

#### Sanjay Umarji

Solution Architect

Oracle Solution Design Consulting, ESS





### **Agenda**

- Introduction and Background
- Data Warehouse Environment
- Pre-tuning behavior
- Tuning Exercise
  - Statspack, System Data, Event 10046 Trace, Wait Events
  - Data Observations, Analysis
  - Corrective actions
- Post-tuning behavior
- Conclusion



### **Case Study**

- A large Data warehouse over 4 TB
- GS160, 8 Cpu, 16 GB RAM
- Nightly Load Window of 12:00AM to 7:30AM
- New jobs related to Inventory data load added in the past few months.
- Load window extended into morning hours
   (8:45 AM) over last few months
- IT not able to meet the SLA to users



#### **Customer Observations**

- Random spikes in performance of certain load jobs
- Continuous degradation in performance of large load jobs such as Inventory
- Informatica Jobs hanging for 2 hours before normal completion
- Swap space utilization on the rise



### **Pre-visit Statspack**

```
🌌 sp. apr4 445 543.lst - Notepad
                                                                                                       File Edit Format Help Send
Top 5 Wait Events
                                                              Wait
                                                                       % Total
                                                    Waits Time (cs)
                                                                       Wt Time
lEvent.
                                                  106,067
PX Deg Credit: send blkd
                                                             8,223,701 41.90
PX Deq: Execution Msq
                                                             8,045,655 41.00
                                                   56.908
PX Ded: Table Q Normãl
                                                   68,886
                                                             2,448,054
                                                                        12.47
                                                           493,377
PX Ded: Execute Reply
                                                   12,096
                                                                        2.51
direct path read
                                                               103,182
                                                   39,244
                                                                           . 53
        ents for DB: BIWP Instance: BIWP Snaps: 7836 -7837
-> cs - centisecond - 100th of a second
-> ms - millisecond - 1800th of a second
-> ordered by wait time desc, waits desc (idle events last)
```

 Most of these are generally idle Wait Events



### **System Performance**

- One subsystem tuning
  - Yields one-sided solution
  - Could worsen performance of other subsystems
- Investigate performance of all subsystems
- Observe overlaps
- Narrow the focus to overlap
  - Yields maximum tuning benefit



### "There is always a Bottleneck"



- Look for the weakest link
- Reconfiguration may solve problems



### **Bottleneck** (continued)

- Hardware
  - Disk subsystem
  - Processors
  - Memory
  - Network
- Operating system
  - Kernel Subsystems
- Database
  - Memory contention
  - Storage organization
  - I/O contention
  - Latch contention
  - Process contention

- Application
  - Efficiency of code
  - SQL
  - Indexes and locking



### **Tuning Process**







$$S = \frac{1}{(1-f) + f}$$

s = The effective Speedup

f = The Fraction of Work in Faster Mode

k = The speedup While in Faster Mode

#### Amdahl's Law

- New Processor is five times faster (k=5)
- 25% spent on I/O (f=0.75)

$$S = \underline{\qquad} = 2.5$$

$$(1 - 0.75) + \underline{0.75}$$

New system is Only 2.5 times faster.

#### Tools

- System Snap-shot Tools
  - What is happening at a given instant
  - Detailed Data

- Time Span Tools
  - Information over a time interval
  - Good for a trend identification

### Typical Observations from Collected Data



- Virtual memory statistics
  - Paging in and out of memory
  - Paging within memory
  - Working set size for a particular process
  - Amount of free memory
  - Page file size
- I/O statistics
  - Unbalanced load on disks
  - High disk service times
  - Long waiting queues
  - High disk utilization
  - Number of reads and writes per second
  - Read and write transfer rates for disks
  - Saturation of SCSI buses, host bus adapters, array controllers

## Typical Observations from Collected Data (cont.)



- Processor statistics
  - % processor utilization
  - Kernel time
  - User time
  - Processor queue length (Run Queue)
- Operating system statistics
  - Kernel waits/locks
  - File system statistics
- Oracle statistics
  - Cache hit ratios for Oracle
  - Rollback space utilization
  - Number of transactions committed and rolled back
  - Checkpoint and log switch frequencies

### **Ratio-Based Tuning**

- Ratios do not
  - Identify bottlenecks
  - Indicate why the performance is unsatisfactory
  - Expose the top bottlenecks in the system
  - Signal when to stop tuning
  - Expose whether the problem is within Oracle or outside
- Unanswered questions
  - My cache hit ratio is 99.999%. Why do I have performance issues?
  - Check all subsystems
  - Is there any hope?



### **Wait Event Based Tuning**

- Addresses these questions
  - What is my system waiting for? Where is the Pain?
  - What are the obstacles preventing higher performance?
  - Should I worry about the wait events and nothing else?
  - Why am I tuning disk I/O if there is no waiting on disk?
  - Why am I improving buffer cache hit ratio, if memory is not an issue?
  - What would you rather tell the management?
     Buffer cache hit ratio is only 95% and not improving, or
     Our bottleneck is one bad SQL statement and we are rewriting it.

