
Software Design 
Strategies for 

OpenVMS

Bruce Ellis
President

BRUDEN Corporation



HP World 2003  Solutions and Technology Conference & Expo page 211/17/2003

Session overview 

Synchronization
– Event flags
– I/O status blocks
– Asynchronous system traps (ASTs)

Mailboxes
Global sections
Locks
Doorbell Locks
Design considerations
Case studies and/or prototype programs



HP World 2003  Solutions and Technology Conference & Expo page 311/17/2003

Asynchronous system 
services

OpenVMS provides many system services (system 
APIs) that operate asynchronously
For I/O
– SYS$QIO[W], Intra-Cluster Communications (ICC) 

services, SYS$BRKTHRU[W], SYS$UPDSEC[W]
For time-based events
– SYS$SETIMR

For obtaining information
– SYS$GETJPI[W], SYS$GETDVI[W], SYS$GETLKI[W]

For requesting locks
– SYS$ENQ[W]



HP World 2003  Solutions and Technology Conference & Expo page 411/17/2003

Design issues with 
asynchronous services

When using asynchronous services it is important to:
– Guarantee completion of the event
– Determine when the event has completed
– Determine the completion status of the event

OpenVMS supports the following methods for detecting 
completion of asynchronous events
– Event Flags
– "I/O" status block

– Asynchronous System Traps (ASTs)

Completion StatusCompletion Status



HP World 2003  Solutions and Technology Conference & Expo page 511/17/2003

Event flags

Event flags are associated with events when calling 
asynchronous system services
– 2 local event flag clusters (plus EFN$C_ENF)
– 32 flags per cluster 
– Can wait on flags in one cluster at a time
– Can wait for:

• a specific flag (SYS$WAITFR) to be set
• any flags in cluster (SYS$WFLOR) to be set
• or all (SYS$WFLAND) to be set

– OpenVMS sets the flags
– Process placed in LEF scheduling state until event flag is 

set



HP World 2003  Solutions and Technology Conference & Expo page 611/17/2003

"I/O" status block 

The success status of an asynchronous event is 
reported through the "I/O" status block (IOSB)
– The I/O status block has a 32-bit and 64-bit form
– Although, advertised as optional argument to system 

services, it should not be considered optional
– Should have one unique IOSB per concurrent 

asynchronous event
Can be used with SYS$SYNCH system service
– Especially useful when possible concurrent duplication of 

event flags could occur in application



HP World 2003  Solutions and Technology Conference & Expo page 711/17/2003

Design case study - Event 
with time out 

Customer is porting an application from PDP-11 to 
OpenVMS Alpha
– Communicates with PDP through terminal line
– Sends out a polling message using SYS$QIO 

(asynchronous form)
– Waits one second
– If PDP does not respond, sends another message and 

repeats
When PDP does not respond, process eventually hangs 
in RWAST state due to quota exhaustion (BIOLM)
Customer proposes monitoring process quotas



HP World 2003  Solutions and Technology Conference & Expo page 811/17/2003

Design case study - Event 
with time out 

The following solution is proposed
– Set a polling timer (3 seconds)
– Poll (write to) PDP line
– Read the line asynchronously, using event flag 33
– Set a time to expire in 1 second that will set flag 34
– Wait for either flag 33 or 34 to be set (SYS$WFLOR)
– When one of the flags is set, read the event flag cluster 

(SYS$READEF) to determine which flag was set
– If read completed, wait for poll interval to expire and issue 

next read
– If time out, cancel I/O, report time out, and wait for next 

poll interval



HP World 2003  Solutions and Technology Conference & Expo page 911/17/2003

Design case study - Event 
with time out

$ define terminal opa0:
%DCL-I-SUPERSEDE, previous value of TERMINAL has been superseded
$ r term_reader
PDP data: yes
Timestamp:  2-JUL-2003 00:09:16.98
Timeout!
Timestamp:  2-JUL-2003 00:09:31.98
PDP data: m
Timestamp:  2-JUL-2003 00:09:46.98
PDP data:
Timestamp:  2-JUL-2003 00:10:01.98
PDP data:
Timestamp:  2-JUL-2003 00:10:16.98
PDP data: Yes
Timestamp:  2-JUL-2003 00:10:31.98
PDP data: Yes
Timestamp:  2-JUL-2003 00:10:46.98
PDP data: Yes
Timestamp:  2-JUL-2003 00:11:01.98
PDP data: No
Timestamp:  2-JUL-2003 00:11:16.98
$

