
© 2003 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without
notice

Predicting application
performance

Mike Pagan
Principal Architect
HP Northeast Presales

page 2November 14, 2003

Capacity planning vs. Tuning

• Tuning: the art and science of determining why a
system is not performing well
– Lots of tools: glance+, measureware, sar, vmstat, iostat…
– Lots of books and best practices
– Usually involves finding out that system usage has grown

beyond the original deployment
– In other words, tuning is usually troubleshooting!

• Capacity planning: the art and science of designing a
system so that it meets users current and projected
needs
– Few tools
– Few resources

page 3November 14, 2003

Quote slide

“Tuning is common,

capacity planning is rare.”

Me
HP

page 4November 14, 2003

Why capacity planning?

• Cost: Deploy only what you need. No more, no less.

• Effort: Less sysadmin time backfilling and tuning an
improperly sized system. Less sysadmin time and
downtime upgrading.

• Adaptive Enterprise: In order for a UDC administrator to
properly deploy a solution, the capacity necessary to
support that solution must be known.

• Competitive Advantage: Most software providers can’t
really tell you which platform will provide the desired
performance.

page 5November 14, 2003

The capacity planning loop

Calculate

Verify

Baseline

Benchmark

Baseline:
determine the
TRUE capacity of a
known system by
running the
benchmarks and
the application.

Calculate: use pre-
determined relations
to predict
performance

Verify: periodically check predicted
performance against actual and re-
baseline if needed.

Benchmark: run only the benchmarks
on a new or unknown system

Plan

page 6November 14, 2003

Benchmark: selection

• Selecting the benchmark is crucial to capacity planning
• May need more than one benchmark to properly model

the application
• An ideal benchmark should be:

– Specific, to match the application
– Economical, able to run in reasonable amount of time with

reasonable resources
– Reproducible, i.e. insensitive to tweaks and tunes
– Standard benchmarks are preferred (because other

people run them for you)

• Of course, you’ll never find the ideal benchmark so you
must make do with what is available!

page 7November 14, 2003

Benchmarks: The problem with standards

• Although standard benchmarks (Spec, TPC) are preferred,
they also pose problems

• Manufacturers published results can cause trouble due to
sparse coverage and overtuning
– Sparse coverage: only running the benchmark for certain

configurations of hardware and software
– Overtuning: setting parameters that improve benchmark

performance but which don’t reflect real-world practices

• But of course HP would never do such things ☺

• You can still used standard benchmarks, just know their
limitations

page 8November 14, 2003

Benchmarks: problematical published
results

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15

Initial
Tuned
Correct

Initial scaling – 12:1

Apparent tuned scaling – 13:1
True scaling – 6.5:1

system size

ca
pa

ci
ty

page 9November 14, 2003

Benchmarks: selection & types

• Synthetic benchmark
– TPC-C, SDET, Volano, Linpack

• Partially synthetic benchmark
– SpecINT, SpecFP, Ariba, SAP

• Natural benchmark
– Custom

• Examine your application & know it’s characteristics in
order to match up with a benchmark
– Language: Java? C++?
– Middleware: Oracle? SAP? BEA?
– Behavior: single threaded? multi threaded? Disk

intensive?

page 10November 14, 2003

Benchmarks: selection & types cont’d.

• Benchmarks should be reasonably cost effective
– Run it in a few hours or less, not days
– Set it up in a day or less, not weeks
– Baseline it on hardware that’s affordable, not a

Superdome/128 with 60 Terabytes of high-end mass
storage

• TPC-C fails for this purpose because it’s too costly, too
complicated, too high-stakes (published results)

• TPC-C is still good for other purposes (comparing
platforms prior to creating or deploying apps)

page 11November 14, 2003

Benchmarks: selection & types cont’d.

• Benchmarks must also be able to run in the available
time

• Example: scalability benchmark
– If I want to run it with 5 different CPU configs (1,2,4,8,16)
– …and 5 different disk configs (5, 10, 15, 20, 25 spindles)
– Then I have to run the benchmark up to 25 times
– If each run takes 2 hours, that’s over a week in the CPC

page 12November 14, 2003

Benchmarks: running the benchmarks

• Above all, to thine own self be true
– In other words, you run the benchmarks so you get to run

it in good faith for your own purposes. Cheating doesn’t
help you.

• You still need to tune the system properly, but it does
you no good to “overtune” the system and squeeze
every last CPU cycle out of it

• Eliminate extraneous bottlenecks and benchmark only
for the key parameter (usually application throughput)

page 13November 14, 2003

Benchmarks: parameters to “tune out”

• RAM
– Should have an excess of physical memory
– No swapping or paging
– If you don’t, you’re only testing the virtual memory

subsystem
• LAN

– Look at pps, collisions, throughput: none should be more
than 80% of max

• Disk I/O
– This may not be a parameter to “tune out” for disk

intensive apps
– If app is disk intensive, use a CPU throughput benchmark

and a Disk I/O benchmark seperately (Teamquest)

page 14November 14, 2003

Benchmarks: decomposing parameters

• CPU Capacity decomposes into:
– Single CPU performance (depth)
– SMP scalability (breadth)
– Measure only one parameter, tune out the others!

• Disk Capacity decomposes into:
– Per-spindle I/O per second (depth)
– Channel throughput (breadth)
– Measure only one parameter, tune out the others!

• Concentrate on CPU capacity for the remainder of this
exercise

page 15November 14, 2003

Decomposing CPU throughput

PA8600
PA8700

PA8800

th
ro

ug
hp

ut

number of CPUs

Throughput is affected by both the speed

of the CPU and the number of CPUs.