#### - Provides

- A better communication method for the DBA
- A reliable and scientific way to precisely pinpoint root cause
- Waits are Application Independent

#### **Oracle Wait Events**

- First introduced in version 7 with little documentation
- Documentation improved in version 8 (Over 200 wait events)
- Oracle continues to add wait events (currently ~300 wait events in 9i)
- Examples
  - Log buffer space process is waiting for free space in the log buffer
  - Database file sequential read the process is waiting for a block to be read from the disk (indexed query)
- Wait events are collected by Oracle if
  - timed\_statistics = 1 (init.ora) Can be set dynamically
  - Timing Interval is Critical

## Oracle Wait Events (continued)



- Can be viewed using WAIT interface (v\$ tables)
  - V\$system\_event
  - V\$session\_event
  - V\$session wait
  - V\$event name
- Historical information
  - Not available in above tables
  - Must use a tool for snapshots and historical information
    - a) BSTAT/ESTAT
    - b) StatsPack

### **BSTAT/ESTAT**

- Command-line interface that gathers instance performance data
- Consists of
  - UTLBSTAT.SQL
  - UTLESTAT.SQL
- Captures a single snapshot of performance data between specific start and end times
- Drawbacks
  - Reports are difficult to read and interpret
  - No latest Oracle features and functionality
  - Does not report several key Oracle features
  - Does not store collected data in permanent tables
  - Does not separate collection from reporting



### What is Statspack?



#### **StatsPack**

- Set of SQL, PL/SQL, and SQL\*Plus scripts for collection, automation, storage, and viewing of performance data
- Succeeds BSTAT/ESTAT
- Available since version 8.1.6 (works with 8.x, but is not supported)
- Features
  - Identifies top wait events
  - Collects more information than BSTAT/ESTAT
  - Pre-calculates statistical ratios
  - Uses permanent tables
  - Separates reporting and collection events
  - Supports automatic snapshots
  - Counts commits and rollbacks as finished transactions

## Comparison of BSTAT/ESTAT and Solutions and StatsPack



| Feature                                                                 | BSTAT/ESTAT | StatsPack |
|-------------------------------------------------------------------------|-------------|-----------|
| Instance summary page                                                   | NO          | YES       |
| Normalization of instance statistics by time and number of transactions | NO          | YES       |
| Wait events                                                             | YES         | YES       |
| High-resource SQL                                                       | NO          | YES       |
| Instance-activity statistics                                            | YES         | YES       |
| Tablespace and file I/O statistics                                      | YES         | YES       |
| Buffer wait breakdown by type                                           | YES         | YES       |
| Enqueue statistics                                                      | NO          | YES       |
| Rollback segment activity and storage data                              | YES         | YES       |
| Latch activity                                                          | YES         | YES       |
| Latch sleep breakdown                                                   | NO          | YES       |

### Comparison of BSTAT/ESTAT and Technology Conference & Expo StatsPack

| Feature                                         | BSTAT/ESTAT | StatsPack |
|-------------------------------------------------|-------------|-----------|
| Latch children                                  | NO          | YES       |
| Buffer pool statistics                          | NO          | YES       |
| Dictionary cache activity                       | YES         | YES       |
| Library cache activity                          | YES         | YES       |
| SGA memory summary                              | NO          | YES       |
| SGA memory breakdown                            | NO          | YES       |
| Non-default init.ora parameters                 | YES         | YES       |
| Configurable output file                        | NO          | YES       |
| Ability to move performance data                | NO          | YES       |
| Configurable amount of data collected           | NO          | YES       |
| Ability to run in multiple instances of OPS/RAC | NO          | YES       |

### **Snapshot IDs**

- Each snapshot is given a sequentially generated snapshot
   ID
- Snapshot ID, instance number, and database identifier form unique key for the stat\$ tables
- To generate snapshots, execute these SQLPlus commands
  - connect perfstat/<password>
  - execute statspack.snap
- Do NOT
  - Shut down the instance between snapshots
  - Change the timed\_statistics settings



#### **Levels and Thresholds**

- Define how much data is collected
- Stored in the stats\$statspack\_parameter table
- To change default settings, execute the statspack.snap package with appropriate parameters

execute statspack.snap(i\_snap\_level=>0);



- Wait statistics
- System events
- System statistics
- Rollback segment data
- Row cache
- SGA
- Background events
- Session events
- Lock, pool, and latch statistics

Level 0 statistics, plus:

High-resource SQL

New with Oracle9*i*; includes all previous levels, plus

- SQL plans
- Plan usage for high resource SQL

Statistics for all previous levels, plus:

Child latch data

### **Running Reports**

- Two reports are available
- SPREPORT.SQL
  - General instance health and instance performance statistics
  - Connect as perfstat/perfstat
  - Execute @<ORACLE\_HOME>\rdbms\admin\spreport.sql in SQLPlus
  - Enter beginning and ending snapshot
  - Enter output file name
- SPREPSQL.SQL
  - Specific SQL statement statistics
  - Run after SPREPORT.SQL
  - Connect as perfstat/perfstat
  - Execute @<ORACLE HOME>\rdbms\admin\sprepsql.sql in SQLPlus
  - Enter beginning and ending snapshot
  - Enter hash value of the specific SQL statement
  - Enter output file name



### **Selecting Snapshots**





### **Performance or Perception?**

- End Users Extended Load window unacceptable
- DBA No control over aggregation queries
- System Administrators Swapping

### Oracle Observations - Wait Events in Oracle



```
Top 5 Wait Events
~~~~~~~~~~~~~~~~~
                                          Wait.
                                                  % Total
                                Waits Time (cs)
                                                  Wt. Time
Event.
                                      27,095,090 45.13
PX Deg: Execution Msg
                              210,637
PX Deg Credit: send blkd
                             254,306 20,185,656 33.62
PX Deq: Table Q Normal
                             284,330
                                      8,989,133 14.97
PX Deg: Execute Reply
                              53,477
                                        2,160,686
                                                     3.60
direct path read
                              261,773
                                          531,092
                                                       .88
                                         Snaps: 7≥50 -7957
Wait Events for DB: BIWP Instance: BIWP
-> cs - centisecond - 100th of a second
-> ms - millisecond - 1000th of a second
-> ordered by wait time desc, waits desc (idle events last)
```

### Wait Events consistent with earlier statspack



### **Response Time Analysis**

#### Response Time = Service Time + Wait Time

- Queuing Theory
- Big Picture -> Service or Waits ?



Service Time = 1,464,542 Centiseconds



#### **Response Time Analysis**

#### Top 5 Wait Events

| ~~~~~~~~~~~~             | Wait % Total             |
|--------------------------|--------------------------|
| Event                    | Waits Time (cs) Wt Time  |
|                          |                          |
| PX Deq: Execution Msg    | 210,637 27,095,090 45.13 |
| PX Deq Gredit: send blkd | 254,306 20,185,656 33.62 |
| PX Deg. Table Q Normal   | 284,330 8,989,133 14.97  |
| PX Deq: Execute Reply    | 53,477 2,160,686 3.60    |
| direct path read         | 261,773 531,092 .88      |
|                          |                          |

Total Wait Time = 27095090 \* 100 / 45.13= 60,037,868 Centi-Seconds



### **Response Time Analysis**

Response Time = Service Time + Wait Time

= 1,464,542 + 60,037,868

= 61,502,410

% of Response Time

Cpu time = 2.4 %

Wait Time = 97.6 %



### **Pre-Tuning Behavior - CPU**





#### **Observations - CPU**

#### High System Time

- Thrashing
- Insufficient Memory
- Paging / Swapping

## Other Cpu related Observations



Vmstat (sy) column



## Other Cpu related Observations



### **System Calls**

- Goal is to Minimize the system calls, Context Switches
- Reduce Time spent in Kernel
- Blocking I/O (Synchronous)
- Non-Blocking I/O (Asynchronous)









## **Memory - Free**





### **Memory - Page Outs/Sec**



## Memory – No. of Swapped Processes







## File and Disk Subsystem

#### File System

- File System Cache
- Double Buffering (SGA & FS Cache)
- No such issue with raw devices and Direct IO



## I/O Operation



## Swap Disks average service times (dsk1,dsk2,dsk33)





## Same Disks with Total queue lengths





## Remaining Disks with Hotspots (dsk50) - AVS





## dsk50 with total queue lengths







### **PX Deq: Execution Msg**

- This event appears when a PQ slave has nothing to do, but is not allowed to go idle.
   E.g. Large data set coming out of a parallel ORDER BY.
- The last layer of PX slaves in the query will receive a ranged set of rows and sort them. The QC will then request ALL the rows from the first PX slave, then the second, then the third and so on.
- usually an idle event but it may be a symptom of excessively large queries choosing an inappropriate execution path. (Bad SQL)

# HP WORLD 2003 Solutions and Technology Conference & Expo

## **Hash Partitioning/Cardinality**

- Affects Distribution
- •The number of partitions should always be a power of two (2, 4, 8, and so on)to obtain the most even data distribution.
- Cardinality is important for choosing a key for hash partitioning.
- Oracle recommendation <u>Do not use partitioning</u> on key columns with low cardinality
- •(columns in which the number of distinct values is small compared to the number of rows in the table.)



## **Hash Partitioning**

- The hash function works best with a LARGE number of values.