Sample run of poller



HP World 2003  Solutions and Technology Conference & Expo page 1011/17/2003

Design case study - Event 
with time out

Sample run from remote terminal

Are you there? yes
Are you there? yes ia
Are you there? m
Are you there?
Are you there?
Are you there? Yes
Are you there? Yes
Are you there? Yes

Took too longTook too long

TERM_READER.CTERM_READER.C



HP World 2003  Solutions and Technology Conference & Expo page 1111/17/2003

Asynchronous system traps 

Asynchronous system traps (ASTs) are subroutines 
called by OpenVMS, asynchronous to the flow of 
execution, when an event completes
System services allow you to identify one parameter 
(ASTPRM) that will be passed to the AST routine when 
it is called
AST routine operating in a single threaded process 
cannot be preempted by another AST delivered in the 
same access mode (can be preempted by an AST in 
elevated access mode, e.g. Executive mode AST can 
preempt user mode AST)



HP World 2003  Solutions and Technology Conference & Expo page 1211/17/2003

Asynchronous system traps 

AST flow

SYS$QIO issued SYS$QIO issued 
with AST requestedwith AST requested

Program Program 
continues continues 
executionexecution OpenVMS detects OpenVMS detects 

I/O CompletionI/O Completion

AST( AST( astprm astprm ))

AST routine calledAST routine called

11

44

22

33



HP World 2003  Solutions and Technology Conference & Expo page 1311/17/2003

AST design considerations 

For debugging purposes AST routines should avoid 
accessing external data
– Additionally, for synchronization data updated by both 

AST routine and mainline code requires "Load Lock/Store 
Conditional" sequence in mainline code
• Can be implemented using __add_atomic_long( )

Data can be encapsulated by passing a structure to the 
AST routine



HP World 2003  Solutions and Technology Conference & Expo page 1411/17/2003

Interprocess communication 
and synchronization 

When designing a system where multiple processes will 
support different functions within the system, processes 
need a method to communicate with each other
OpenVMS provides several methods of interprocess 
communication, including:
– Mailboxes
– Global sections
– Logical names
– Shared files
– Intracluster Communication (ICC) services
– Lock value blocks



HP World 2003  Solutions and Technology Conference & Expo page 1511/17/2003

Mailboxes 

Mailboxes are pseudo-devices, similar to UNIX pipes, 
that support bi-directional communication
– Can force unidirectional communication with argument to 

SYS$CREMBX
Mailboxes must be created prior to use 
(SYS$CREMBX)
Mailbox device names are of the form MBAn, where the 
unit number is generated dynamically
Mailboxes are usually identified by logical names
Reads complete when a corresponding write to the 
mailbox is issued and vice versa



HP World 2003  Solutions and Technology Conference & Expo page 1611/17/2003

Mailboxes 

Mailboxes may be temporary or permanent
– Temporary mailboxes:

• Are deleted when the last channel is deassigned
• Require TMPMBX privilege to create
• By default, logical names go in job logical name table, can 

change with:
$ define/table=lnm$process_directory lnm$temporary_mailbox lnm$group

– Permanent mailboxes:
• Must be explicitly deleted (SYS$DELMBX)
• Require PRMMBX privilege to create
• By default, logical names go in system logical name table