Throughput increases non-linearly

(usually logarithmically) with the

number of CPUs

Faster CPUs typically raise the whole

curve linearly

Therefore throughput can be de-

composed into a simple formula

using # of CPUs and single-CPU

scaling (assuming no saturation)

page 16November 14, 2003

Calculate: generate a FOM

• FOM = Figure Of Merit; a measure of relative capacity
• FOM combines benchmarked single CPU performance

times an “effective” number of CPUs

FOM = α Eff (N)

α = Relative throughput of a single CPU system

Eff(N) = Effective number of CPUs provided

by an N-CPU system

page 17November 14, 2003

Calculate: α

single CPU benchmark for SUTα =
single CPU benchmark for baseline system

The α factor relates to the single-CPU performance

of the SUT (System Under Test). It is a measure of

the ratio of the performance of the SUT to the

performance of the baseline system

page 18November 14, 2003

Calculate: Eff(N)

SMP benchmark result for N CPUs
Eff(N) =

SMP benchmark result for 1 CPU

EFF(N), or the Effective CPU factor, relates the performance

of a single-CPU configuration of the SUT to an N-CPU

configuration of the SUT. It measures how much faster a

multi-CPU configuration is in terms of an effective number

of CPUs. In almost all cases, Eff(N) < N

page 19November 14, 2003

Calculate: relating FOM to real capacity

β =
measured capacity of baseline system

FOM of baseline system

The β factor converts the FOM to a real capacity

number (transactions per minute; number of users;

megabytes processed…). This is typically the factor

that costs the most to determine, since it involves running

the full application.

page 20November 14, 2003

Predict

Capacity = β (α Eff (N))

Capacity will be in whatever units were

used in the baseline benchmarks; transactions

per minute, number of simultaneous users,

megabytes processed…

page 21November 14, 2003

Predict: units analysis

Capacity = β (α Eff (N))

Capacity = β (FOM (SUT))

FOM (SUT)
capacity of baseline

FOM (baseline)
Capacity =

capacity of baseline
FOM (baseline)

FOM (SUT)
Capacity =

page 22November 14, 2003

Verification

• Baseline system is automatically verified
• Verification should be done periodically

– Major architectural changes, like conversion from bus to
crossbar architecture

– Major software revisions, like Oracle 7 to 9i
– Platform changes, like IA32/Linux to IA64/HP-UX

• Verification process:
1. run benchmarks on system
2. calculate capacity
3. run application on system
4. compare predicted capacity to actual capacity
5. if they match, great; if not then re-baseline

page 23November 14, 2003

Example from the Real World

• Telecom software provider
• Performance SLAs are a competitive differentiator

– “Mercedes S-Class” penalty per hour outage
• Originally predicted capacity based on TPC-A & B

– Dismal failure due to sparse population of public
benchmarks

• Performance parameter:
– CPU cost (in seconds) per transaction
– Tantamount to transactions per minute
– Run a million transactions and time it; divide time by one

million times the number of CPUs to get single-CPU cost
for each transaction

page 24November 14, 2003

Example from the Real World cont’d.

• CPU performance decomposition:
– Single-CPU performance: CDF (natural benchmark)
– Single-CPU performance: SpecINT (natural benchmark)
– CPU scalability: SDET (synthetic benchmark)

• Baseline systems:
– HP 9000 I70
– HP 9000 K460
– HP 9000 N4000

• Predictions performed for every single HP 9000 model
to date.

• Accuracy within 5% (predicted vs. actual CPU cost per
transaction) for every verification

page 25November 14, 2003

Final Words

• Predicting application performance for capacity
planning requires diligence

• Maintaining good capacity planning data pays off for:
– Software developers and ISVs who deploy multiple copies

of a single application
– Enterprises using templates for deployments of duplicate

applications, especially in an adaptive infrastructure
• This process might not be worthwhile for onesies-

twosies deployments of custom apps
• There are also some hidden benefits:

– When performance drops, you know it isn’t due to
improper sizing

– Catches unforseen system performance issues such as
OS patch “swiss cheese” effect

page 26November 14, 2003

Final Words cont’d.

• Take advantage of the HP Capacity Planning Center
– They’ll give you up to two weeks (one week is easier to

get scheduled though)
– They have every machine, every OS revision, and lots of

mid- and high-end disk
• Use published benchmarks wisely

– Some, like SpecINT and SpecFP are quite useful and hard
to spoof

– Know when they’re broken (e.g. SpecINT and dual-core
chips from an unnamed company)

– If you can use them, then you don’t have to run them
yourself

HP logo

	Predicting application performance
	Capacity planning vs. Tuning
	Quote slide
	Why capacity planning?
	The capacity planning loop
	Benchmark: selection
	Benchmarks: The problem with standards
	Benchmarks: problematical published results
	Benchmarks: selection & types
	Benchmarks: selection & types cont’d.
	Benchmarks: selection & types cont’d.
	Benchmarks: running the benchmarks
	Benchmarks: parameters to “tune out”
	Benchmarks: decomposing parameters
	Decomposing CPU throughput
	Calculate: generate a FOM
	Calculate: a
	Calculate: Eff(N)
	Calculate: relating FOM to real capacity
	Predict
	Predict: units analysis
	Verification
	Example from the Real World
	Example from the Real World cont’d.
	Final Words
	Final Words cont’d.
	HP logo

