, like SpecINT and SpecFP are quite useful and hard 
to spoof

– Know when they’re broken (e.g. SpecINT and dual-core 
chips from an unnamed company)

– If you can use them, then you don’t have to run them 
yourself
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