HP World 2003  Solutions and Technology Conference & Expo page 1711/17/2003

Mailbox mechanics 

Process AProcess A Process BProcess B

MailboxMailbox



HP World 2003  Solutions and Technology Conference & Expo page 1811/17/2003

Mailbox mechanics 

SYS$QIOW SYS$QIOW 
WRITEWRITE

MessageMessage

SYS$QIOW SYS$QIOW 
WRITEWRITE

Process AProcess A Process BProcess B

MailboxMailbox



HP World 2003  Solutions and Technology Conference & Expo page 1911/17/2003

Mailbox mechanics 

MailboxMailbox

SYS$QIOW SYS$QIOW 
WRITEWRITE

SYS$QIOW SYS$QIOW 
WRITEWRITE

SYS$QIOW SYS$QIOW 
READREAD

Process AProcess A Process BProcess B

MessageMessage



HP World 2003  Solutions and Technology Conference & Expo page 2011/17/2003

Mailbox mechanics 

SYS$QIOW SYS$QIOW 
WRITEWRITE

SYS$QIOW SYS$QIOW 
WRITEWRITE

SYS$QIOW SYS$QIOW 
READREAD

Process AProcess A Process BProcess B

MailboxMailbox



HP World 2003  Solutions and Technology Conference & Expo page 2111/17/2003

Mailbox implementations 

One possible mailbox implementation

Process AProcess A
WriteWrite

ReadRead

Process BProcess B
WriteWrite

ReadRead

ReadRead

WriteWrite

WriteWriteReadRead



HP World 2003  Solutions and Technology Conference & Expo page 2211/17/2003

Mailbox implementations 

More common mailbox implementation

Process AProcess A

Process BProcess B Process EProcess E

Process CProcess C
Process DProcess D



HP World 2003  Solutions and Technology Conference & Expo page 2311/17/2003

Mailbox design 
considerations 

Mailboxes provide relatively fast communication
– ~9,500 read/write pairs of 128 bytes per second on ES40 

with 2 500Mhz CPUs
Mailboxes support event notification of writes/reads 
through SYS$QIO interface
When the reader thread is slow to respond mailboxes 
can back up
– If mailbox fills up, writers can stall in RWMBX state

Great care should be taken when designing a server 
process
Use caution with asynchronous reads/writes, can read 
own messages



HP World 2003  Solutions and Technology Conference & Expo page 2411/17/2003

Design case study - Mailbox 
implementation  

Create processes (pvcs) to handle X.25 
communications with remote sites
Process names defined by site, input from 
TERMDATA.DAT file
Messages from processes to be logged in a daily log file
Synch messages to file on regular basis
Log file reopened daily
Detect process failure, if detected log and restart 
processes

Customer requirements



HP World 2003  Solutions and Technology Conference & Expo page 2511/17/2003

Design case study - Mailbox 
implementation  

Central process will handle log files and read data 
passed from site processes
To handle failure detection, we use termination mailbox 
messages
– Create process system service (SYS$CREPRC) supports 

a mbxunt parameter
– On deletion/failure of a process an accounting message is 

written to the mailbox unit
– PID is in accounting message, process name is not
– To map PIDs to process names, an array of structures is 

filled in that maps PIDs to process names

Design considerations



HP World 2003  Solutions and Technology Conference & Expo page 2611/17/2003

Design case study - Mailbox 
implementation  

Central process is entirely event driven
It sets up ASTs to handle:
– Reads from process (pvc) mailboxes
– Reads from termination mailboxes
– Synchs for files
– Reopening log files

After setup, the process hibernates (SYS$HIBER)
– A wake call (SYS$WAKE) will cause process to run down

Design considerations



HP World 2003  Solutions and Technology Conference & Expo page 2711/17/2003

Design case study - Mailbox 
implementation  

AST routines are passed pointers to structures (through 
ASTPRM) that allow them to access:
– File pointers to daily log and exception files
– IOSB associated with read
– Read buffer (accounting buffer pointer is maintained 

separately to avoid casting pointer)
– Mailbox unit

Upon completion of processing, another asynchronous 
read is issued on the mailbox

Design considerations



HP World 2003  Solutions and Technology Conference & Expo page 2811/17/2003

Design case study - Mailbox 
implementation  

Design implementation

Read ASTRead AST

Autopsy Autopsy 
ASTAST

Central 
Process

Site 
Process

Site 
Process

Site 
Process

Site 
Process Site 

Process

Site 
Process

Site 
Process

Site 
Process

Daily Log Exception 
Log



HP World 2003  Solutions and Technology Conference & Expo page 2911/17/2003

Design case study - Mailbox 
implementation  

Master process flow
– Create daily and exception log files
– Create permanent mailbox for general communications
– Create temporary mailbox for termination messages
– Create processes with termination mailbox
– Set timers to:

• Flush log files
• Close and reopen log files daily

– Post asynchronous read to mailbox with AST routine to be 
called on completion
– Hibernate

Design implementation



HP World 2003  Solutions and Technology Conference & Expo page 3011/17/2003

Design case study - Mailbox 
implementation  

Process creation flow
– Read process names from TERMDATA.DAT file
– Loop and create processes with same termination mailbox 

unit
– Post asynchronous read on mailbox unit, specifying 

autopsy AST routine
– AST parameter is a structure with pointers to structure for 

mailbox and structure for process table
MBX_READER.C

Design implementation



HP World 2003  Solutions and Technology Conference & Expo page 3111/17/2003

Design case study - Mailbox 
implementation  

Design implementation

ASTPRMASTPRM

Read Read 
BufferBuffer

Acct Msg Acct Msg 
BufferBuffer

IOSBIOSB

CHANCHAN
BufsizeBufsize

Log fpLog fp
Exc fpExc fp
Log fpLog fp

Err_cntErr_cnt
MBX UnitMBX Unit

Proc CntProc Cnt
PIDPID

Prcnam Prcnam 

PIDPID
Prcnam Prcnam 

PIDPID
Prcnam Prcnam 

..

..

..



HP World 2003  Solutions and Technology Conference & Expo page 3211/17/2003

Design case study - Mailbox 
implementation

A prototype of the mailbox writer (pvc processes) was 
written that fabricated a 128 record and wrote it at 
random intervals (each site process used thismechaism
– Intervals of 1 to 30 seconds were chosen to emulate the 

user environment
– Intervals of 10 to 300 milliseconds were chosen to 

emulate stress conditions
MBX_WRITER.C (Both reader and writer use 
MBX_REC.H)



HP World 2003  Solutions and Technology Conference & Expo page 3311/17/2003

Design case study - Mailbox 
implementation examples

System startup

Termdata file used to define process names.
$ type termdata.dat
KLWN01KELOWNA/HANY01           83600131000000176219992503721
KAML01KAMLOOPS/HANY06          83501166000000237269992503726
CTWD01CHETWYND VHF #1          83700381000000378809992507846
VANC02Vancouver VHF #2         83100292000000466299996046897
VERN01VERNON/HANEY04           83600021000000577060992503729
FSJN02FT ST JOHN VHF #2        83700228000000678769992507847
PGRG01PRINCE GEORGE VHF #1     65100102000000756594992505659
VICT01VICTORIA/ HANY02         67102932000000838954992502864
NNIM01NANAIMO/ HANY03          83102148000000975504992502863
CBRV01CAMPBELL RIVER VHF #1    68350011000001028624992502860
DWCK01DAWSON CREEK VHF #1      65200010000001178494992507849
...
Command to kick off reader, which in turn starts site processes.
$ run/detach/privileges=all/process=ttrama mbx_reader
%RUN-S-PROC_ID, identification of created process is 20400491
$



HP World 2003  Solutions and Technology Conference & Expo page 3411/17/2003

Design case study - Mailbox 
implementation examples

System processes $ 
Ope
show system
nVMS V7.3-1  on node ALPH40   7-JUL-2003 21:05:56.54  Uptime  0 10:11:07
Pid    Process Name    State  Pri      I/O       CPU       Page flts  Pages

