HA Design Guidelines for HP Superdomes and Other Partitioned Servers

Phil Noyes / Peter Chung

Pre-sales Solution Architects ESG Competitive Sales & Presales

Agenda

- General server high availability design principles
- Superdome-specific high availability design principles
- Clustered Superdome design principles
- Serviceguard cluster arbitration
- vPar design considerations
- Design principles applicable to other partitioned servers

Focus is architecture design, not implementation

Superdome Cabinet View

Rear View

Front View

I/O Chassis (4)-

Power Supplies -

SPOF: Single Points of Failure

Component	Protection Mechanism(s)
Disk	-Multiple host adapters + link failover software
	 Data protection (software-based or hardware-based)
CPU	-Multiple processors
	-Dynamic Processor Resilience (online deallocation)
Network	-Multiple host adapters, switches
	-Link failover software
Power	-Redundant power supplies
	-Multiple power circuits
Software / App.	 Dependent on specific software product
	 Serviceguard may restart application on same system or migrate it to adoptive system
System	-Multiple systems, configured in a cluster

Design Principles – Standalone Superdome

Cell board:

- Each Superdome partition configured with at least two cell boards
- Each cell board configured with at least two active CPUs
- Each cell board configured with at least 4GB RAM (PA arch.)

Power:

- Redundant PDCA (Power Distribution Control Assembly)

I/O Chassis:

- Redundant I/O chassis per Superdome partition
- Each Superdome partition configured with two core I/O cards

Example: Superdome Partition I/O

Key Design Principles:

- Redundant I/O chassis per partition
- Redundant Core I/O cards per partition
- Redundant I/O paths to storage
- Data is protected (software mirrored or hardware RAID)
- Diagram can be extended to network configuration

What is a Valid Cluster?

- A independent copy of HP-UX can be configured on any of the following:
 - A hard partition (nPar)
 - A soft partition (vPar)
 - A non-partitioned HP9000 server
- Valid Serviceguard clusters can include the following types of "nodes":
 - nPars within the same server
 - nPars from different servers
 - Non-partitioned HP9000 servers
 - vPars

Design Principles – Cluster LAN

- Serviceguard cluster "nodes" should include the following network design principles:
 - Cluster heartbeat must be configured with redundant LANs
 - Dedicate one LAN interface to cluster heartbeat
 - User/data subnets should be configured with a standby
 - Primary/standby LAN's must be the same network stack
- Cluster LAN variables defined in the Serviceguard configuration file (/etc/cmcluster/clusterconf.ascii):
 - HEARTBEAT_IP specifies cluster heartbeat traffic
 - STATIONARY_IP specifies data traffic only
 - <blank> definition specifies a standby LAN

Key Design Principles

•Dedicated cluster HB

•Redundant HB

Standby LAN

Example: Cluster LAN Design

Serviceguard Cluster Design Principles

- Clusters should never lose > 50% of the nodes due to a single failure
- An arbitrator is required if a cluster can lose exactly 50% of the nodes from a single failure
- Cluster arbitrators must be powered independently of the cluster nodes
- A Superdome (or any partitioned server) cluster configuration should extend beyond a single cabinet

Example: >50% of cluster nodes lost during failure

A cluster should never lose > 50% of the cluster nodes due to a single failure

Cluster Arbitration – Cluster Lock Disk

Cluster arbitration is required in certain situations to ensure cluster reformation.
Three methods of arbitration: cluster lock disk, guorum server, and arbitrator node

Cluster lock disk:

- A volume group which is accessible by all cluster nodes
- Can arbitrate a single cluster, up to four nodes in size.
- Required for a two-node cluster, optional for larger clusters
- FIRST_CLUSTER_LOCK_VG defined in /etc/cmcluster/clusterconf.ascii

Cluster Arbitration – Quorum Server

Quorum server:

- Can arbitrate up to fifty separate clusters, or up to one hundred nodes
- Is not a Serviceguard cluster node

Cluster Arbitration – Arbitrator Node

Arbitrator node:

- Serviceguard cluster node. Doesn't need to be connected to shared storage.
- Serviceguard LAN guidelines still apply
- Required for clusters > four nodes, and three-site disaster tolerant architectures

Example: "Cluster in a Box"

One SD, rp8400 or rp7410

- Entire cluster is susceptible to standalone node SPOF's
- Preferred design is to spread cluster nodes among independent cabinets:
 - 2 x SD 32-way cabinets are preferred to 1x 64-way cabinet
- Power inputs should be connected to independent power circuits
 - Arbitrator should be powered independently of the cluster nodes
 - Root mirror should be on separate circuit from root volume

Design Principle: Cluster should extend beyond a single cabinet

Example: Multi-Cabinet Cluster

Design Principle: Cluster should extend beyond a single cabinet

Example: Mixed Node Cluster

Four-node Serviceguard cluster

- Single cabinet should not contain > 50% of cluster
- Arbitrator needed if single cabinet = 50% of cluster

Example: Multiple Clusters

nPars vs. vPars

nPar: hard partition within a cabinet **vPar:** Soft partition within a nPar

Design Principles – vPars

- Configured with independent boot disks
- I/O cards with multiple ports are not shared by vPars
- Only one vPar owns all ports on any multi-port I/O card
- Majority of nPar configuration guidelines apply to vPars

Design Principles – vPars as Cluster Nodes

- A vPar can be thought of as a node in an HA cluster
- Configure a vPar with at least two CPUs
- Add the following types of I/O cards for each vPar:
 - I/O cards for primary boot and alternate boot mirror
 - LAN cards for dedicated HB, active LAN, standby LAN
 - I/O cards for shared disk primary path and alternate path
 - I/O card for removable media (DVD-ROM/DDS-DAT)
- Combo card support can ease vPar I/O requirements
- Requirements will determine best partitioning solution

Example: vPar Cluster LAN Architecture

Disaster Tolerant Architecture Guidelines

- Minimize single-site SPOF's
- Configure multiple servers per site, if possible
- Redundant physical paths for site-to-site cabling, such as networking and storage
- Three-site architecture is preferable to two-site architecture

Summary – HA Design Principles

General Design Principles:

- Minimize potential single system SPOF's:
 - Multiple cell boards per nPar
 - Redundant I/O chassis per nPar
 - Redundant I/O cards for boot storage, data storage, and networking
 - Redundant power inputs to server
 - Path failover software for storage and networking

Cluster Design Principles:

- Redundant cluster heartbeat paths
- Configure cluster nodes across independent Superdome cabinets
- Cluster arbitrator should be powered independently of the cluster nodes
- Configure an arbitrator if a single partitionable server contains 50% of the cluster nodes
- A single server should never be configured with a majority of the cluster nodes

Reference Resources

Superdome hardware:

http://www.docs.hp.com/hpux/hw/index.html

Cluster Design/Documentation:

http://www.docs.hp.com/hpux/ha/index.html

Virtual Partitioning:

http://www.docs.hp.com/hpux/11i/index.html

Interex, Encompass and HP bring you a powerful new HP World.