- Rows are mapped into partitions based on the hash value of the partitioning key.
- A primary key is a very good hash key because it has a wide range a values.









### **Degree of Parallelism**

- max\_parallel\_servers set to 80
- Degree of parallelism set to 16 on key tables.
- parallel\_threads\_per\_cpu set to 4
- parallel\_automatic\_tuning set to true
- parallel\_broadcast\_enabled set to true



### Parallel\_threads\_per\_cpu

- This parameter is used to adjust the load on each CPU when PARALLEL\_ADAPTIVE\_MULTI\_USER is enabled.
- The value represents the average number of PX slaves that each CPU can process concurrently..
- If the host system has a few high-powered CPUs rather than many lower performance CPUs, increasing the value may improve throughput.
- Likewise, if the host system has a slower I/O subsystem, increasing the value may improve PX throughput.



#### **Oracle Observations**

- SORT\_AREA\_SIZE set to 128MB
   E.g. 48 parallel query threads could potentially consume up to 6 GB of RAM
- Average no.of Oracle Sessions was around 100
- The average use of PGA per session was around 104 MB
- The wired memory for SGA can be reduced by 3 GB (i.e. from 8 GB to 5 GB) as there was around 15% free SGA (Current setting at 4.5 GB)
- Event 10046 trace pointed to excessive parallel query waits



#### **Near Term Recommendations**

- SORT\_AREA\_SIZE set to 90 MB (from 128 MB)
- Reduced the degree of parallelism to 4 (from 16)
- The wired memory for SGA was reduced by 3 GB



### Post - Tuning behavior (CPU)

The load process finished at 5:30am!



## **CPU Observations – Run Queue**







## **Memory (Free)**





## **Memory - Pageouts/sec**



## Memory - No. of Swapped out processes





## Disk – Response times on swap disks (dsk1, 2, 33)







## Swap disks queue lengths



## **Oracle Observations - Wait Events in Oracle**



Top 5 Wait Events

| ~~~ <mark>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</mark> |                | Wait                    | % Total |
|-----------------------------------------------------|----------------|-------------------------|---------|
| Event                                               | Waits Time (c  | s) Wt Time              |         |
| PX Deq: Execution Msg                               | 362,040        | 6,246,486               | 46.72   |
| PX Deq: Table Q Normal                              | 419,894        | 3,648,7 <mark>41</mark> | 27.29   |
| PX Deq Credit: send blkd                            | 121,110        | 934,6 <mark>3</mark> 1  | 6.99    |
| db file sequential read                             | 1,189,706      | 644, <mark>7</mark> 19  | 4.82    |
| direct path read                                    | 348,736        | 513, <mark>4</mark> 00  | 3.84    |
|                                                     |                | <b></b>                 |         |
| □Wait Events for DB: BIWP Instance                  | e: BIWP Snaps: | 7977 -7987              |         |

<sup>-&</sup>gt; cs - centisecond - 100th of a second

-> ms - millisecond - 1000th of a second

Wait Events consistent

-> ordered by wait time desc, waits desc (idle events last) with earlier statspack



### **Response Time Analysis**

Response Time = Service Time + Wait Time



Service Time = 1,684,418 Centi-seconds



### **Response Time Analysis**

| Top 5 Wait Events        |                 |          |         |
|--------------------------|-----------------|----------|---------|
| ~~~~~~~~~~~~~            |                 | Wait     | % Total |
| Event                    | Waits Time (cs) | Wt Time  |         |
|                          |                 |          |         |
| PX Deq: Execution Msg    | 362,040 6       | ,246,486 | 46.72   |
| PX Deq: Table Q Normal   | 419,894 3       | ,648,741 | 27.29   |
| PX Deq Credit: send blkd | 121,110         | 934,631  | 6.99    |
| db file sequential read  | 1,189,706       | 644,219  | 4.82    |
| direct path read         | 348,736         | 513,400  | 3.84    |
|                          |                 |          |         |

Total Wait Time = 6246486 \* 100 / 46.72= 13,370,047 Centi-Seconds



## **Response Time Analysis**

Response Time = Service Time + Wait Time

= 1,684,418 + 13,370,047

= 15,054,465

% of Response Time

Cpu time = 11.18 %

Wait Time = 88.82 %



### **Case Study - Conclusion**

- Total load window before tuning was over 8 hours
- Inventory load would take around 70 mins

- Total load window after tuning is 5 hours and 30 mins
- Inventory load takes 30 mins

# HP WORLD 2003 Solutions and Technology Conference & Expo

#### Conclusion

- Wait event based performance analysis is superior to ratio based method
- Simplifies problem solving for most complex Oracle Configurations
- Parallel Query option should be exercised after careful analysis and sizing
- Data distribution plays critical role in PQO and Data Warehouse





Interex, Encompass and HP bring you a powerful new HP World.