...
20400491 TTRAMA          HIB      5     2572   0 00:00:00.03    113    130
20400492 KLWN01          LEF      6       95   0 00:00:00.00    73     86
20400493 KAML01          LEF      4       96   0 00:00:00.02    73     86
20400494 CTWD01          LEF      6       86   0 00:00:00.01    73     86
20400495 VANC02          LEF      5       86   0 00:00:00.00    73     86
20400496 VERN01          LEF      6       84   0 00:00:00.01    73     86
20400497 FSJN02          LEF      6       91   0 00:00:00.01    73     86
20400498 PGRG01          LEF      6       82   0 00:00:00.01    73     86
20400499 VICT01          LEF      6       92   0 00:00:00.00    73     86
2040049A NNIM01          LEF      6       93   0 00:00:00.01    73     86
2040049B CBRV01          LEF      6       96   0 00:00:00.01    73     86
2040049C DWCK01          LEF      6       92   0 00:00:00.01    73     86
2040049D CRBK01          LEF      6       83   0 00:00:00.01    73     86
2040049E NLSN01          LEF      6       90   0 00:00:00.02    73     86
2040049F TRRC01          LEF      6       84   0 00:00:00.00    73     86
204004A0 WLLK01          LEF      6       76   0 00:00:00.03    73     86
204004A1 PTHY01          LEF      6       94   0 00:00:00.01    73     86
204004A2 PNTN01          LEF      6       94   0 00:00:00.04    73     86
204004A3 QSNL01          LEF      6      100   0 00:00:00.00    73     86
204004A4 SMTR01          LEF      6       74   0 00:00:00.01    73     86
204004A5 FSJN01          LEF      6       83   0 00:00:00.00    73     86
204004A6 MAST01          LEF      6       83   0 00:00:00.01    73     86
204004A7 PGRG02          LEF      6       91   0 00:00:00.00    73     86
204004A8 VANC03          LEF      6       85   0 00:00:00.01    73     86
204004A9 PTHY02          LEF      6       90   0 00:00:00.00    73     86
204004AA FTNL01          LEF      6       84   0 00:00:00.01    73     86
204004AB PTAI01          LEF      6       91   0 00:00:00.01    73     86
204004AC PRRT01          LEF      6       86   0 00:00:00.01    73     86
204004AD KAML02          LEF      6       91   0 00:00:00.01    73     86
204004AE BULK01          LEF      6       86   0 00:00:00.01    73     86
204004AF VANEVA          LEF      6       86   0 00:00:00.02    73     86
$



HP World 2003  Solutions and Technology Conference & Expo page 3511/17/2003

Design case study - Mailbox 
system load under stress

Load of 1 write per process at random intervals from 10 to 300 milliseconds 
(anticipated activity is 1 write/15 seconds)

$ monitor modes,process/topcpu,io,disk
OpenVMS Monitor Utility
TOP CPU TIME PROCESSES

on node ALPH40
7-JUL-2003 21:07:09.21

0         25        50     75       100
+ - - - - + - - - - + - - - - + - - - - -+

20400491  TTRAMA
20400490  ELLIS
...

OpenVMS Monitor Utility
+-----+         TIME IN PROCESSOR MODES
| CUR |              on node ALPH40
+-----+          7-JUL-2003 21:07:12.21

Combined for  2 CPUs                 0         50        100    150      200
+ - - - - + - - - - + - - - - + - - - - -+

Interrupt State                     |
MP Synchronization                  |
Kernel Mode                         |
Executive Mode                      |
Supervisor Mode                     |
User Mode                           |
Compatibility Mode                  |
Idle Time                       199 |***************************************

+ - - - - + - - - - + - - - - + - - - - -+



HP World 2003  Solutions and Technology Conference & Expo page 3611/17/2003

Design case study - Mailbox 
system load under stress

With ~200 mailbox writes/second system overhead is negligible

OpenVMS Monitor Utility
I/O SYSTEM STATISTICS

on node ALPH40
7-JUL-2003 21:07:15.21

CUR        AVE        MIN MAX

Direct I/O Rate                   3.66       2.99       2.66 3.66
Buffered I/O Rate               402.66     400.57     384.00 419.00
Mailbox Write Rate              196.33     195.88     187.33 205.33

...

OpenVMS Monitor Utility
DISK I/O STATISTICS

on node ALPH40
7-JUL-2003 21:07:18.21

I/O Operation Rate                         CUR        AVE       MIN        MAX

$1$DGA42:     (ALPH40) ES40               4.00       4.13       3.66       4.66
$1$DGA142:    (ALPH40) RAID               0.00       0.00       0.00       0.00
...



HP World 2003  Solutions and Technology Conference & Expo page 3711/17/2003

Design case study - Mailbox 
system load under stress

Operations to mailbox is double the write rate.
$ @mb_mon
*******************
MBA1       operations:        119  ops/sec:         11.9
MBA2       operations:         65  ops/sec:          6.5
MBA3       operations:          2  ops/sec:          0.2
...
MBA56      operations:         10  ops/sec:          1.0
MBA57      operations:          2  ops/sec:          0.2
MBA68      operations:     513848  ops/sec:      51384.8
Enter Control Y to exit.
*******************
MBA68      operations:     517726  ops/sec:        387.8
Enter Control Y to exit.
*******************
MBA68      operations:     521620  ops/sec:        389.4
Enter Control Y to exit.
*******************
MBA68      operations:     525482 ops/sec:        386.2
Enter Control Y to exit.
Interrupt

$ show logical Bruce_mbx
"Bruce_mbx" = "MBA68:" (LNM$SYSTEM_TABLE)

$ show device mba68:/full
Device MBA68:, device type local memory mailbox, is online, record-oriented

device, shareable, mailbox device.

Error count                    0    Operations completed    420786
Owner process                 ""    Owner UIC               [ELLIS]
Owner process ID        00000000 Dev Prot S:RWPL,O:RWPL,G:RWPL,W:RWPL
Reference count               31    Default buffer size     128

$



HP World 2003  Solutions and Technology Conference & Expo page 3811/17/2003

Global sections 

Global sections are memory sections that can be 
commonly "mapped" by multiple processes
Global sections are created using the create and map 
section system service 
(SYS$CRMPSC/SYS$CRPMSC_64)(64-bit services 
allow a section to be created for later mapping by 
processes)
– Creating a section constructs system data structures 

(global section descriptors, global section table entries, 
and global page table entries), that describe the section to 
the system and other processes



HP World 2003  Solutions and Technology Conference & Expo page 3911/17/2003

Global sections 

Mapping to a global section is performed through a map 
global section system service 
(SYS$MGBLSC/SYS$MGBLSC_64)
– Mapping to a global section constructs process page table 

entries that can be used to locate the corresponding 
global page table entries

Address space for global sections is commonly 
allocated dynamically, using the expand region 
(SEC$M_EXPREG) flag
Global sections may be mapped to different addresses 
for different processes, in fact may be mapped to 
different virtual address space regions



HP World 2003  Solutions and Technology Conference & Expo page 4011/17/2003

Global section mechanics 

Process A Virtual Address SpaceProcess A Virtual Address Space

Valid Pages

M
ap

pe
d 

Se
ct

io
n

Process B Virtual Address SpaceProcess B Virtual Address SpacePhysical MemoryPhysical Memory



HP World 2003  Solutions and Technology Conference & Expo page 4111/17/2003

Global section design 
considerations 

Once the section has been mapped, processes access 
the section (normally through pointers) as they would 
access local memory
Some form of synchronization must be employed while 
accessing the section to guarantee data integrity 
Synchronization techniques include
– Load lock/store conditional instruction sequences
– Interlocked queues
– Locks



HP World 2003  Solutions and Technology Conference & Expo page 4211/17/2003

Global section design 
considerations 

Global sections are preferable over mailboxes in high 
concurrency situations
On an ES40 (with 2 500Mhz CPUs) a process can write 
~15,000 128-byte messages/second to a section, with 
no synchronization
– With a simple locking scheme, ~12,000 128-byte 

messages can be written per second
Drawbacks to global sections include:
– No built-in signaling mechanism for write/read notification 

(can be implemented with doorbell locks)
– Limited to a single node (you can use galaxywide shared 

memory sections to share data between galaxy instances)



HP World 2003  Solutions and Technology Conference & Expo page 4311/17/2003

Global section design 
considerations 

Global sections can be:
– Backed to a section file

• Persistent data
• Can be updated (SYS$UPDSEC)

– Backed to the page file
– Memory resident 

• Not charged against the process' working set list
• Not backed to disk



HP World 2003  Solutions and Technology Conference & Expo page 4411/17/2003

Locks 

OpenVMS lock management provides a 
synchronization method 
You lock on a uniquely named resource (could be a file, 
record, structure in a global section, or even a mythical 
resource), using the SYS$ENQ system service
– Name space is system-wide (LCK$M_SYSTEM), group-

wide, or within a resource domain
Locks are requested in a given access mode (NL, CR, 
CW, PR, PW, or EX)
– Compatible locks are granted, incompatible locks are 

placed in a queue until compatible



HP World 2003  Solutions and Technology Conference & Expo page 4511/17/2003

Locks 

A unique lock identification is returned to the caller of 
SYS$ENQ
Lock management supports sublocks
– Useful for providing a unique naming convention, sub-

resources only require unique names within the sub-
resource hierarchy 
• Example: file lock and record lock

Very_unique_parent

Rec_1 Rec_8 Rec_22 Rec_324



HP World 2003  Solutions and Technology Conference & Expo page 4611/17/2003

Lock features 

The lock manager supports many features
– Resource value blocks

• Can be used to identify changes to resources (16-bytes of 
data)

– Lock conversions
• Preserve the value block
• Slightly faster than SYS$ENQ/SYS$DEQ/SYS$ENQ

– Blocking ASTs
• Notification that a process is being blocked



HP World 2003  Solutions and Technology Conference & Expo page 4711/17/2003

Sample lock and global 
section implementation

...

Section name: 
TRADES

Res: 2 Res: 
547Res: 4

...

Proc A 
PW Lock

Proc B 
PR Lock

Proc C 
PR Lock

Proc E 
PW Lock

Proc D 
PR Lock

Proc A

Proc B Proc C

Proc D

Proc E

Proc A 
CR Lock

Proc B 
CR Lock

Proc C 
CR Lock

Proc D 
CR Lock

Res: 
TRADES



HP World 2003  Solutions and Technology Conference & Expo page 4811/17/2003

Sample lock and global 
section programs

This implementation is illustrated by the programs:
– CREATE_SEC.C

• Creates a permanent global section named "trades"

– SEC_WRITER.C
• Writes one million random records to random indices in the 

section
• Displays the number of messages written per second

– SEC_READER.C
• Reads one million random messages and displays the first 

20 characters of each message

– All programs use locks



HP World 2003  Solutions and Technology Conference & Expo page 4911/17/2003

Doorbell locks 

Technically there is no such thing as a "doorbell lock"  
– There is no argument on the SYS$ENQ system service 

that asks for a doorbell lock. There is a doorbell 
communication method that takes advantage of the 
following characteristics of the locking mechanism:
• Blocking ASTs
• Value blocks
• Lock conversions

The name "doorbell lock" is a slang reference to locks 
that use these mechanisms to support inter-process 
communication on a single node or clusterwide  



HP World 2003  Solutions and Technology Conference & Expo page 5011/17/2003

Doorbell lock concepts 

Server holds EX mode 
lock on 

"TRADE_DOORBELL" 
with "Butler" blocking  

AST



HP World 2003  Solutions and Technology Conference & Expo page 5111/17/2003

Doorbell lock concepts 

Client, wanting to 
communicate,requests an EX 
lock on TRADE_DOORBELL 
(rings doorbell) and is blocked 

by server 

Server enters 
blocking AST and 

converts lock to NL 
mode (answers door) 

and immediately 
converts back to EX 

(now blocked by 
client), asking for 

value block and re-
enabling blocking 

AST

1

2



HP World 2003  Solutions and Technology Conference & Expo page 5211/17/2003

Doorbell lock concepts 

Client is granted EX lock and 
releases the lock immediately, 

writing a message into the 
resource value block (hands off the 

package)

1

2
Server is granted lock and 
reads the information in the 

value block



HP World 2003  Solutions and Technology Conference & Expo page 5311/17/2003

Doorbell lock concepts 

If more than one process will be "ringing" the doorbell, another
lock will be needed to coordinate access to the doorbell



HP World 2003  Solutions and Technology Conference & Expo page 5411/17/2003

Sample doorbell 
implementation 

The sample doorbell implementation performs the 
following steps:
– A separate program creates a global section called 

"TRADES" (CREATE_SEC.C) 
• Global section consists of one million 128-byte structures



HP World 2003  Solutions and Technology Conference & Expo page 5511/17/2003

Sample doorbell 
implementation 

A server process (SERVER_SEC.C) maps the global 
section
– A CR mode lock is taken out by the server on the section
– The server sets up a doorbell lock request and goes to 

sleep (SYS$HIBER)
– When waken, the server takes out a sublock of the 

"TRADES" lock, on the structure (using index as name)
– The server displays the record and goes back to sleep

• In a real application, the record might be updated in a 
database



HP World 2003  Solutions and Technology Conference & Expo page 5611/17/2003

Sample doorbell 
implementation 

A client process (CLIENT_SEC.C) maps the global 
section
– Takes out a CR mode lock on the TRADES section
– It prompts for user input (an ID number and a string)
– The ID is used as an index into the section
– The ID also forms the sub-resource name for a lock taken 

out in PW mode
– The data is copied into the section
– The doorbell is rung



HP World 2003  Solutions and Technology Conference & Expo page 5711/17/2003

Doorbell implementation 
considerations

The doorbell scheme used here allows ~5,000 
messages per second on an ES40 with 2 500Mhz 
CPUs



HP World 2003  Solutions and Technology Conference & Expo page 5811/17/2003

Doorbell implementation 
sample run

Server Session Client Session

$ run client_sec
Enter id: 1700
Enter name: Max Ellis
$
$ run client_sec
Enter id: 500000
Enter name: Wim Wenders
$
$
$ run client_sec
Enter id: 1000000
$

$ run server_sec
Item 1700 updated
Data is Max Ellis
Item 500000 updated
Data is Wim Wenders
$



HP World 2003  Solutions and Technology Conference & Expo page 5911/17/2003

For additional information 

For more information on these techniques, see:
– OpenVMS Programming Concepts Manual

Additionally, HP Educational Services offers the 
following courses:
– OpenVMS Alpha Programming Features I
– OpenVMS Alpha Programming Features II

Electronic forms of the sample programs can be 
downloaded from www.BRUDEN.com
Questions?
– Bruce.Ellis@BRUDEN.com



Interex, Encompass and HP bring you a powerful new HP World.


	Software Design Strategies for OpenVMS
	Session overview
	Asynchronous system services
	Design issues with asynchronous services
	Event flags
	"I/O" status block
	Design case study - Event with time out
	Design case study - Event with time out
	Design case study - Event with time out
	Design case study - Event with time out
	Asynchronous system traps
	Asynchronous system traps
	AST design considerations
	Interprocess communication and synchronization
	Mailboxes
	Mailboxes
	Mailbox mechanics
	Mailbox mechanics
	Mailbox mechanics
	Mailbox mechanics
	Mailbox implementations
	Mailbox implementations
	Mailbox design considerations
	Design case study - Mailbox implementation
	Design case study - Mailbox implementation
	Design case study - Mailbox implementation
	Design case study - Mailbox implementation
	Design case study - Mailbox implementation
	Design case study - Mailbox implementation
	Design case study - Mailbox implementation
	Design case study - Mailbox implementation
	Design case study - Mailbox implementation
	Design case study - Mailbox implementation examples
	Design case study - Mailbox implementation examples
	Design case study - Mailbox system load under stress
	Design case study - Mailbox system load under stress
	Design case study - Mailbox system load under stress
	Global sections
	Global sections
	Global section mechanics
	Global section design considerations
	Global section design considerations
	Global section design considerations
	Locks
	Locks
	Lock features
	Sample lock and global section implementation
	Sample lock and global section programs
	Doorbell locks
	Doorbell lock concepts
	Doorbell lock concepts
	Doorbell lock concepts
	Doorbell lock concepts
	Sample doorbell implementation
	Sample doorbell implementation
	Sample doorbell implementation
	Doorbell implementation considerations
	Doorbell implementation sample run
	For additional information

